
QUADRATIC FORMS, THE GROTHENDIECK-WITT RING, TRANSFERS,
NORMS, AND RESTRICTIONS

KYLE ORMSBY

Throughout these notes, let F denote a field of characteristic different from 2.

1. QUADRATIC FORMS

1.1. The basics. A quadratic form over F is a homogeneous degree 2 polynomial with coef-
ficients in F . In general, these look like

f(x1, . . . , xn) =

n∑
i,j=1

aijxixj ∈ F [x1, . . . , xn].

Of course, xixj = xjxi, and the coefficient of this term in the above expression is aij + aji.
In order to render the coefficients symmetric, we may define a′ij = (aij + aji)/2 so that

f =

n∑
i,j=1

a′ijxixj

as well. In this fashion, f determines and is determined by a unique symmetric matrix
Mf = (a′ij).

Example 1.1. Suppose f(x, y) = ax2 + bxy + cy2. The associated matrix is

Mf =

(
a b/2
b/2 c

)
.

In the above example, it is easy to see that f(x, y) = (x y)Mf

(
x
y

)
, and this behavior is

generic. Writing x for the column vector associated with (x1, x2, . . . , xn), we have

f(x) = xTMfx

where ( )T indicates transpose.
We define an equivalence of n-ary quadratic forms f and g to be a linear change of vari-

ables that turns g into f . In other words, f is equivalent to g when there exists an invertible
matrix A ∈ GLn(F ) such that f(x) = g(Ax). Since

g(Ax) = (Ax)TMg(Ax) = xT (ATMgA)x,

we see that f and g are equivalent if and only if

Mf = ATMgA

for some A ∈ GLn(F ). As such, equivalence of forms is equivalent to congruence of the
associated symmetric matrices.
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Example 1.2. Let f(x, y) = xy and let h(x, y) = x2 − y2. Substituting x 7→ x+ y, y 7→ x− y,
we see that

f(x+ y, x− y) = (x+ y)(x− y) = x2 − y2 = h(x, y),

so f and h are equivalent. We also have Mf =

(
0 1/2

1/2 0

)
, Mh =

(
1 0
0 −1

)
, and Mh =

ATMfA for A =

(
1 1
1 −1

)
.

Exercise 1.3. Prove that equivalence of forms is an equivalence relation.

We have already seen that the study of quadratic forms up to equivalence is the same as
the study of symmetric matrices up to congruence. It will be beneficial to investigate two
more equivalent structures that are slightly more abstract. The first of these is a quadratic
space (V, q), which is an n-dimensional vector space V equipped with degree 2 homoge-
neous function q : V → F . Here “degree 2 homogeneous” means that q(ax) = a2q(x) for
all a ∈ F and x ∈ V . Such a function is called a quadratic map on V .

Exercise 1.4. Prove the following facts about quadratic spaces and quadratic forms:
(a) An n-ary quadratic form f determines a quadratic space (Fn, f) where (abusing nota-

tion) we think of f as a function Fn → F given by evaluating the polynomial f .
(b) A quadratic space (V, q) along with a choice of basis e1, . . . , en of V determines a sym-

metric matrix Mq with entries (Mq)ii = q(ei) and (Mq)ij = 1
2 (q(ei + ej)− q(ei)− q(ej)).

(c) Under this correspondence, an equivalence of quadratic forms corresponds to a linear
isomorphism A : V ′ → V such that q(Ax) = q′(x) for all x ∈ V ′ (where (V, q) and
(V ′, q′) are quadratic spaces).

The final equivalent structure is that of a symmetric bilinear form B : V × V → F . Here
V is an n-dimensional F -vector space and B is a bilinear map such that B(v, w) = B(w, v)
for all v, w ∈ V .

Exercise 1.5. Prove the following facts about quadratic spaces and symmetric bilinear
forms:
(a) A bilinear form B on V determines a quadratic space (V, q) where q(x) := B(x, x).
(b) A quadratic space (V, q) determines a bilinear form B on V via polarization:

B(v, w) =
1

2
(q(v + w)− q(v)− q(w)).

(c) The assignments in (a) and (b) are inverse to each other.
(d) Equivalence of quadratic forms corresponds to isometry of symmetric bilinear forms: if

B,B′ are symmetric bilinear forms on V, V ′, respectively, an isometry (V,B)→ (V ′, B′)
is a linear isomorphism A : V → V ′ such that B′(Av,Aw) = B(v, w) for all v, w ∈ V .

In summary, we have the following dictionary of concepts:{
quadratic forms

up to equivalence

}
↔
{

symmetric matrices
up to congruence

}
↔
{

quadratic spaces
up to equivalence

}
↔
{

symmetric bilinear forms
up to isometry

}
.

The first two structures are nice because they are classical and concrete and lend themselves
to manual computation. The final two structures are nice because they are coordinate-free
and often permit more elegant proofs. We shall freely translate results between all four
structures.
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Proposition 1.6. Let B be a symmetric bilinear form on V with matrix M associated with
an ordered basis e1, . . . , en of V . Then the following statements are equivalent:
(a) M is an invertible matrix;
(b) the function x 7→ B( , x) : V → V ∗ is an isomorphism;
(c) for x ∈ V , B(x, y) = 0 for all y ∈ V if and only if x = 0.

We leave the proof as a moral exercise for the reader. If these conditions hold, we call
(V,B) a regular symmetric bilinear form and call its associated quadratic form nonsingular.

For a subspace W ⊆ V of a bilinear space (V,B), let

W⊥ := {x ∈ V | B(x,W ) = 0}

denote the orthogonal complement of W . We call V ⊥ the radical of V . Note that B is regular
if and only if V ⊥ = 0, but proper subspaces of regular spaces need not be regular.

Another moral exercise (hint: use (b) of the previous proposition and the rank-nullity
theorem):

Proposition 1.7. Let (V,B) be a regular bilinear space and W ⊆ V a subspace of V . Then

(a) dimW + dimW⊥ = dimV , and
(b) (W⊥)⊥ = W .

1.2. Diagonalization. A quadratic form f is diagonal if it is of the form
∑
aix

2
i , in which

case its associated symmetic matrix is diagonal with entries a1, . . . , an. Our present goal is
to show that every quadratic form is equivalent to a diagonal form. We warn the reader
diagonal forms need not have the same ai in order to be equivalent.

Let F× := F r {0} denote the multiplicative group of units in F .

Definition 1.8. A quadratic form f over F represents d ∈ F× if there exists λ ∈ Fn such
that f(λ) = d. Write DF (f) = D(f) for the set of values in F× represented by f .

Exercise 1.9. Check that D(f) only depends on the equivalence class of f .

If a, d ∈ F×, then d ∈ D(f) if and only if a2d ∈ D(f). As such, D(f) is a union of cosets
of F× modulo squares in F×. We shall write F� := {x2 | x ∈ F×} for the group of squares
in F×, and call F×/F� the group of square classes of F . Note that C×/C� = {C�} since
C� = C×. Also note that R×/R� = {±R�}, where R� = R>0. Finally, note that every
finite field has group of square classes of order 2 since the squaring map is 2-to-1.

We now define a new operation on quadratic forms / symmetic matrices / bilinear
spaces / quadratic spaces.

