TRANSFER SYSTEMS FOR RANK TWO ELEMENTARY ABELIAN GROUPS:
CHARACTERISTIC FUNCTIONS AND MATCHSTICK GAMES

LINUS BAO, CHRISTY HAZEL, TIA KARKOS, ALICE KESSLER, AUSTIN NICOLAS, KYLE ORMSBY,
JEREMIE PARK, CAIT SCHLEFF, AND SCOTTY TILTON

ABSTRACT. We prove that Hill’s characteristic function y for transfer systems on a lattice
P surjects onto interior operators for P. Moreover, the fibers of ¥ have unique maxima
which are exactly the saturated transfer systems. In order to apply this theorem in examples
relevant to equivariant homotopy theory, we develop the theory of saturated transfer systems
on modular lattices, ultimately producing a “matchstick game” that puts saturated transfer
systems in bijection with certain structured subsets of covering relations. After an interlude
developing a recursion for transfer systems on certain combinations of bounded posets, we
apply these results to determine the full lattice of transfer systems for rank two elementary

Abelian groups.
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1. INTRODUCTION

1.1. Motivation, context, and results. In topology, there is a unique E. operad up to
homotopy. Moreover, localization of ring spectra preserves E.-structures. These simple
facts underpin derived — or, more precisely, spectral — algebraic geometry. Indeed, it is
very hard to mimic algebraic geometry without a well-behaved theory of localization.

Fix a finite group G. In G-equivariant topology, Blumberg and Hill [BH15] have intro-
duced the notion of a G-N. operad. These are operads in G-spaces encoding homotopy
coherent ring structure and compatible families of norms: multiplicative wrong-way maps
N, SR — R where H is a subgroup of G and Ng is left adjoint to the forgetful functor from
G-spectra to H-spectra. These norms are a fundamental feature of G-ring spectra and are
essential to the computational work following from the Hill-Hopkins—Ravenel resolution of
the Kervaire invariant one problem [HHR16].
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Unlike the situation in classical topology, there are many homotopically distinct G-N.
operads and localization of G-ring spectra does not preserve N.-structure. This makes the
prospect of equivariant derived algebraic geometry both daunting and excitingly new.

Given this challenge, there has been significant recent interest in uncovering the struc-
ture of the category of G-N.., operads [GW18, Rub21, BP21, BBR21, FOO 22, HMOQO22,
BMO22b, BMO23]. The homotopy category of G-N.. operads is equivalent to the category
of so-called G-transfer systems (see Definition 1.1). These are combinatorial structures on
the subgroup lattice of G which can be investigated with traditional enumerative, algebraic,
and asymptotic methods.

In this work, we determine the structure of the partially ordered set (in fact, lattice) of
G-transfer systems for G a rank 2 elementary Abelian group (i.e., G = C, x C, for C, a
cyclic group of prime order p):

Theorem (Theorem 5.4). Let p be a prime number. There are exactly 2P*% + p+ 1 transfer
systems for C, X Cp,, and the lattice of transfer systems has an explicit decomposition in
terms of two Boolean lattices on p + 1 elements along with p+ 1 intermediate elements (see
Proposition 5.2 for lattice structure details).

This theorem represents only the fourth infinite class of groups whose transfer systems
have been determined in either closed or recursive form. Previously, Balchin—Barnes—
Roitzheim [BBR21] proved that Tr(C, ) is isomorphic to the Tamari lattice with Cat(n+1) =
ﬁ (zfjlz) elements. In [BMO22b], Balchin-MacBrough—Ormsby give a recursion for
transfer systems on dihedral groups of order 2p" and cyclic groups of order gp”, p # g
primes; they do not give a closed formula for the number of transfer systems, and they do
not investigate the lattice structure.

While it is likely possible to prove the above theorem from first principles, we take a
roundabout route that allows us to expose and develop several important structural properties
of transfer systems in general. These split into three categories: characteristic functions,
saturated covers on modular lattices, and categorical properties of transfer systems.

The idea of a characteristic function for lattices is due to Hill, and may be viewed as a
relativization of the notion of minimal fibrancy exploited in [BMO22b]. Let P be a finite
lattice. There is a simple extension of the notion of a transfer system from a subgroup lattice
to an arbitrary lattice (see Definition 1.1). In our formulation, the characteristic function
takes the form of an antitone (order-reversing) map

x: Tr(P) — End(P)

where Tr(P) is the lattice of transfer systems on P, and End(P) is monotone endomorphisms
of P. (See Section 2 for details on the construction.)

Let End°(P) C End(P) denote the set of interior operators on P, i.e., idempotent, contrac-
tive, monotone maps P — P. We prove the following:

Theorem (Theorem 2.8 and Theorem 2.12). Let P be a finite lattice. Hill’s characteristic
function ) has image End® (P), and each fiber of x is an interval [R,R'] = {R" € Tr(P) |R <
R" < R'} in Tr(P). The set of maximal elements of fibers of X is exactly the set of saturated
transfer systems.



TRANSFER SYSTEMS FOR RANK TWO ELEMENTARY ABELIAN GROUPS 3

Here saturated transfer systems (Definition 1.6) are transfer systems satisfying an ad-
ditional 2-out-of-3 condition. They have appeared previously in the literature because the
transfer system associated with any linear isometries operad is saturated [Rub21, Proposition
5.1]. (It is not the case, though, that every saturated transfer system is realized by some
linear isometries operad.) The above theorem highlights the important structural role that
saturated transfer systems play independent of their affiliation with linear isometries.

The above theorem places saturated transfer systems in bijection with interior operators,
well-known objects of study from order theory which are cryptomorphically equivalent to
several other structures (submonoids of (P, V) and comonads on P, to name a couple). It is
the authors’ hope that the transfer system perspective on interior operators will lead to new
insights in this classical subject.

Saturated transfer systems have been enumerated on rectangular lattices by Hafeez—
Marcus—Ormsby—Osorno [HMOQO22]. They reduce their study to a “matchstick game”
consisting of collections of covering relations satisfying certain rules. We generalize this
method to all modular lattices, i.e., lattices satisfying the modular law

a<b = aV(xAb)=(aVx)Ab.

Such lattices are of particular interest since subgroup lattices of Abelian groups are modular.
In this setting, we call “matchstick games” saturated covers (Definition 3.2) and prove that
they are in bijection with saturated transfer systems (Theorem 3.13).