Definition 1.10. Let f(x1, . . . , xm), g(x1, . . . , xn) denote quadratic forms over F with asso-
ciated matrices M,N . Let (V, q), (V ′, q′) denote quadratic spaces with polarizations B,B′,
respectively. The following operations correspond to each other in our dictionary and are
all called orthogonal sum:
(a) f ⊕ g is the (m+ n)-ary quadratic form f(x) + g(y) ∈ F [x, y];

(b) M ⊕N is the block diagonal matrix
(
M 0
0 N

)
;

(c) (V, q)⊕ (V ′, q′) is the quadratic space (V ⊕ V ′, q ⊕ q′) where V ⊕ V ′ is the usual direct
sum of vector spaces and q ⊕ q′ : V ⊕ V ′ → F is the map (v, v′) 7→ q(v) + q′(v′);

(d) (V,B)⊕ (V ′, B′) is the bilinear space (V ⊕V ′, B⊕B′) where (B⊕B′)((x, y), (x′, y′)) =
B(x, y) +B′(x′, y′).
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Given a ∈ F , let 〈a〉 denote the quadratic form ax2. Then 〈a1〉⊕· · ·⊕〈an〉 is the diagonal
quadratic form a1x

2
1 + · · ·+ anx

2
n. We make the notational convention

〈a1, . . . , an〉 := 〈a1〉 ⊕ · · · ⊕ 〈an〉,
which provides a compact notation for diagonal quadratic forms.

Lemma 1.11 (Representation Criterion). For a bilinear space (V,B) and d ∈ F×, d ∈
D(V,B) if and only if there is another bilinear space (V ′, B′) and an isometry V ∼= 〈d〉⊕V ′.

The representation criterion is essential for what follows, so we will go through its proof
in detail.

Proof. If V ∼= 〈d〉 ⊕ V ′, then d ∈ D(〈d〉 ⊕ V ′) by evaluation at the vector (1, 0′V ).
For the converse, we first reduce to the case where V is regular. Take a suspace W

such that V ∼= V ⊥ ⊕W . Clearly D(V ) = D(W ), and W is regular. Thus without loss of
generality, we may assume V is regular.

By hypothesis, there is some v ∈ V with q(v) = d (where q(v) = B(v, v) is the de-
polarization ofB). The quadratic subspace F{v} is equivalent to 〈d〉, and F{v}∩(F{v})⊥ =
0. Since dimF{v} + dimF{v}⊥ = dimV by Proposition 1.7, we conclude that V ∼= 〈d〉 ⊕
F{v}⊥. �

Theorem 1.12. If (V,B) is any bilinear space over F , then there exist a1, . . . , an ∈ F such that
V ∼= 〈a1, . . . , an〉.

Proof. IfD(V,B) = ∅, thenB is identically 0 and V = 〈0, . . . , 0〉. If there exists d ∈ D(V,B),
then V ∼= 〈d〉 ⊕ V ′ for some (V ′, B′), and the proof proceeds by induction on dimV . �

Exercise 1.13. Read the example on p.35 of Lam (ignoring the part about signatures and
anisotropicity for the moment). Make sure you understand how to diagonalize a quadratic
form via completion of squares. Review this sage documentation and make sure you can
use sage to diagonalize a quadratic form via the command rational_diagonal_form().

Proposition 1.14. If (V,B) is a (not necessarily regular) bilinear space and W is a regular
subspace, then V = W ⊕W⊥. Furthermore, if U is a subspace of V such that V = W ⊕ U ,
then U = W⊥.

Proof idea. Use the Gram-Schmidt process to prove the first statement. The second state-
ment is relatively easy using the first. �

We conclude this subsection by briefly discussing the determinant of a nonsingular qua-
dratic form f . This is defined to be d(f) := det(Mf ) · F� ∈ F×/F�. Note that if f is
equivalent to g, then Mf = ATMgA for some invertible A, and hence

d(f) = det(Mg) det(A)2 · F� = d(g),

so d(f) is an invariant of the equivalence class of f . Interestingly, d turns orthogonal sum
into product: d(f ⊕ g) = d(f)d(g). Furthermore, d(〈a1, . . . , an〉) = a1 · · · an · F�.

1.3. Witt decomposition and cancellation. So far, these notes have followed Lam’s pre-
sentation quite closely, but at this point I am going to skip the section on hyperbolic spaces.
(Someone will lecture on this content next week.) The important definition is that H :=
〈1,−1〉 is called the hyperbolic plane, and a space equivalent to an orthogonal sum of hyper-
bolic planes is called a hyperbolic space. A vector v ∈ (V,B) is called isotropic if B(v, v) = 0.
A bilinear space is called isotropic if it contains a nonzero isotropic vecotr; it is called totally

https://doc.sagemath.org/html/en/reference/quadratic_forms/sage/quadratic_forms/quadratic_form.html
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FIGURE 1. Ernst Witt, 1911–1991. Emmy Noether’s Ph.D. student and one
of the most prominent algebraists of his generation. His devotion to the
Nazi party casts a dark shadow over his legacy.

isotropic if all nonzero vectors are isotropic (in which caseB is identically 0). A space which
is not isotropic is called anisotropic. It’s not hard to prove that a 2-dimensional quadratic
space is regular and isotropic if and only if it is equivalent to H.

This brings us to Witt’s decomposition theorem:

Theorem 1.15 (Witt decomposition). Any quadratic space (V, q) splits into an orthogonal sum
(Vt, qt) ⊕ (Vh, qh) ⊕ (Va, qa) where Vt is totally isotropic, Vh is hyperbolic (or zero), and Va is
anisotropic. The isometry types of Vt, Vh, Va are all uniquely determined.

Proof idea. For existence, first take V0 such that V = V ⊥ ⊕ V0. Then Vt = V ⊥ is totally
isotropic and V0 is regular. It turns out that you can split hyperbolic planes off of isotropic
spaces, and we do this inductively until V0 is anisotropic. Uniqueness will follow from the
forthcoming Witt cancellation theorem. �

Theorem 1.16 (Witt cancellation). If q, q′, q′′ are arbitrary quadratic forms, then q⊕ q′ ∼= q⊕ q′′
if and only if q′ ∼= q′′. (Thus it is permissible to “cancel” the summand q from the first isometry.)

Exercise 1.17. Read the proof on pp.12-15 of Lam.

1.4. Tensor products of quadratic spaces. We have already seen how to take sums of qua-
dratic spaces via the orthogonal sum operation. We now turn to products, which will be
accomplished with tensor products. We first define the tensor product of two F -vector
spaces.

Let V,W denote F -vector spaces. Let F (V ×W ) denote the F -vector space with basis
V ×W (so elements of F (V ×W ) are finite F -linear combinations of ordered pairs (v, w) ∈
V ×W ). Define an equivalence relation∼ on F (V ×W ) such that for all v, v′ ∈ V ,w,w′ ∈W ,
and a ∈ F ,
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(i) (v, w) ∼ (v, w),
(ii) (v, w) + (v′, w) ∼ (v + v′, w) and (v, w) + (v, w′) ∼ (v, w + w′), and

(iii) a(v, w) ∼ (av, w) ∼ (v, aw).

Definition 1.18. The tensor product of V and W is

V ⊗W := F (V ×W )/ ∼ .

The equivalence class of (v, w) in V ⊗W is denoted v ⊗ w.

The classes v ⊗ w are called simple tensors; generic elements of V ⊗W are linear combi-
nations of simple tensors.