Our final main contribution in this paper is to study some categorical properties of transfer
systems. Given finite lattices P, Q, we may form their fusion P * Q (Definition 4.6) which,
loosely speaking, takes a disjoint union of posets and then glues extremal elements together.
Theorem 4.11 enumerates transfer systems on P * Q in terms of (subposets of) P and Q. If
[2] = {0 < 1 <2}, then the sugroup lattice of C}, x C, is isomorphic to the iterated fusion
[2]*(P+1) of [2] with itself, and this leads to the enumeration of Theorem 5.4.

1.2. Transfer systems. For reference throughout the rest of this document, we now recall
the basic definitions and theorems on which we build. The reader familiar with transfer
systems may easily skip this subsection and refer back if needed. We assume throughout
that the reader is familiar with the basics of partially ordered sets and lattices; the textbook
[DPO2] may act as a handy reference.

Definition 1.1. Let (P, <) be a finite lattice. A transfer system on P is a partial order R on P
that refines < (i.e., x Ry = x <y) and is closed under restriction:

xRzandy<z = (xAy)Ry.

If G is a finite group, then a G-transfer system is a transfer system on Sub(G), the subgroup
lattice of G, which is further closed under conjugation. We write Tr(P) for the collection of
transfer systems on P, and Tr(G) for the collection of G-transfer systems.

In categorical language, we see that a transfer system is the same thing as a wide subcate-
gory of (the category induced by) P that is closed under pullbacks.

There is a natural refinement order on transfer systems where R < R’ if and only if
xRy = x R y. Under this order, (Tr(P),<) is a finite poset that admits meets: if
R,R' € Tr(P), then RA R’ is given by intersecting the relations in R and R’ so that x (RAR') y
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if and only if both x R y and x R’ y. Since Tr(P) is a finite poset admitting meets that has a
greatest element (namely, the original partial order on P), Tr(P) also admits joins:

RVR = /\ R".
R”ZR7R/

This yields the following proposition.

Proposition 1.2. If P is a finite lattice, then Tr(P) is a finite lattice under refinement. The
same is true for Tr(G) when G is a finite group. O

Our primary interest in transfer systems comes from their role in the theory of N.. operads.
These are operads & in G-spaces introduced and defined in [BH15] and having the feature
that for H < G x &,, 0(n)H is either empty or contractible. Their basics are reviewed in
[FOO ™22, §3], and their connection to transfer systems is as follows:

Theorem 1.3 (([BH15, Rub21]). Let G be a finite group. There is a functor from the category
of G-N. operads to (the category induced by) the lattice Tr(G) that induces an equivalence
between the homotopy category of G-N. operads and Tr(G). The G-transfer system Rg
induced by a G-Nw-operad O is such that H Ry K if and only if O-algebras admit K /H-
norms. O

It is also the case that transfer systems on a finite lattice P are equivalent to weak
factorization systems on (the category induced by) P. See [FOO™22] for details on this
surprising connection between transfer systems and abstract homotopy theory. The article
[BOOR?22] leverages this to enumerate model structures on categories induced by finite total
orders.

In order to graphically represent transfer systems, we adopt the convention of displaying
all of the relations in the transfer system with upward oriented (but unmarked) edges. This is
quite different from the standard Hasse diagram presentation of posets, which only displays
covering (i.e., minimal) relations. This is standard practice when discussing transfer systems
as it is otherwise challenging to visually inspect the restriction condition. In practice, we first
arrange P in a Hasse diagram, then erase the covering relations in the diagram, and finally
draw in all of the non-reflexive relations present in R € Tr(P). For instance, in Figure 1 we
see the transfer systems on [2] = {0 < 1 < 2} arranged in their pentagonal Hasse diagram
under refinement. (See [BBR21] for why Tr([n]) is always a Tamari lattice.)

At various points in our exposition, it will be important to study the transfer system
generated by a subset of binary relations Q C < C P x P.

Definition 1.4. Let (P, <) be a lattice and suppose Q C < is a collection of relations refining
<. The transfer system generated by Q, denoted (Q), is the minimal transfer system
containing Q:
0= A R
RETr(P)
R2Q
The following theorem (due to Rubin) gives us a great deal of control over (Q) in terms

of 0.
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FIGURE 1. Transfer systems for the lattice [2].

Theorem 1.5 ([Rub21, Theorem A.2]). If (P, <) is a finite lattice and Q C < is a subset of
relations of P, then (Q) may be constructed from Q by (1) closing under reflexivity, then (2)
closing under restriction, and finally (3) closing under transitivity.

We will also be interested in saturated transfer systems, which satisfy a certain 2-out-of-3
property:

Definition 1.6. A transfer system R on a lattice P is called saturated when x R y < z and
xR zimplies y R z.

Note that of the five transfer systems for [2] presented in Figure 1, all but «— — are
saturated.

In Section 3, we will prove that saturated transfer systems on modular lattices are in
bijection with certain collections of covering relations. We warn the reader that this will lead
to an alternative graphical presentation of saturated transfer systems that only records the
relevant covering relations from the underlying lattice.

We conclude this review by noting that saturated transfer systems are determined by their
covering relations; this will be important in Section 3 when we contemplate transfer systems
generated by saturated covers.

Proposition 1.7 ([Rub21, Proposition 5.8]). Let (P, <) be a finite lattice, let R be a saturated
transfer system on P, and let R, denote the covering relations of P in R. Then (R.,,) = R.

1.3. Outline of the paper. In Section 2, we develop Hill’s theory of characteristic functions
for transfer systems. Given a transfer system R on a lattice P, x¥ is the monotone function
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taking x € P to x®(x) = min{y € P |y R x}. In Theorem 2.6, we show that the assignment
x: Tr(P) — End(P)
R+ x®

is an antitone function with image equal to the interior operators on P (i.e. contractive and
idempotent endomorphisms of P). Each nonempty fiber ¥ ~'{f} is in fact an interval in
Tr(P) with least element easily determined by f, and greatest element saturated. In fact, in
Theorem 2.8, we show that the set of greatest elements of fibers of x is equal to the set of
saturated transfer systems on P.

Given the enhanced role for saturated transfer systems afforded by Theorem 2.8, we
turn to their study in Section 3. Here we specialize to modular lattices (those with no
pentagonal sublattices) for two reasons: first, every subgroup lattice of an Abelian group is
modular, and second, modularity allows us to generalize the “matchstick game” for saturated
transfer systems on rectangular lattices from [HMOO22]. After recalling some basic facts
about modular lattices, we prove Theorem 3.13 which places saturated transfer systems
on a modular lattice P in bijection with subsets of the covering relations of P satisfying a
restriction rule while avoiding a “3-out-of-4” configuration in covering diamonds.

In Section 4 we make a slight detour to study some categorical properties of transfer
systems. This culminates in a general recursion (Theorem 4.11) for transfer systems on the
fusion P x Q of two lattices P, Q; this is our shorthand for the lattice formed by identifying
the minimal (resp. maximal) elements of P and Q, retaining all of the existing relations in P
and Q, and making each non-extremal x € P, y € Q incomparable.

The iterated fusion [2]*" of [2] = {0 < 1 < 2} is modular for all n € N and is isomorphic
to the subgroup lattice of the elementary Abelian group C,, x C,, for p prime and n = p+ 1.
In Section 5, we combine this observation with the techniques developed earlier in the paper
to fully specify and enumerate the lattice of transfer systems for C, x C,, (see Theorem 5.4).

Acknowledgments. This work arose from the 2023 Electronic Computational Homotopy
Theory (eCHT) Research Experience for Undergraduates, supported by NSF grant DMS—
2135884; the authors thank Dan Isaksen for his support and leadership within the eCHT.
K.O. was partially supported by NSF grant DMS-2204365. The authors thank Mike Hill for
generously sharing his construction of the characteristic map ) on transfer systems.

2. CHARACTERISTIC FUNCTIONS FOR TRANSFER SYSTEMS

Given a transfer system R on a lattice P, we now describe its characteristic function
x®: P — P along with the properties of the assignment x : Tr(P) — End(P), R +— x®. We
warmly thank Mike Hill for generously sharing this construction and its basic properties
with us. The results in the first part of this section are due to Hill, while Theorem 2.6 and
Theorem 2.8 are original.

Hill’s construction begins by considering the downsets of transfer systems. Given a lattice
P, a transfer system R on P, and an element x of P, write

xpi={y€P|yRx}

for the R-downset of x.
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Proposition 2.1. For any finite lattice P, x € P, and R € Tr(P), the following properties
hold:

(a) x}e has a unique minimal element 7.
®b) fn<y<xandzRy,thenn <z
Proof. For (a), the restriction axiom implies that n = /\y kY works.
R

For (b), if z R y, then taking meet with n gives (nAz) R ((nAy) =n) R x. By minimality
of n, we thus must have n < n Az, so in fact n < z as desired. O
Definition 2.2. Given a finite lattice P and R € Tr(P), the characteristic function of R is

RPp—P

X—> minx}e.

By Proposition 2.1(b), we see that P is stratified by the subsets

@) ={yeP|x"(x) <y}
Indeed, as x varies, we get a family of nested subsets x(x)" of P whose union is P and such

that there are no R-relation crossing from lower to higher strata.
The following property follows directly from definitions:

Proposition 2.3. Given a transfer system R on a finite lattice P, y®: P — P is monotone.[]

Write End(P) for the collection of (monotone) endomorphisms of P equipped with the
pointwise partial order: f < g if and only if f(x) < g(x) for all x € P. It is not difficult to
check that when a transfer system R refines a transfer system R’ (so R < R’ in the canonical
partial order on Tr(P)), we have 28 < x®. We record this fact in the following proposition:

Proposition 2.4. The map
x: Tr(P) — End(P)
R+ x®
is an antitone map of posets. U
We now study the image of y. It follows directly from definitions that each f = x* is an
interior operator, i.e. f is idempotent (f(f(x)) = f(x) for all x) and contractive (f(x) < x

for all x). We write End®(P) C End(P) for the collection of interior operators on P. We show
all interior operators are contained in the image, which requires the following lemma.

Lemma 2.5. Suppose f is an interior operator on a poset P, y,z < x € P, and f(x) <y. Then
f@) synz

Proof. Notice that f(z) < f(x) <yand f(z) <z, s0 f(z) <yAz 0
Theorem 2.6. The characteristic map X : Tr(P) — End(P) has image equal to End°(P).

Proof. We have already observed that  (Tr(P)) C End°(P), so we now check the opposite
inclusion. Let f € End°(P) and define a relation R on P via y R x if either y = x or f(x) = y.
Then let R’ be the closure of R under restriction, and finally let R, be the closure of R’ under
transitivity. By Theorem 1.5, we get that R, = (R). It now suffices to show that y R, x
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implies f(x) < y; indeed, if this holds then f(x) = min x% and so x® = f. Let y,x € P such
that y R, x. If y R x then f(x) =y or f(x) < x =y as desired. So suppose that y K x. Now
we have two cases. First suppose that y R’ x. Then we get that there exists z,w € P such that
y =x Az and we have the following diagram:

X
®|
y=x

Because z R w we in fact have that f(w) = z. Thus by Lemma 2.5, we see that f(x) < y.
Now suppose that y R x. Thus y R, x must have arisen from closure under transitivity, i.e.,
we have y R’ z R’ x for some z € P. Then using the previous cases, we know that f(x) <z,
and f(z) <y. Thus because f is an interior operator, we get that f(x) = f(f(x)) < f(z) <y.
Hence we see that for all y R, x that f(x) <y. Therefore y(Tr(P)) = End°(P). O

—_— W
i

Nz — Z.

Now that we know the image of ), we turn to investigating the fibers of this map. Our next
lemma shows the fibers are closed under joins, which guarantees each fiber has a greatest
element.

Lemma 2.7. Let P be a lattice and let R, R’ € Tr(P), then x& = x& implies XK = yR = ¥
(where RV R’ is the join of R, R’ in Tr(P)).

Proof. Suppose for contradiction that )(RVR’ £ xR Since R < RV R' and ¥ is an antitone map,
it must be that y®Y® < xR Thus there is some x € P such that z = min x}eva < min xh =

min xlﬁ, =y. In particular, this means z is RV R’ related to x, but z R xandz R’ X.

The join RV R’ is the transfer system generated by R and R, and Theorem 1.5 implies
that the only new relations in (R,R’) are those added via closure under transitivity. Thus
there exists some w € P such that z R w R’ x or z R w R x. Without loss of generality assume
ZRwWR' x.

We claim z = min w,. Indeed if we had 7 R w where 7 < z then Z (RV R’) x would
contradict the minimality of z. Hence z = min wlie. Since YR = le we then have z = min Wlie/
which gives that z R* w. Thus z R’ x contradicting the minimality of y. So we get that

min xlﬁv g = min x}e = min x,ﬁ, for all x € P, as required. ]

It turns out that the maxima of the fibers of ) are exactly the saturated transfer systems of
Definition 1.6:

Theorem 2.8. Each fiber of ) : Tr(P) — End°(P) has a greatest element; furthermore, the
set of greatest elements of fibers of X is exactly the set of saturated transfer systems on P.