Exercise 1.19. Suppose V has basis v1, . . . , vm andW has basisw1, . . . , wn. Prove that V⊗W
has basis {vi ⊗ wj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. In particular, dimV ⊗W = dimV · dimW .

The job of tensor products is to turn bilinear algebra into linear algebra, as exhibited by
the following proposition.

Proposition 1.20. For F -vectors spaces V,W , let V ×W → V ⊗W be the map (v, w) 7→
v⊗w. For each F -vector space U , there is a bijective correspondence between bilinear maps
V ×W → U and linear transformations V ⊗W → U making the diagram

V ×W V ⊗W

U
bilinear

linear

commute.

Proof idea. The relations encoded by ∼ clearly make a composite V ×W → V ⊗W linear−−−→ U
bilinear. Given a bilinear map B : V × W → U , we would like to define V × W → U
by v ⊗ w 7→ B(v, w). Well-definition follows from bilinearity of B. Now check that these
assignments are inverse to each other. �

Exercise 1.21. Show that there are natural isomorphisms U ⊗ (V ⊗W ) ∼= (U ⊗V )⊗W and
τ : V ⊗W ∼= W ⊗ V . (We call the second isomorphism the twist.) Check that τ ◦ τ = id.

By Proposition 1.20, our bilinear formsB : V ×V → F are the same thing as linear maps
B : V ⊗ V → F , and we will freely use either perspective. For instance, given bilinear
spaces (V,B), (W,B′), we can define B ⊗ B′ : (V ⊗W ) ⊗ (V ⊗W ) → F by re-associating
the domain as (V ⊗ V )⊗ (W ⊗W ), performing B and B′ on each factor, respectively, and
then multiplying the result. On simple tensors, this looks like

(B ⊗B′)((v1 ⊗ w1)⊗ (v2 ⊗ w2)) = B(v1 ⊗ v2) ·B(w1 ⊗ w2).

This is the tensor (or Kronecker) product of B and B′. If B and B′ have de-polarization q
and q′, respectively, we have (q ⊗ q′)(v ⊗ w) = q(v) · q(w).

Exercise 1.22. Prove that the tensor product satisfies commutative, associative, and dis-
tributive laws:
(a) q ⊗ q′ ∼= q′ ⊗ q,
(b) q ⊗ (q′ ⊗ q′′) ∼= (q ⊗ q′)⊗ q′′, and
(c) q ⊗ (q′ ⊕ q′′) ∼= (q ⊗ q′)⊕ (q ⊗ q′′).
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Note that the distributive law along with the easy computation 〈a〉 ⊗ 〈b〉 ∼= 〈ab〉 imply
that on diagonal forms,

〈a1, . . . , am〉 ⊗ 〈b1, . . . , bn〉 ∼= 〈a1b1, a1b2, . . . , a1bn, . . . , aibj , . . . , ambn〉.

From now on, when r is a nonnegative integer and f is a quadratic form, we will write
r · f for the r-fold orthogonal sum of f with itself.

Proposition 1.23. If q is any regular quadratic form, then q ⊗H ∼= (dim q) ·H.

Proof. By Theorem 1.12, we may write q ∼= 〈a1, . . . , an〉 for some ai ∈ F , and in fact all
ai ∈ F× since q is regular (and thus has no totally isotropic summand). Then

q ⊗H ∼= 〈a1〉 ⊗H⊕ · · · ⊕ 〈an〉 ⊗H,

so it suffices to show that 〈a〉⊗H ∼= H for any a ∈ F×. We have 〈a〉⊗H ∼= 〈a,−a〉. You will
finish the proof in the following exercise. �

Exercise 1.24. Prove that for all a ∈ F×, 〈a,−a〉 ∼= 〈1,−1〉 = H.

2. THE WITT AND GROTHENDIECK-WITT RINGS

From now on, if not mentioned, we will assume that all quadratic forms/spaces are
nonsingular/regular.

2.1. Definitions and basic properties. LetM(F ) denote the set of isometry classes of (non-
singular) quadratic forms over F . The binary operations ⊕ and ⊗ define the structure of a
commutative semiring on M(F ). (A semiring is like a ring, but without mandating addi-
tive inverses. You are already very familiar with the semiring N of natural numbers.) By
the Witt cancellation theorem, M(F ) satisfies additive cancellation, but it does not have
additive inverses (dimension is additive and takes values in N).

To remedy this situation, we appeal to the Grothendieck construction. Let M be a commu-
tative cancellation monoid under addition. Define ∼ on M ×M by

(x, y) ∼ (x′, y′) if and only if x+ y′ = x′ + y ∈M.

The cancellation law implies that ∼ is an equivalence relation on M ×M . The Grothendieck
group of M is Groth(M) := (M ×M)/ ∼with addition induced by

(x, y) + (x′, y′) = (x+ x′, y + y′).

This addition is well defined, and the classes of (x, y) and (y, x) are additive inverses of
each other. Thus Groth(M) is a group. Furthermore, i : M → Groth(M) defined by
i(x) = (x, 0) is an injection makingM a sub-monoid of Groth(M). Note that−i(y) = (0, y),
so we may think of the pair (x, y) as the “formal difference” of x and y.

Proposition 2.1. There is a bijective correspondence between monoid homomorphisms
from M to an Abelian group A and group homomorphisms Groth(M) → A making the
diagram

M Groth(M)

A

commute.
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FIGURE 2. Alexander Grothendieck (center), 1928–2014. Creator of mod-
ern algebraic geometry. Also a radical pacifist and famous recluse. Not a
Nazi.

The proof is a moral exercise. Finally, if M has a (commutative) multiplication making
it a semiring, then the multiplication

(x, y)(x′, y′) = (xx′ + yy′, yx′ + xy′)

induces a (commutative) multiplication on Groth(M) that makes it into a (commutative)
ring.

Definition 2.2. The Grothendieck-Witt ring of F is GW(F ) := Groth(M(F )).

Note that every element of GW(F ) has a representative of the form q− q′ where q, q′ are
(isometry classes of) nonsingular quadratic forms. Since M(F ) ⊆ GW(F ), the statements
q = q′ ∈ GW(F ) and q ∼= q′ are synonymous.

The dimension map dim : M(F ) → Z is a semiring homomorphism and thus extends
uniquely (by Proposition 2.1) to a ring homomorphism dim : GW(F )→ Z given by dim(q−
q′) = dim(q) − dim(q′). Let GI(F ) denote the kernel of dim; we call GI(F ) the fundamental
ideal of GW(F ). Since dim is surjective, GW(F )/GI(F ) ∼= Z.

Another important subset of GW(F ) is Z · H, the integer multiples of the hyperbolic
plane. By Proposition 1.23, Z ·H = (H) is an ideal in GW(F ).

Definition 2.3. The quotient ring W(F ) := GW(F )/Z ·H is called the Witt ring of F .

The Witt and Grothendieck-Witt rings are both “functorial in field extensions.” By this,
we mean that if F ⊆ E is an extension of fields (i.e. F is a subfield of E), then there is a
natural map resEF : GW(F )→ GW(E) such that

(i) resFF = id, and
(ii) for field extensions F ⊆ E ⊆ L, resLE ◦ resEF = resLF .
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The map resFE is called restriction1 and is given by extension of scalars: an F -quadratic form
f ∈ F [x1, . . . , xn] is simply viewed as an element of E[x1, . . . , xn].

Exercise 2.4. Describe resEF on symmetric matrices, quadratic spaces, and bilinear spaces.
In the latter two cases, you should use the concept of extension of scalars on a vector space:
V 7→ E ⊗ V .

Witt defined W(F ) in 1937 and observed that it had the following properties (see Lam
p.29 for a proof).

Proposition 2.5. (a) The elements of W(F ) are in bijective correspondence with the isom-
etry classes of anisotropic quadratic forms.

(b) Two forms represent the same element of W(F ) if and only if their anisotropic parts
are isometric: q = q′ ∈W(F ) if and only if qa ∼= q′a.

(c) If dim q = dim q′, then q = q′ ∈W(F ) if and only if q ∼= q′.

Contemplation of the following diagram will result in (1) a definition of the fundamental
ideal I(F ) ⊆W(F ), (2) a definition of the mod 2 rank homomorphism dim0, (3) a proof that
GI(F ) ∼= I(F ), and (4) a proof that W(F )/ I(F ) ∼= Z/2Z:

0 0

0 Z ·H 2Z 0

0 GI(F ) GW(F ) Z 0

0 I(F ) W(F ) Z/2Z 0

0 0 0 .

dim

dim0

2.2. More on square classes. We have seen that the determinant induces a monoid homo-
morphism d : M(F ) → F×/F� (where the monoid structures are ⊕ and ·, respectively).
As such, we get a homomorphism of Abelian groups d : GW(F ) → F×/F� by setting
d(q− q′) = d(q)/d(q′) = d(q)d(q′) (since aF� = a−1F�). Since d(H) = −F�, the homomor-
phism d does not factor through W(F ). Let’s fix that.

Define the signed determinant of a nonsingular n-dimensional form q by

d±(q) = (−1)n(n−1)/2d(q) ∈ F×/F�.

Then d±(H) = F� (as we would like), but d± is no longer a monoid homomorphism! To
remedy this, define

Q(F ) := Z/2Z× F×/F�

as a set and introduce the novel binary operation

(e, d) · (e′, d′) = (e+ e′, (−1)ee
′
dd′).

1Extension would be a more natural name for this map, but we are headed towards Mackey and Tambara
functors for which (for group-theoretic reasons) this type of map is called restriction.
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This operation is commutative and associative with identity (0, F�). The inverse of (e, d) is
(e, (−1)ed). Furthermore, the inclusion d 7→ (0, d) identifies F×/F� as an index 2 subgroup
of Q(F ). In general, Q(F ) is a nonsplit extension of F×/F� by Z/2Z.

Proposition 2.6. The function (dim0, d±) : M(F )→ Q(F ) is a monoid homomorphism ex-
tending to a group homomorphism GW(F )→ Q(F ) which induces a group isomorphism
W(F )/ I2(F ) ∼= Q(F ).

Proof sketch. The first statement is a rote calculation. Also, (dim0, d±) is surjective since 〈a〉
is sent to (1, aF�) and 〈1,−a〉 is sent to (0, aF�). Since H is sent to (0, (−1)d(H)) = (0, F�),
we get an iduced map W(F ) → Q(F ). It turns out that I(F ) is additively generated by
binary forms 〈1, a〉, so I2(F ) is additively generated by four-dimensional forms 〈1, a〉 ⊗
〈1, b〉 = 〈1, a, b, ab〉. Now compute

(dim0, d±)(〈1, a, b, ab〉) = (0, (−1)0a · b · abF�) = (0, F�).

Thus (dim0, d±) induces a surjection W(F )/ I2(F ) → Q(F ). Finally, construct an inverse
Q(F ) → W(F )/ I2(F ) by sending (0, aF�) to 〈1,−a〉 + I2(F ) and (1, aF�) to 〈a〉 + I2(F ).
Now check that g is a homomomorphism and two-sided inverse to f . �

Corollary 2.7. The ideal I2(F ) consists of classes of even-dimensional forms q for which
d(q) = (−1)n(n−1)/2 (where n = dim q).

Corollary 2.8. Restriction of the above isomorphism results in an isomorphism I(F )/ I2(F ) ∼=
F×/F�.

The above corollary is the first nontrivial instance of the famed Milnor conjecture, which
says that KM

n (F )/(2) ∼= In(F )/ In+1(F ) for all n ≥ 0. Here KM
n (F ) is “Milnor K-theory,”

which we will not describe in general at the moment. But we can say that KM
1 (F ) ∼= F×

and 2KM
1 (F ) ∼= F�, and that recovers the formulation in the corollary.

2.3. First computations. Our present task is to compute our first (Grothendieck-)Witt rings.
A field F is called quadratically closed when F× = F�, i.e., when every element of F is a
square. Algebraically closed fields like C and Q are quadratically closed, but so are other
fields like the constructible numbers and

⋃
n≥0 F52n .

Proposition 2.9. A field F is quadratically closed if and only if dim : GW(F ) → Z is an
isomorphism. In this case, dim0 : W(F ) ∼= Z/2Z.

Proof. If F is quadratically closed, then 〈a〉 ∼= 〈1〉, and q ∼= (dim q)〈1〉 for every form q. Thus
dim is an isomorphism. Conversely, if dim is an isomorphism, then 〈a〉 ∼= 〈1〉 for all a ∈ F×,
so every a ∈ F is a square. �

With this easy case done, we turn to a new class of fields which includes R:

Definition 2.10. A field F is Euclidean if it is formally real2 and F×/F� = {±F�}. In a
Euclidean field, call the elements of F� positive, and call the elements of−F� negative. The
sign of a nonzero element of F is defined similarly.

Proposition 2.11. If F is Euclidean, then the following statements hold:
(a) There are exactly two anisotropic forms of each positive dimension n, namely n〈1〉 and

n〈−1〉.

2This means that F has an ordering or, equivalently, no sum of squares in F is equal to −1. We will discuss
formally real fields in much greater depth later on.
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(b) The Witt ring of F is W(F ) ∼= Z.
(c) (Sylvester’s law of inertia) Two nonsingular forms over F are equivalent if and only if

they have the same dimension and the same signature.
(d) As an Abelian group, GW(F ) ∼= Z ⊕ Z. As a ring, GW(F ) ∼= Z[C2], the integral group

ring of the cyclic group of order 2.

Proof. For (a), note that a form is anisotropic if and only if, in its diagonalization, the co-
efficients do not have mixed signs. The elements of W(F ) are in bijective correspondence
with anisotropic forms, so (b) follows.

For (c), we first define signature. We claim that in a diagonalization of a form q, the
number of positive coefficients (and hence the number of negative coefficients as well) is
uniquely determined. To see this, suppose that dim q = n and r〈1〉 ⊕ (n − r)〈−1〉 and
s〈1〉 ⊕ (n− s)〈−1〉 are two diagonalizations of q with s ≥ r. Passing to the Witt ring W(F ),
we have

r〈1〉 − (n− r)〈1〉 = s〈1〉 − (n− s)〈1〉 ∈W(F ),

so 2r〈1〉 = 2s〈1〉 ∈ W(F ). By (b), we get that r = s. Thus we may write n+ = r for the
number of positive terms, and n− = n− r for the number of negative terms. The signature
of q is defined to be

sgn(q) := n+ − n− = 2n+ − n.
Two forms are equivalent if and only if they the same n and the same n+, if and only if they
have the same n and same signature. This is (c).