Proof. Since P is a finite lattice, so is Tr(P). Since each fiber of x is finite, Lemma 2.7 shows
that each fiber contains a greatest element. If R € Tr(P), let Ry be the minimal saturated
transfer system containing R. Then for R € Tr(P), it suffices to show that max{R’ € Tr(P) :
xR’ = %%} = Ryy. We first show that y®= = ¥R Notice that the only new condition for
saturated transfer systems is that if x R y < z and x R z, then y R z. Because x < y, adding

that y R z leaves min xﬁsm the same. Thus we see that y® = yRs,
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It remains to show that Ry is maximal among those R’ € Tr(P) such that y® = y&.
Suppose that R’ > Ry, with XR/ = x®. Then let x R' y be such that (x,y) & R, Rgy. This is
equivalent to saying that for all g R x, ¢ R y. Let z = xR (y) = le (v). The reader may check
from definitions that x and z are incomparable, whence x A z < x,z. By restriction closure,
we have x Az R’ z which by transitivity tells us that z Ax R' y. And in fact because zAx < x,z
we get that this violates the minimality of z. Thus in every case there is a contradiction, so
no such R’ exists. Hence we get that max {R' € Tr(P) : x® = x®} = R O

Remark 2.9. Restricting )y to saturated transfer systems provides an antitone bijection
between saturated transfer systems on P and interior operators on P. The fact that these
structures are in bijection was first observed in unpublished work of Balchin—-MacBrough—
Ormsby [BMO22a]. Their method is quite different. Indeed, they produce a monotone
Galois connection (F,G) with

F:2F — Tr(P)
S— (x<T|xeSs)
and
G: Tr(P) —2F
R—{x€eP|xRT}.

This restricts to a Galois correspondence between images. It turns out that F (2F) consists
of cosaturated transfer systems (those generated by relations involving T) and G(Tr(P))
consists of Moore families — the collections of ‘closed sets’ for closure operators on P
(monotone endomorphisms that are idempotent and extensive). It is further the case that
cosaturated transfer systems on a finite lattice P are in bijection with saturated transfer
systems on P°P, while closure operators on P are in bijection with interior operators on P°P.

Replacing P with P°P supplies a bijection between interior operators on P and saturated
transfer systems on P which ultimately produces the same bijection found here.

Remark 2.10. Interior operators on a finite lattice P are in natural bijection with interior
systems (submonoids of (P,V)) and comonads on P (viewed as a category). If P is self-dual
(e.g., if P is the subgroup lattice of an Abelian group), then interior operators are further in
bijection with closure operators, submonoids of (P, A), and monads on P.

In case P is the finite (self-dual) Boolean lattice [1]", all of these structures are counted by
OEIS entry A102896, with values

1, 2, 7, 61, 2480, 1385552, 75973751474, 14087 648235707 352472,
forn=0,1,...,7. No additional values of this sequence are known, but its base-2 logarithm
is known to grow at the rate of (L'172 J) (see [Kle76]). This provides a lower bound on the

asymptotic growth of | Tr([1]")]. We leave it to future research to study the relative sizes of
| Tr(P)| and | End® (P)| for classes of finite lattices P.

Theorem 2.8 gives an excellent way of classifying and identifying maximal elements in
the fibers. It can also be shown that there will be minimal elements for these fibers, but the
description of these is less nice than simply taking the saturated hull.

Lemma 2.11. Let P be a lattice and let R, R’ € Tr(P), then y& = yX — yR\R = yR = 4K
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Proof. This is a straightforward consequence of R A R’ being the intersection of (relations
in) R and R'. O

Theorem 2.12. Each fiber of : Tr(P) — End°(P) has a least element; namely for R €
Tr(P),
miny ' {x*} =R = ((x,y) [ x"(y) =xorx=y).

Proof. By Lemma 2.11 and the fact that P is a finite lattice, we know that such a least element
exists. By the same argument given in the proof of Theorem 2.6, we have that )(ﬁ = xR To
show that R is minimal, suppose for contradiction that there exists some R’ € Tr(P) such that
R < Rand x® = xR Then there must exist x,y € P such that ¥®(y) = x but x K y. Thus we
see that ¥X'(y) # x = x®(y), a contradiction. O

Remark 2.13. In their totality, the results of this section demonstrate how ) gives instructions
for decomposing Tr(P) into a collection of disjoint intervals. Associated with each interior
operator f € End°(P) is the fiber x ~'{f} which is of the form [R,R'] = {R” € Tr(P) | R <
R" < R’} where R is a transfer system of the type given in Theorem 2.12, and R’ is the
saturated hull of R.

3. MODULAR LATTICES AND MATCHSTICK GAMES

The “matchstick game” was introduced by Hafeez—Marcus—Ormsby—Osorno in [HMOO22]
to enumerate the saturated transfer systems on rectangular lattices. Their results hinge on
showing saturated transfer systems are in bijection with special subsets of covering relations
called “saturated covers”. We generalize the matchstick game to modular lattices.

Definition 3.1. A modular lattice is a lattice (M, <) where all a,b,x € M satisfy the modular
law:
a<b = aV(xAb)=(aVx)Ab.

While subgroup lattices are not modular in general, it is well-known that the lattice of
normal subgroups of a group is always modular; in particular, if G is Abelian (or Dedekind),
then Sub(G) is modular.

Definition 3.2. Let (M, <) be a modular lattice and let Q C < be a subset of covering
relations for M. We call Q a saturated cover when the following conditions hold:
(1) Forx,y e M,if x Q (xVy) then (xAy) Qy.
(2) Suppose that x and y are covered by xVy and cover x Ay (we call such a tetrad a
covering diamond); if three of the four covering relations between x,y,x Ay, and
xVy are in Q, then the fourth covering relation is in Q as well.

Example 3.3. The diagram in Figure 2 depicts all of the saturated covers for the lattice
[2]*3 22 Sub(C; x C3). (Here [2] = {0 < 1 < 2} and the fusion operation x is defined in
Definition 4.6.) We will return to this example when discussing Theorem 4.11. The reader
may also jump to Example 3.14 to see the saturated covers for the cube [1]°.

We now show that the set of covering relations for any saturated transfer system R on
a finite modular lattice (M, <) forms a saturated cover. We will use the following lemma,
which is standard and may be checked via an elementary argument.
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Lemma 3.4. Let (M, <) be a modular lattice. For any x,y € M, if x\Vy covers x, then y
covers x A\ y. O

Lemma 3.5. Let R be a saturated transfer system on a modular lattice M and let R, denote
the covering relations of M that are in R. If three of the four edges in a covering diamond
formed by x,y,x Ay,xVy € M exist in R, then the fourth edge is in R,,, as well.