To prove (d), it suffices to show that 〈1〉 and 〈−1〉 form a free Z-basis for GW(F ), which
is the content of the following exercise. �

Exercise 2.12. Finish the proof of (d).

Remark 2.13. The isomorphism W(F )→ Z in (b) is precisely the signature homomorphism.

Exercise 2.14. Make headway on Exercises 6 and 7 on p.48 of Lam.

At this point, we can also specify the restriction map res
F (
√
−1)

F when F is Euclidean.
For concreteness, we will suppose that F = R so that we are considering resCR : GW(R) →
GW(C). Since 〈−1〉 ∼= 〈1〉 over C, resCR(n+〈1〉 ⊕ n−〈−1〉) = (n+ + n−)〈1〉, and we can
identify resCR with the dimension homomorphism.

Our next goal is to determine the Witt and Grothendieck-Witt rings of finite fields. Let
Fq denote the finite field with q elements, where q = pn for p 6= 2 a prime. Recall that
|F×q /F�

q | = 2. Denote its two square classes 1 and s. Note that −1 ∈ F�
q if and only if q ≡ 1

(mod 4), so s may be taken to be −1 if and only if q ≡ 3 (mod 4).

Proposition 2.15. Let F = Fq , and F×/F� = {1, s}. Then
(a) s is a sum of two squares, and
(b) every nonsingular binary form is universal.

Proof. We first show that (a) implies (b). Since 〈1〉 = 〈a2〉 for all a ∈ F× and there are only
two square classes, there are at most three nonequivalent binary forms:

f1 = 〈1, 1〉, f2 = 〈s, s〉, f3 = 〈1, s〉.
We have D(f3) = F× since F× = F� ∪ sF�. Part (a) implies that D(f1) = D(f2) = F×.

To establish (a), we argue in two cases. First, suppose −1 ∈ F�. Then 〈1, 1〉 ∼= 〈1,−1〉 =

H, which is universal. Now suppose −1 /∈ F�. The sets F� and 1 + F� are subsets of F of
the same cardinality; they are not equal since 1 ∈ F� but is not in 1 +F�. Thus there exists
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some 1 + z2 which is not in F�. Since −1 /∈ F�, 1 + z2 6= 0, so we may take s to be 1 + z2,
proving (a). �

Theorem 2.16. Assume that every binary form over the field F is universal. Then
(a) two quadratic forms are isometric if and only if they have the same dimension and same deter-

minant;
(b) GI2(F ) ∼= I2(F ) = 0 and GI(F ) ∼= I(F ) ∼= F×/F�; and
(c) W(F ) ∼= Q(F ) as rings, and GW(F ) = Z⊕GI(F ) with trivial multiplication on GI(F ).

Proof. By hypothesis, any binary form 〈a1, a2〉 represents 1. By the Representation Criterion
(Lemma 1.11), we learn that 〈a1, a2〉 ∼= 〈1, e〉 for some e ∈ F×. These forms must have
the same determinant, so e = a1a2 and 〈a1, a2〉 ∼= 〈1, a1a2〉. By induction, an arbitrary
nonsingular form q ∼= 〈a1, . . . , an〉 ∼= 〈1, . . . , 1, d(q)〉. This proves (a).

Since GI(F ) is additively generated by classes of the form 〈a〉−〈1〉, we know that GI2(F )

is additively generated by (〈a〉−〈1〉)(〈b〉−〈1〉) = 〈ab〉+〈1〉−〈a〉−〈b〉 = 0. Thus GI2(F ) = 0,
proving the first part of (b). It follows that

GI(F ) ∼= I(F ) ∼= I(F )/ I2(F ) ∼= F×/F�

by Corollary 2.8.
For (c), recall that W(F )/ I2(F ) ∼= Q(F ) by Proposition 2.6, and we have just seen that

I2(F ) = 0, so W(F ) ∼= Q(F ). The description of GW(F ) follows from the split exact
sequence

0→ GI(F )→ GW(F )
dim−−→ Z→ 0.

�

As a corollary, we get the desired computation for finite fields.

Corollary 2.17. Let F = Fq with q odd.

(a) If q ≡ 1 (mod 4), then W(F ) ∼= F2[F×/F�] as rings.3

(b) If q ≡ 3 (mod 4), then W(F ) ∼= Z/4Z as rings.
(c) In all cases, GW(F ) ∼= Z⊕ F×/F� as rings (with trivial multiplication on F×/F�).

Exercise 2.18. Work out the proof in detail by using the definition of Q(F ). You should get
a split extension when q ≡ 1 (mod 4) and a non-split one when q ≡ 3 (mod 4).

Let’s now think about the relevant restriction maps. Recall that Fpm ⊆ Fpn if and only
if m | n. Assume m | n, set q = pm and q′ = pn so that F ⊆ E for F = Fq , E = Fq′ . The
isomorphism GW(F ) → Z⊕ F×/F� is just (dim, d), and these functions are preserved by
extension of scalars. In other words, we have the commutative diagram

GW(F ) Z⊕ F×/F�

GW(E) Z⊕ E×/E�.

(dim,d)

resEF

(dim,d)

where the horizontals are isomorphisms, and the right vertical takes (n, aF�) 7→ (n, aE�).

3The right-hand side is a group ring. For a commutative ring R and group G, R[G] consists of R-linear com-
binations of elements of G (i.e., the free R-module with basis G). The multiplication is given by distribution and
the rule (rg)(sh) = (rs)(gh) for r, s ∈ R, g, h ∈ G.
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Exercise 2.19. In this setting, there are only two possible homomorphisms F×/F� →
E×/E�, namely the trivial map and the (unique) isomorphism. Determine conditions on
F ⊆ E (perhaps in terms of q, q′) that specify the corresponding map F×/F� → E×/E�.

Exercise 2.20. Use your answer to the previous question to further specify resEF (both on
GW and on W).

Your answer to the above question is the first step towards explicating the Tambara
functor structure on GW over a finite field!

2.4. Presentation of Witt and Grothendieck-Witt rings. The Grothendieck-Witt ring GW(F )
is generated (as a ring) by the elements 〈a〉, a ∈ F×. These satisfy the relations

(i) 〈1〉 = 1,
(ii) 〈a〉〈b〉 = 〈a〉b for a, b ∈ F×, and

(iii) 〈a〉+ 〈b〉 = 〈a+ b〉(1 + 〈ab〉) for a, b, a+ b ∈ F×.
Indeed, (i) and (ii) are obvious, while (iii) follows from the fact that 〈a, b〉 represents a + b
and thus is equivalent to a form of the form 〈a + b, e〉. In order for determinants to match
in F×/F�, we take e = ab(a+ b).

Theorem 2.21. Let F be the free commutative ring generated by {[a] | a ∈ F×}. Let I be the ideal
generated by the elements

(i) [1]− 1,
(ii) [ab]− [a]− [b] for a, b ∈ F×, and

(iii) [a] + [b]− [a+ b](1 + [ab]) for a, b, a+ b ∈ F×.
Then the map F → GW(F ) given by [a] 7→ 〈a〉 induces an isomorphism F/I .

Proof idea. It is clear that F → GW(F ) is surjective (since the forms 〈a〉 generate GW(F )).
The map extends to F/I because all the relations are satisfied in GW(F ). We now want
to define an inverse homomorphism GW(F ) → F/I → GW(F ) taking q ∼= 〈a1, . . . , an〉
to [a1] + · · ·+ [an]. Well-definition requires some material we did not cover, namely Witt’s
Chain Equivalence Theorem (I.5.2 in Lam). �

Corollary 2.22. Let F ′ be the free abelian group generated by {{a} | a ∈ F×}. Let H be
the subgroup of F ′ generated by the elements

(i) {ab2} − {a} for a, b ∈ F× and
(ii) {a}+ {b} − {a+ b} − {ab(a+ b)} for a, b, a+ b ∈ F×.

Then GW(F ) ∼= F ′/H .

There are similar presentations of W(F ) = GW(F )/Z · H. We only need to add the
relation [1] + [−1] = 0 or {1}+ {−1} = 0.

3. RESTRICTION AND TRANSFER

Let’s now jump to some material from Chapter VII of Lam.

3.1. Scharlau’s transfer. Let F ⊆ E be a field extension of finite degree. Let s : E → F be
a nonzero F -linear functional on the F -vector space E. For any E-bilinear space (U,B), we
may compose B : U × U → E with the functional s to get an F -bilinear form

sB : U × U → F.

Proposition 3.1. If (U,B) is a regular E-bilinear space, then (U, sB) is a regular F -bilinear
space.
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FIGURE 3. Winfried Scharlau, b.1940. Ph.D. student of Friedrich Hirze-
bruch, Professor Emeritus in Münster, Grothendieck’s biographer.

Proof. If not, there would exist x0 ∈ U such that (sB)(x0, U) = 0. By regularity of (U,B),
there exists y0 ∈ U such that B(x0, y0) = d 6= 0. For any c ∈ E, we have

B(x0, (c/d)y0) = (c/d) ·B(x0, y0) = c.

Applying s to this equation, we get

s(c) ∈ (sB)(x0, U) = 0.

This contradicts s being nonzero. �

For s : E → F a nonzero F -linear functional, let s∗(U) denote the bilinear space U over
F with form sB. We call s∗(U) the transfer of U (relative to s). The construction is due to
Winfried Scharlau.

Exercise 3.2. The function s∗ : GW(E) → GW(F ) is not a ring homomorphism, but it is a
group homomorphism.

Exercise 3.3. For extensions F ⊆ E ⊆ K and nonzero functionals t : K → E, s : E → F ,
we have

(s ◦ t)∗ = s∗ ◦ t∗.

Exercise 3.4. Prove that
dimF s∗(U) = [E : F ] dimE U.

A natural choice for s : E → F is the field trace TrE/F : E → F .

Definition 3.5. For a field extension F ⊆ E and α ∈ E, define mα : E → E to be the
F -linear map x 7→ αx. The trace of α is

TrE/F (α) = Tr(mα)

where the latter Tr is the linear algebra trace of a linear transformation (choose a basis,
write mα as a matrix, sum the diagonal entries).
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It is a basic field theory fact that TrE/F 6≡ 0 if and only if F ⊆ E is separable; this means
that the F -minimal polynomial of every α ∈ E is separable (has no repeated roots). Thus
we will restrict our attention to separable extensions F ⊆ E and write trEF for (TrE/F )∗.
This will give the transfer maps on GW when considered as a Mackey or Tambara functor.

Our first theorem relating restriction and s∗ is the Scharlau (or Frobenius) reciprocity
theorem.

Theorem 3.6. For a field extension F ⊆ E and nonzero functional s : E → F , let V be a quadratic
space over F and U a quadratic space over E. Then

s∗(resEFV ⊗E U) ∼= V ⊗F s∗(U).

In particular, with U = 〈1〉E , we have

s∗(resEFV ) ∼= V ⊗F s∗(〈1〉E).

You can find the proof on pp.189–190 of Lam. Frobenius reciprocity theorems typically
have something to do with a Mackey functor being a “Green functor” which are important
things that we’re not talking about this summer.

Exercise 3.7. Interpret Scharlau reciprocity as saying that s∗ is a GW(F )-module map,
where we use resEF : GW(F )→ GW(E) to view GW(E) as a GW(F )-module.

As a corollary to Scharlau reciprocity, we get that s∗ takes hyperbolic spaces to hyper-
bolic spaces: s∗ respects orthogonal sum, and

s∗(HE) = s∗(resEFHF ) ∼= HF ⊗F s∗(〈1〉E) ∼= [E : F ]HF ,

where the last isometry holds because dimF s∗〈1〉E = [E : F ] and it is always the case that
H⊗ q ∼= (dim q)H.

By the above paragraph, s∗ also induces an Abelian group (and W(F )-module) homo-
morphism W(E)→W(F ).

We will have student lectures on Lam VII.2 and VII.3. These study the effect of resEF
on W according to the parity of [E : F ]. The main takeaways are that (1) resEF is a split
injection of W(F )-modules when [E : F ] is odd, and (2) ker(res

F (
√
a)

F ) is the ideal generated
by 〈1,−a〉 for a ∈ F×rF�. We will want to extend these results to GW. (The GW variants
may or may not already be in the literature.)

3.2. Galois Mackey functors. At this point we have both restriction and transfer maps as-
sociated with field extensions, so the time is ripe to introduce the notion of a Galois Mackey
functor. Fix a (profinite) Galois extension F ⊆ E with Galois group G.4 In Angélica’s lec-
tures, we have already seen the notion of a G-Mackey functor, at least when G is finite.
For G profinite (which means it is a limit of finite groups), we make the same definitions,
restricting our attention to finite G-sets. Finite G-orbits are isomorphic to G/U for U an
open subgroup of G.5 Thus it suffices to specify a G-Mackey functor on finite orbits G/U .

The (profinite) Galois correspondence provides a bijective correspondence between closed
subgroups H ≤ G and subextensions F ⊆ K ⊆ E by taking H to EH = {e ∈ E |
he = e for all h ∈ H}. The inverse bijection takes K to Gal(K/F ). Finite subextensions

4It’s important to consider profinite Galois extensions because the algebraic and separable closures of F are,
in general, profinite.

5Someone should talk about the basics of profinite groups. In particular, G gets a topology and subgroups are
open if and only if they are closed and have finite index.
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F ⊆ K ⊆ E (meaning that [K : F ] < ∞) are in bijective correspondence with open sub-
groups U ⊆ G.

Since finite transitive G-sets are all of the form G/U , U ≤ G open, we get a function
OG → Sub(F ⊆ E) taking G/U 7→ EU where OG is the set of finite G-orbits and Sub(F ⊆
E) is ad hoc notation for the set of finite subextensions of F ⊆ E (i.e., F ⊆ K ⊆ E with [K :
F ] < ∞). This assignment lifts to the level of categories! We make OG into a category by
taking G-equivariant functions for our morphisms. For Sub(F ⊆ E) a morphism between
subextensions F ⊆ K,L ⊆ E is a field homomorphism K → Lwhich is the identity on
F . To get a functor, we need to produce field homomorphisms from G-equivariant maps
G/U → G/V , U, V ≤ G open. First consider the case when U ≤ V ≤ G and G/U → G/V
is the restriction map. Note that since U ≤ V , EV ⊆ EU , and it is this inclusion that we
assign to the restriction map. Since source and target were swapped, we know that we are
looking for a contravariant functor Oop

G → Sub(F ⊆ E).

Exercise 3.8. Figure out what the conjugation maps in OG naturally induce in Sub(F ⊆ E).
Use the fact that the existence of a G-equivariant map f : G/U → G/V is the same as a
subconjugacy g−1V g ≤ U to determine the value of the functor on f .