Proof. If x,y,xVy, and x Ay form a covering diamond in M with 3 out of 4 edges in Ry,
then either (x Ay) Reoy X Reoy (xV'y) or (XAY) Reoy ¥ Reov(xVy). In the first case, the
restriction rule implies that (x Ay) R.,, ¥, and in the second case we get (x Ay) Reop x. In
either case, transitivity implies (x Ay) R (xVy), and then the 2-out-of-3 rule for saturated
transfer systems gives us the final edge of the covering diamond. g

Proposition 3.6. If R is a saturated transfer system on a modular lattice M and R,,, is the
collection of covering relations (of M) in R, then R, is a saturated cover.

Proof. Condition (1) of Definition 3.2 is an immediate consequence of the restriction rule
and Lemma 3.4. Condition (2) follows from Lemma 3.5. [l

We now prove that any saturated cover Q on a finite modular lattice (M, <) generates a
saturated transfer system (Q) on M. Our method relies on the existence of a grading on M
in the sense of the following definition.

Definition 3.7. A graded poset is a poset (P, <) equipped with a rank function p: P — N
such that:

(1) if x <y, then p(x) < p(y), and

(2) if y covers x, then p(y) = p(x) + 1

The following result is standard, and follows from Dedekind’s modularity criterion:
modular lattices are precisely those lattices with no pentagonal sublattices. (See, for instance,
[Bly0S, Theorem 4.4].)

Proposition 3.8. If (M, <) is a finite modular lattice, then M is a graded poset with rank
function p: M — N that maps each element x to the number of covering relations required
to travel from the minimal element of M to x. U

Given a grading on a poset, we get a natural notion of distance between elements:

Definition 3.9. If (P, <) is a graded poset with rank function p and x < z are elements of P,
we say the length of the interval [x,z], or the distance from x to z, is

Ux,z] == p(z) —p(x).

The length function on a finite modular lattice gives us a way to perform induction when
proving the following crucial lemma.

Lemma 3.10. Suppose (M,<) is a finite modular lattice, Q is a saturated cover on M,
x<y<w<zeM,andx (Q)z. Theny (Q) w.

Proof. Fix x € M. We perform induction on £[x,z]. The base case is true since £[x,z] =0
implies x = z, and (Q) is reflexive.
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For the induction hypothesis, fix n > 0 and assume the claim holds for any z >w >y >
x € M such that x (Q) z and £[x,z] < n. Now, say we have z > x € M such that x (Q) z and
[x,z] = n+ 1. Since x (Q) z, there exists a path of covering relations

x=20021020 - Q1 =2

such that ¢[x,z;] = i for all i. For any e € [x,z] such that ¢[x,e] = n, we claim that e (Q) z.
To see why this is true, note that if e = z, then z, Q z,1 ensures e (Q) z. If e # z,, then
by the restriction rule, x (Q) z and e < z implies (x A e) (Q) e. Since x < e, this means
x (Q) e. We know e and z, are incomparable because they are both distance n from x. We
also know x < (z, A e) by the definition of a meet. Now, we have z, A e,z, € [x,z,] where
x(Q) zn, (za Ne) < z,, and ¢[x,z,| = n, so by the induction hypothesis, (z, Ae) (Q) z,. The
same argument can be used to show that (z, Ae) < e € [x,e] implies (z, Ae) (Q) e. Since
Zn,€,2n N e, and z, V e = z form a covering diamond in Q with three of four edges, it follows
that the fourth edge is in Q, i.e., e Q z. This proves that all elements in [x, z] that are distance
n from x are (Q) related to z.

Now fix y,w € [x,z] such that y < w. We need to prove that y (Q) w. We first consider the
case where

lx,y]<n  and  Llx,w|=n+1.

Then w = z and we need to prove y (Q) z. If £[x,y] = n, our argument from the previous
paragraph ensures that y (Q) z, so we may assume £[x,y] = i where i < n. We claim there
exists y € [x,z] such that £[x,y'] =n and y < y'. To see this, we will build path of covering
relations

y=yo <y <y2 < <yui=)y
in [x,z] to connect y and y'. Again let

x=2002020 - Q1 =2
be a chain of covering relations in Q. Our rule for constructing the path of y;’s is as follows:
(i) Start by setting j = 0.
(i1) If y; = z;4 j, then set y; = z;4 for all k > j and we are done; if not, then move on to
step (iii).
(iii) Given thaty; # z; ;, we know that y; is incomparable to z;, ; as they have the same
rank. Sety; 1 =y;Vzij, increment the value of j by one, and go back to step (ii).

We repeat the process above until we either satisfy step (ii), ending the process, or we
increment j enough times to reach j = n — i, at which point we stop the process and get
a sequence where y;1 =y;Vzyj forall j <n—i. In either case, the resulting sequence
connects y to an element y’ € [x,z] with distance n from x. Since the restriction rule forces
x (Q) ', the fact that y <y’ € [x,y] implies that y (Q) y’ by the inductive hypothesis. But of
course, we know that y' (Q) z from earlier observations regarding elements with distance n
from x, so by transitivity we have y (Q) z.

We now consider the case where both £[x,y] and ¢[x,w] are at most n. By restriction,
x (Q) w. Thus, by the inductive hypothesis, y < w € [x,w]| implies y (Q) w.

Finally, if £[x,y] = ¢[x,w] = n+ 1, then y = w = z and this case is handled by the reflexivity
of (Q). This completes the induction step and the proof. O
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With this lemma in hand, we are now ready to show that saturated covers generate
saturated transfer systems.

Proposition 3.11. If Q is a saturated cover on a finite modular lattice (M, <), then (Q) is a
saturated transfer system.

Proof. By Definition 1.4, (Q) is a transfer system. Lemma 3.10 proves that (Q) is saturated
because given x < y < z € M, the only case of the 2-out-of-3 rule that is not handled by
restriction or transitivity is the case where x (Q) y and x (Q) z. In this case, we have
y <z € |x,z], so Lemma 3.10 says that y (Q) z. O

We need one more lemma before proving the main theorem of this section.

Lemma 3.12. If Q is a saturated cover on a finite modular lattice (M, <), then Q is closed
under restriction (ignoring identity relations forced by the restriction rule).