The fundamental theorem of profinite Galois theory says that the functor Oop
G →

Sub(F ⊆ E) is an equivalence of categories.
In our study of Mackey functors, it was useful to work with G-sets, not just G-orbits,

and we will want a similar formulation when working with field extensions. By categorical
yoga, the Cartesian product ofG-sets corresponds to the tensor product of field extensions.6

Proposition 3.9. Suppose F ⊆ E is a Galois extension of fields and K,L ∈ Sub(F ⊆ E).
Then K ⊗F L is isomorphic to a Cartesian product of subextensions of F ⊆ E.

Proof. Choose a primitive element α ∈ E such that K = F (α). Then α has minimal poly-
nomial f which is separable, and K ∼= F [t]/(f(t)). Thus

K ⊗F L ∼= L[t]/f(t)L[t].

The polynomial f(t) factors into a product of irreducible polynomials over L, say f(t) =∏
fi(t). Then

K ⊗F L ∼=
∏

L[t]/fi(t)L[t]

and each L[t]/fi(t)L[t] is a finite subextension of F ⊆ E. �

For F ⊆ E a Galois field extension, an F -algebra R which is a subring of E and is
isomorphic to a Cartesian product of finite subextensions of F ⊆ E is called a finite étale F -
subalgebra ofE. We let FétE/F denote the category with objects the finite étaleF -subalgebras
of E and with morphisms S → R the set of F -algebra homomorphisms R→ S. (Note that
we snuck an ( )op in here relative to the usual category of F -algebras! In the sequel, we
will always work with F -algebra maps R → S and not their reversed avatars in FétE/F .)
If GFin is the category of finite G-sets and G-equivariant maps, then the Galois correspon-
dence provides inverse equivalences of categories

GFin→ FétE/F and FétE/F → GFin .

This makes the following definition quite reasonable.

6This is because the Cartesian product of G-sets is a categorical product and hence turns into a categorical
coproduct via a contravariant equivalence of categories. The coproduct of F -algebras (F -vector spaces which are
commutative rings) R,S is R⊗F S with multiplication (r ⊗ s)(r′ ⊗ s′) = (rr′)⊗ (ss′).
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Definition 3.10. Given a profinite Galois extension F ⊆ E, a Galois Mackey functor M for
F ⊆ E consists of
(a) an Abelian group M(R) for each finite étale F -subalgebra of E and
(b) homomorphisms resf : M(R) → M(S) and trf : M(S) → M(R) for each F -algebra

homomorphism f : R→ S

satisfying the following conditions:
(i) M(R× S) ∼= M(R)×M(S) via the canonical map,

(ii) resf and trf are functorial in f , and
(iii) given finite étale F -subalgebras R,S, T of E and a commutative square of F -algebra

homomorphisms

S ⊗R T T

S R,

f

g h

k

the square

M(S ⊗R T ) M(T )

M(S) M(R)

trf

resg

trk

resh

commutes.

The Mackey axiom (iii) looks a little topsy turvy because the pullback of G-sets has been
replaced by the pushout (= tensor product) of commutative rings. Things might look a little
cleaner if we used the language of algebraic geometry (in which affine F -schemes form the
opposite category of F -algebras), but we are avoiding the additional definitional burden.

Exercise 3.11. Formulate the “G-orbits and double coset formula” version of the above
definition.

Theorem 3.12. For a Galois extension F ⊆ E, the Grothendieck-Witt functor is a Galois Mackey
functor.

Before proving this theorem, we need to make sure we know what GW(R), resf , and trf
are for R a finite étale algebra and f : R→ S an F -algebra homomorphism. An R-bilinear
form is anR-moduleM andR-bilinear mapM ×M → R. We can play the same regularity,
isometry, orthogonal sum, and tensor product games to form GW(R) as the Grothendieck
construction on isometry classes of R-bilinear forms. Restriction along f : R → S is given
by base change to S, so that (M,B) becomes S ⊗F M, idS ⊗F B). This defines a ring map
resf : GW(R)→ GW(S).

Now suppose that f : R → S is a ring map (inducing an R-module structure on S) and
s : S → R is an R-linear map. Then post-composition with s takes an S-bilinear form to an
R-bilinear form. This defines an Abelian group homomorphism s∗ : GW(S) → GW(R).
When f : R → S is an F -algebra homomorhism between finite étale F -subalgebras of E,
the usual construction produces an R-linear trace map Trf : S → R. We define trf :=
(Trf )∗.

It’s good to have these elegant definitions in hand, but also note that by Proposition 3.9,
nothing new is really going on. The algebras in questions are just products of fields, and
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it is easy to show that GW(K × L) ∼= GW(K) × GW(L). The maps resf and trf may be
computed “one field at a time.”

For R,S, T ∈ FétE/F , let f : R → S and g : R → T be two F -algebra maps, and let
s : S → R be an R-linear map back into R. We get a T -linear map t : T ⊗R S → T given by
b⊗ a 7→ b · g(s(a)). There is also a ring homomorphism h : S → T ⊗R S given by a 7→ 1⊗ a
such that

R T

S T ⊗R S

g

s

h

t

commutes. Given an S-bilinear form (M,B), we thus get two T -bilinear forms resg(s∗(M,B))
and t∗(resh(M,B)).

Lemma 3.13 (Dress, Appendix A Lemma 2.1). There is a natural isometry resg(s∗(M,B)) ∼=
t∗(resh(M,B))

Proof. We first compute

resg(s∗(M,B)) = resg(M |R, sB)

= (T ⊗RM, idT ⊗R sB).

On the other hand,
t∗(resh(M,B)) = t∗((T ⊗R S)⊗S M, idT⊗RS ⊗S B)

∼= t∗(T ⊗RM, idT ⊗R B)

= (T ⊗RM, idT ⊗R sB).

Manifestly, the two expressions are equivalent. �

The following corollary is immediate.

Corollary 3.14. With the above notations, we have a commutative diagram

GW(R) GW(T )

GW(S) GW(T ⊗R S).

resg

s∗

resh

t∗

Finally, we can prove that GW is a Galois Mackey functor.

Proof of Theorem 3.12. We have already specified the data, and (i) holds because of the already-
mentioned isomorphism GW(R×S) ∼= GW(R)×GW(S) (where the map is the product of
the the restrictions of the projection maps). Functoriality (ii) is a very easy check given our
definitions of resf and trf . The Mackey axiom (iii) remains, but this is just a specialization
of Corollary 3.14 in which appropriate trace maps are taken for s and t. �

Corollary 3.15. The Witt functor is a Galois Mackey functor as well.

4. THE ROST NORM

In the next section, we will define a Galois Tambara functor, which will add “multiplica-
tive transfers” / norms into the mix. The norm that will make GW into a Galois Tambara
functor was defined by Markus Rost.
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FIGURE 4. Markus Rost was born in 1958 and is a professor in Bielefeld.
There aren’t any pictures of him on the Internet, but his father, Herbert
Rost, made this cover illustration of “triality” for The Book of Involutions,
which Markus Rost coauthored. Rost’s work on norm varieties was crucial
for Voevodsky’s proofs of the Milnor and Bloch-Kato conjectures.