Proof. Assume to the contrary that there are elements b,¢,r,t € M such that r Q ¢, £ <t,
b={¢Ar+£{Lbuth Q £. Since t covers r, we know r < t such that there is no element w € M
with r < w < t. Then, given any e € M such that ¢ > r and e > /£, if ¢ = r then £ < r and
{Ar={,acontradiction. If e # r, then e > ¢. This means t = £V r, so r Q t forces b Q ¢ by
condition (1) of Definition 3.2, a contradiction. ]

We can now prove that saturated transfer systems on finite modular lattices are in bijection
with saturated covers. It is this theorem which we view as a “matchstick game” whose
solutions (saturated covers) enumerate saturated transfer systems on finite modular lattices.
(We refer to this as a “matchstick game” because one can envision trying to lay down
matchsticks — i.e., covering relations — on the lattice in a way that satisfies the rules of
Definition 3.2.)

Theorem 3.13. Let Q be a subset of covering relations on a finite modular lattice (M, <).
Then, Q is the set of covering relations within a saturated transfer system if and only if Q is
a saturated cover, and this correspondence provides a bijection between saturated covers
and saturated transfer systems on M.

Proof. Given a saturated cover Q, Lemma 3.12 tells us that (Q) is generated from Q by first
enforcing reflexivity on Q, and then enforcing transitivity on Q. Hence, Q is indeed the set
of covering relations of (Q). Then, Proposition 3.11 states that (Q) is a saturated transfer
system.

Given a saturated transfer system with covering relations Q, Proposition 3.6 tells us that
Q is a saturated cover.

Finally, by Proposition 1.7, saturated transfer systems are generated by their covering
relations, so the assignments Q — (Q) and R — R, are mutually inverse. ]

Example 3.14. Table 1 lists all of the saturated covers for [1]* 2 Sub(C, x C, x C,) for
p,q,r distinct primes. Given a saturated cover R on [1]3, let R; denote the restriction of R to
the “top” face (with final coordinate 1), and let R, denote the restriction of R to the “bottom’
face (with final coordinate 1), both thought of as a saturated covers of [1]?. The restriction
rule for saturated covers implies that R, < R;,. This allows us to organize our enumeration
according to the bottom face, and these are listed in the first column of the table. Each row

s
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of the table corresponds to a different choice of R, refining the bottom face. In the first row
of the table we see all possible legal arrangements of vertical covering relations, and the
subsequent rows only include those choices of verticals that are compatible with the given
R; < R,. Note that the total number of saturated covers for [1]3 is 61, which is indeed the
number of interior operators on [1] (see Remark 2.10).

Table 1: Saturated covers for [1]* organized according to bottom
layer. Bolded covering relations are those included in each saturated
cover.

Bottom Saturated covers with this bottom layer

. NN AN D D N
S bod bod bod bod bAoA
ANV BN AN RN PN PN PN
) SN AN SN

AN | XK XK K]

~/ 1/ VvV oV

N NN N
Ry 1X§ IX§ I/\v
N4 N N N
i SN DN N
AN PO XK oA
NN\ % %
AN AN VAR AN
NG %\/\1 %XI %XI
\ % |/ |/
i SN N
AN | DO XK
N
Q\, AN
N4 X
\/
AN AN
R X

Rp4
/
AN
/
&N
7

KL
<

AN
N
X/

N
&

Q
R
/
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%

AN
7
XA\
7

/
NN\
z

X

,
4
4,

5,74
<5
N\
AN
7>

/
AN
/

X | /7
N
<
7,
<

X, &R
>

Remark 3.15. Our method of record-keeping in the previous example also suggests an
enumeration of saturated transfer systems on lattices of the form P x [1] in terms of certain
structures on P. Indeed, each saturated cover R for P x [1] restricts to an interval R, <R,
of saturated covers for P. Given such an interval, one must enumerate the collections of
“vertical” covering relations that are closed under restriction and still satisfy 3-out-of-4.
These vertical relations can be put in bijection with antichains in P (subsets of mutually
incomparable elements) satisfying certain rules. We have not yet been able to turn this into
an effective tool for enumeration, so we leave further details to the reader.
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4. CATEGORICAL PROPERTIES OF TRANSFER SYSTEMS

We now turn to some categorical properties of transfer systems, leading to a new recursion
(Theorem 4.11) for transfer systems on a particular pushout of two lattices which we call the
fusion (see Definition 4.6). For completeness, we begin this discussion by considering the
status of Tr as a functor.

The assignment sending a bounded lattice P to its lattice of transfer systems Tr(P) turns
out to be a functor, though one needs to be careful with morphisms. Given a monotone map
of lattices f: P — Q, we can form Tr(f): Tr(P) — Tr(Q) by setting

[Tr(N)I(R) = ((f(x),f(¥)) [ x,y € PxRY)

where R € Tr(P) and ( ) is as in Definition 1.4. It is clear Tr(idp) = idry(p), but it is unclear
if Tr(fog) = Tr(f) o Tr(g) for composable maps f and g. In fact, it turns out that if we only
require monotone maps, then we could have extra relations in Tr(f) o Tr(g)(R) that may not
be present in Tr(f o g)(R). We illustrate this in Example 4.1.

Example 4.1. Consider the following composition of monotone maps of lattices:

SN AN AN
N7FA— N\ /
\.

Consider the transfer system R on [1] x [1] shown below. One can verify Tr(g o f)(R) and
Tr(g) o Tr(f)(R) are given by the illustrated transfer systems. In particular, note the extra
relations added in Tr(g) o Tr(f)(R) due to the intermediate closure operation.

R e Te([1] x [1]) Tr(go £)(R) Tr(g) o Tr(f) ()

N N N\
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This example shows that Tr(f o g) # Tr(f) o Tr(g) for general monotone maps f, g.
It turns out that the phenomenon observed above is essentially the only obstruction to
preservation of composition. To see the general case, let P, Q, L be lattices and f: P — Q,
g: Q — L be monotone maps. Also let R € Tr(P). We will use fR to denote the relation
{(f(x),f) | x,y € Px Ry} U{(z,2) : z € Q} (not taking restrictive or transitive closure)
and f.R to denote the relation (fR) = Tr(f)(R). Consider a restriction diagram in P of the
form
X —— 2z
| 3

XAy —— ).

Then we can step by step find all relations in L that are added by either Tr(go f) or
Tr(g) o Tr(f) and compare. Doing this, we obtain the following diagrams:

8fx — gfz
(ef)-R] efR]
8fxNgfy = gfy

gfx — gfz
(&f)-RT efRT
gfxNngfy = gfy

gf(xAy)

So if we compare, in the Tr(g) o Tr(f) case, we get two extra maps due to the intermediate

of R . .
closure; g(fxA fy) LEIN gfxNgfyand g(fxA fy) LILN gfx as seen in red. Requiring our
monotone maps to preserve meets is sufficient to get rid of this issue because everything
collapses to the typical restriction square in L of the form

gfx — gfz

wnd]
gfxNgfy —— gfy.

It turns out that requiring our maps to preserve meets is enough to guarantee functorality.
(The reader should note the maps f and g fail to preserve meets in Example 4.1.) Let Lat,,
and Lat, be the categories of (bounded) lattices with monotone maps and meet preserving
monotone maps, respectively. We have the following functorality statement.

Theorem 4.2. The assignment Tr: Lat, — Lat,, taking P to Tr(P) and a meet-preserving
monotone map f: P — Q to

Tr(f): Tr(P) — Tr(Q)
R— ((f(x),f(y)) | x,y € PxRY)

is a functor.
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Proof. We leave the proof of this to the reader, noting that Theorem 1.5 is a useful ingredient.
0

Remark 4.3. 1t is not the case that Tr is an endofunctor on Lat,. To see why, consider the
example f: [2] — [1] x [1] given by f(0) = (0,0), f(1) = (1,0), f(2) = (1,1). One can
verify f is meet-preserving, but Tr(f) is not.

The fact that Tr is a functor grants us new categorical territory to explore. We record a
quick result here, and we make a remark on products at the end of the section.

Proposition 4.4. The functor Tr: Lat, — Lat,, is not essentially surjective, i.e., not every
lattice is isomorphic to the lattice of transfer systems of some lattice.

Proof. One can show there exists no lattice P such that Tr(P) = [2]. We leave the details to
the reader. O

Remark 4.5. 1t is not known if Tr is essentially injective, i.e., if there are nonisomorphic P,Q
such that Tr(P) = Tr(Q).

We now define a binary operation * on two (bounded) lattices P, Q that we call fusion. This
corresponds to simply gluing together the top and bottom elements in P and Q while leaving
everything else unchanged. In Section 5, we will see that this operation arises naturally when
considering a certain class of subgroup lattices.

Definition 4.6. Let (P, <p),(Q,<() be two bounded lattices with T, L as the top and bottom
elements respectively. We assume that PNQ = {T, L }. The fusion of P and Q is the bounded
lattice with underlying set P x Q := PUQ and order defined by <p,p := <pU <p.

Example 4.7. The following diagram depicts the Hasse diagram of the fusion of two lattices
in terms of the original Hasse diagrams.
T T T
VRN | PN
| | * | = | | |
N/ | S~ S
L L L

We record two categorical facts about fusion here, leaving the details to the interested
reader.

Proposition 4.8. We have the following categorical properties of fusion:

(a) The fusion P * Q is the pushout of the diagram Q nlitnnt 1] 02 L7 T, pin Lat,,.
(b) (Lat,,, x,[1]) is symmetric monoidal. O

We caution the reader that P Q is not the pushout of Q < [1] — P in Lat,. While we do
have a diagram

1] —— P

L, b

02, PxQ
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in Lat, (where 1p,1¢ are the obvious embeddings), it is not the case that maps out of P* Q
given by the universal property in Lat,, will necessarily preserve meets.

Remark 4.9. One might expect the fusion to be the coproduct of P and Q in Lat,,, but it is
easy to construct examples to show this is not the case. However, this can be formulated
as a coproduct if, in our category, we also restrict morphisms to preserve top and bottom
elements, i.e. T +— T and L— 1. In this case, [1] would be initial, so we get a coproduct.

In order to determine the structure of Tr(P x Q) in terms of Tr(P) and Tr(Q), we will need
the following lemma. In order to parse its statement, we need to extend the notion of transfer
systems to posets that do not necessarily have meets. We make the convention here (as in
[BMO23, Definition 2.3]) that transfer systems on a poset (P, <) are partial orders R on P
refining < such that x R y and z <y implies that for all maximal w < x,z we have w R z. Of
course, when x A z exists in the above setup, it is the unique w required to satisfy w R z, so
this is compatible with the definition for lattices.

Lemma 4.10. Transfer systems R on a lattice P such that L R a for all a € P are in bijection
with transfer systems on P~ {L}.

Proof. Let the former set of transfer systems be denoted T'. Given a transfer system Q on
P~ {1}, let Q denote the same relations on P along with all relations from _L. The reader
may check that the assignments

T +— Tr(P~{L})
R— Rl|p. (1}
0«0
are mutually inverse. g

We now come to the main theorem of this section, which enumerates transfer systems on
the fusion P x Q of finite lattices P, Q in terms of smaller posets. Recall that, given a transfer
system R on P, the minimal fibrant element of P (relative to R) is the (necessarily unique)
least element a € P such that @ R T. In other words, the minimal fibrant is %(T). We write
Tr,(P) for the collection of transfer systems on P with minimal fibrant a.

Theorem 4.11. Let P, Q be finite lattices with fusion lattice Px Q. Then

[Tr(P+ Q) = [Te(PNATHI Tr(@~ATH|+[Tr(P~ ALY Tr(@~ {L})]
+ Y TPTO~A{T, LD+ ) TP~ A{T, LY Tp(Q)]-

aeP~{T,L} beQ~{T,L}

Proof. We partition the enumeration by minimal fibrants. Suppose that T is the minimal
fibrant for a transfer system on P* Q. Then as only T is related to itself, no relations in
P~ {T} can impose relations on Q. { T} by restriction. Thus we get all possible transfer
systems by choosing transfer systems on P~ {T} and Q ~. {T}, accounting for the first
term. Now suppose L is the minimal fibrant for a transfer system on P * Q. By restriction,
we then have that L is related to all other elements. Then by Lemma 4.10, the number of
transfer systems is equal to |Tr((P* Q) ~ {L})|. As no element in P~ {1} can be related
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to an element in Q ~. {_L} and vice versa, we can again choose transfer systems on the two
and combine them, giving us the second term, | Tr(P ~ {L})|| Tr(Q~ {L})|.

Next, assume the minimal fibrant is an element a € P~ {T, L}. Since elements in P
{T, L} are never related to elements in @~ {T, L}, we can pick a transfer system in Tr,(P)
arbitrarily. Then by restriction, g R L for any ¢ € O~ {T, L}, none of which are related to
T. Thus by Lemma 4.10, we can pick | Tr(Q ~ {T, L})| many transfer systems on this side.
Summing over all possible a, we get the third term, ¥, cp. 7 1} | Tr,(P)|| Tr(Q~A{T, L})].
Repeating the process for a non-extremal minimal fibrant in Q gives us the fourth term and
thus the desired enumeration. O

Applying this theorem to the case of finite linear orders and invoking [BBR21, Theorem

20] gives the following corollary. We write [n] = {0 < 1 < --- < n} for the finite total order

on n+ 1 elements, and Cat(n) = ﬁ (Zn") for the n-th Catalan number.

Corollary 4.12. For m,n > 0, the number of transfer systems on [m] * [n] is
| Tr([m] * [n])| = 2 Cat(n) Cat(m) + Cat(n — 1)(Cat(m + 1) — 2 Cat(m))
+ Cat(m — 1)(Cat(n+1) —2Cat(n)).
In particular,
| Tr([n] * [n])| = 2 (Calt(n)2 + Cat(n — 1)(Cat(n+ 1) —2Cat(n))) .

Remark 4.13. As a final comment on categorical results, we note that Tr does not take
products to products, but one may check that the canonical map ¢: Tr(P x Q) — Tr(P) x
Tr(Q) is split by

v : Tr(P) x Tr(Q) — Tr(P x Q)
(R,T)— {((p,q),(p,d)) | pRp andq T q'}.

Beware, though, that a similar construction does not work for fusion: there is no canonical
map Tr(P+Q) — Tr(P)*Tr(Q). Given the difficulty of handling colimits in lattice categories,
it remains unclear to us whether Tr might be a left adjoint.

5. TRANSFER SYSTEMS FOR RANK TWO ELEMENTARY ABELIAN GROUPS

We can now apply our investigations to a case of interest in equivariant homotopy theory.
Let G = C, x C, be arank 2 elementary Abelian p-group (p prime). The subgroup lattice
for G is isomorphic to an iterated fusion of [2] = {0 < 1 < 2} with itself as illustrated in
Figure 3. This fact is well-known, but we include a proof for completeness.

Lemma 5.1. The subgroup lattice of C,, x C,, is isomorphic to the (p + 1)-fold iterated
fusion of [2] with itself, i.e.,

Sub(C, x C,) = [2]*(P+D).

Proof. Each strict nontrivial subgroup H is cyclic of order p and generated by any of
its p — 1 nontrivial elements of C, x C,. Thus the total number of such subgroups is

(P—1)/(p—1)=p+1.
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FIGURE 3. The subgroup lattice of C,, x C,,

The only covering relations in the subgroup lattice are the inclusions of the trivial subgroup
e into any of these p + 1 subgroups, and the inclusion of strict nontrivial subgroups into
C, x C,. Thus the subgroup lattice is isomorphic to [2]*(P*1). O

We now employ Theorem 4.11 to determine the number of transfer systems on such
lattices.

Proposition 5.2. For n > 0, the number of transfer systems on the n-fold iterated fusion of
[2] with itself is
| Te([2]™)| =2""" +n

where [2]** = [1] and [2]*! = [2]. Furthermore, the isomorphism type of the lattice Tr([2]*")
is pictured in Figure 4 and may be described as a “bottom” n-cube B = [1]", a “middle”
discrete set of n-elements M, and a “top” n-cube T == [1]" where the only covering relations
not internal to one of the n-cubes are of the following forms:

(i) each element of B covered by max B is also covered by exactly one element of M,

(ii) each element of T covering min 7 also covers exactly one element of M,
(ii1)) min7 covers max B.

Remark 5.3. The n = 2,3 cases of Proposition 5.2 appear in [Rub21, Figure 2]; the n > 3
cases are new.

Proof. For a € 2]~ {T, L}, note that | Tr,([2]*")| = 1. Indeed, the only way a non-
extremal element can be minimal fibrant for a transfer system R on [2]*" is if a R T and
L R b for all non-extremal b # a, and there are no other non-reflexive relations. Also note
that 1 is the only non-extremal element of [2], and | Tr([2]*" ~{T,L})| =1, | Tri([2])| = 1.
These observations allow us to specialize Theorem 4.11 to get
ITr(2 D] = | Tr([2] « 2])|

= 2| Tr(2" N ATH 2 Te(R]" N AL D)+ 0 +1

=2.2"4+2-2"+n+1

— 2n+2 +n+ 1

where the third line holds by observing that there are n independent choices of non-reflexive
relations for a transfer system on [2]*" without one of its extremal elements. For n > 1 this is
equivalent to the formula in the proposition, and small values follow by inspection.

It remains to specify the lattice structure of Tr([2]*"). The bottom cube B consists of
transfer systems whose non-reflexive relations are a subset of relations of the form L Ra



O-<

—
=
>
Z,

[ c_g
es]
=
wn
=<
95}
—
M
wn
s
o
=]

I.III W

| —— | T 1 T 1 | — | >
Z

W

L ] L 1 E—| 2
o

Jes

-

es]

=<

m

3

%

=<

>

T 1 T 1 w
eS|

i/_\\ /\é =
%

L ' L ' Q
el

FIGURE 4. The Hasse diagram for Tr([2]**) 2 Tr(C, x C,). Compare with
the Hasse diagram for saturated covers in Figure 2.
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where a %1, T. The top cube T consists of transfer systems with all relations 1. R a,
the relation 1. R T, and a subset of relations @ R T (where a #.L, T throughout). The
intermediate transfer systems M have exactly one relation a R T (for a A1, T) and all
relations | Rbforb+#a, L, T.

The sets B,T,M are clearly disjoint and [BUT UM| = 2"+ 2" +n = 2""! 4 n, so this
specifies all elements of Tr([2]*"). The covering relations (i)—(iii) now follow directly from
our description of the transfer systems. O

The main theorem of this section is now an immediate corollary of Lemma 5.1 and
Proposition 5.2.

Theorem 5.4. Let G = C, x C), for p a prime number. Then there are exactly P2 4 p+1
G-transfer systems, and the lattice Tr(G) takes the form described in Proposition 5.2 with
n=p+1. ([l

Example 5.5. We may also illustrate the action of Hill’s characteristic map on Tr([2]*") and
highlight the saturated transfer systems (modular matchstick games) within this structure.
First note that all elements of B and M are both saturated and are minimal elements of fibers
of x according to Theorem 2.12. As such, these transfer systems represent the singleton
fibers of x: Tr([2]*") — End°([2]*"). The only additional fiber of y is the top cube 7', which
is the preimage of the interior operator taking the constant value L. In particular, there are
exactly 2" + n + 1 saturated transfer systems on [2]*”, and this is also the number of interior
operators on [2]*". As an antitone function, x: Tr([2]*") — End°([2]*") collapses T to the
minimal interior operator (constant on ) and is an order-reversing bijection away from 7.
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