Fix a field F , let R be a finite étale F -algebra, and let M be an R-module. For a natural
number i, let M⊗i := M ⊗R · · · ⊗R M where there are i factors. The symmetric group Σi
acts on M⊗i in a natural way: for σ ∈ Σi,

σ(x1 ⊗ · · · ⊗ xi) = xσ−11 ⊗ · · · ⊗ xσ−1i.

(The inverses are there to ensure that we have a left action.) The i-th symmetric power of M
is

Symi
R(M) := (M⊗i)Σi = {x ∈M⊗i | σx = x for all σ ∈ Σi}.

We may also form the i-th exterior power of M ,
∧i
RM . This is done most naturally by

taking a particular subspace of the exterior algebra of M ,
∧
M . This is the quotient of the

tensor algebra TR(M) =
⊕

i≥0M
⊗I (with product given by concatenating simple tensors)

by the ideal I generated by all simple tensors of the form x⊗ x, x ∈M :∧
R

M := TR(M)/I.

The image of x1⊗· · ·⊗xi in
∧
RM is denoted x1∧· · ·∧xi. These symbols satisfy the familiar

alternating relations x ∧ x = 0, x ∧ y = −y ∧ x, and xσ1 ∧ · · · ∧ xσi = sgn(σ)x1 ∧ · · · ∧ xi.
The i-th exterior power of M ,

∧i
RM , is the submodule spanned by i-fold wedge products

of elements of M , x1 ∧ · · · ∧ xi.

Exercise 4.1. If M is a free R-module of rank n, then the i-th exterior power of M has
dimension

(
n
i

)
. In particular,

∧n
RM

∼= R.

Now take R,S ∈ FétE/F for some Galois extension F ⊆ E and an F -algebra homomor-
phism f : R → S. The tensor power S⊗i = S ⊗R · · · ⊗R S is an R-algebra which is also in
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FétE/F . Furthermore, Symi
R S is a subalgebra of S⊗i. Now

∧i
R S is a quotient of S⊗i, so

we may view
∧i
F S as a Symi

R S-module. This induces an F -algebra homomorphism

ρi : Symi
R S → EndR(

∧
R

i
S)

taking x to the multiplication-by-x map.
The map f : R → S gives S the structure of a free R-module of finite rank, say n. Thus∧n
R S
∼= R, in which case EndR(

∧n
R S) ∼= R. Composing ρn with this isomorphism results

in an F -algebra homomorphism

νf : Symn
R S → R

called the norm of f : R→ S.

Exercise 4.2. For a finite field extension F ⊆ K, the norm function NK/F : K → F is
the function which assigns the determinant of the multiplication-by-x ∈ K map to x. If
F ⊆ K is a Galois extension, NK/F (x) =

∏
σ∈Gal(K/F ) σ(x). Check that if [K : F ] = n, then

νF⊆K(x⊗n) = NK/F (x). Hint: The determinant of an F -linear map f : K → K is “the same
thing” as

∧n
F f :

∧n
F K →

∧n
F K.

Take R,S ∈ FétE/F and an F -algebra homomorphism f : R → S with n = dimR S. If
M is a finitely generated (necessarily free) S-module, the norm of M along f is

νf (M) := Symn
RM ⊗Symn

R S
R

where the Symn
R S-module structure on R is induced by νf : Symn

R S → R.
Now suppose that M also carries an S-bilinear form B : M ×M → S. The form

B⊗n : M⊗n ×M⊗n → S⊗n

restricts to a form
Symn

RB : Symn
RM × Symn

RM → Symn
R S.

Thus Symn
RB ⊗Symn

R S
R is an R-bilinear form

Nf (B) : νf (M)× νf (M)→ R.

The norm of (M,B) along f is defined to be (νf (M), Nf (B)).

Exercise 4.3. If f : K → L ∈ Sub(F ⊆ E), then Nf 〈a〉L = 〈NL/K(a)〉K for all a ∈ L×.

Exercise 4.4. I believe that the following statments are true. Either prove them, or modify
them so that they are true and then prove them:

If f : K → L ∈ Sub(F ⊆ E) and V is an L-vector space, then

νf (V ) ∼=

 ⊗
σ∈Gal(L/K)

V σ

Gal(L/K)

where⊗ = ⊗L and V σ is the L-vector space with “σ-twisted” scalar multiplication (λ, v) 7→
λ • v := σ(λ)v for λ ∈ L and v ∈ V .

If (V,B) is an L-bilinear space, there is a form Bσ on V σ is defined by Bσ(u, v) =
σ−1(B(u, v)). The form Nf (B) becomes

⊗
σ∈Gal(L/K)B

σ via the above isomorphism. (A
priori, the codomain of

⊗
σ∈Gal(L/K)B

σ is
⊗

σ∈Gal(L/K) L
σ , so part of the statement here

is that the form lands in Galois-fixed points when restricted to Galois fixed points and(⊗
σ∈Gal(L/K) L

σ
)Gal(L/K) ∼= K.)
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Exercise 4.5. Determine Nf : GW(C) → GW(R) and Ng : GW(Fq′) → GW(Fq) for the
field extensions f : R→ C and g : Fq → Fq′ .
Exercise 4.6. How does the norm construction interact with sums? For a quadratic exten-
sion f : F → E = F (

√
a), Wittkop proves thatNf (〈x, y〉) = 〈NE/Fx〉+ 〈trf (xy)〉+ 〈NE/F y〉

where b+ c
√
a = b−c

√
a. This permits inductive computation ofNf (〈x1, . . . , xn〉) in terms

of the norm and transfer of unary forms. Is there a similar formula for arbitrary Galois
extensions?

5. GALOIS TAMBARA FUNCTORS

We have already seen that a Galois Mackey functor consists of two functors from FétE/F
to Abelian groups agreeing on objects and satisfying certain compatability axioms. To get
a Galois Tambara functor, we will add in a third functor (landing in commutative monoids
instead of Abelian groups) and more compatabilities.

We first need the notion of an exponential diagram in Fét(E/F )op. Given F -algebra ho-

momorphisms A
f−→ B

q−→ C between finite étale F -subalgebras, we claim there are natural
maps e, p, r such that

B C νf (C)⊗A B

A νf (B) νf (C)

q e

f

r

p

commutes. Indeed, we take r = νf (q) and [ADD: e, p descriptions].

Definition 5.1. A Galois Tambara functor T for a Galois extension F ⊆ E consists of data
(a) a ring T (A) for each A ∈ FétE/F and
(b) maps resf : T (A) → T (B), trf , Nf : T (B) → T (A) for each F -algebra homomorphism

f : A→ B, A,B ∈ FétE/F
subject to the following conditions:

(i) resf is a ring homomorphism, trf is a homomorphism of additive monoids, and Nf
is a homomorphism of multiplicative monoids;

(ii) res and tr give T the structure of a Galois Mackey functor;
(iii) res and N also satisfy the Mackey axiom; and

(iv) given F -algebra homomorphisms A
f−→ B

q−→ C for A,B,C ∈ FétE/F , the diagram

T (B) T (C) T (νf (C)⊗A B)

T (A) T (νf (B)) T (νf (C))

Nf

trq rese

Np

trr

commutes (where e, p, r come from the exponential diagram generated by f, q).

Theorem 5.2. The restriction, transfer, and norm maps make GW a Galois Tambara functor.

Remark 5.3. The norm does not play well with H and W is not a Galois Tambara functor.

6. ORDERINGS, SIGNATURES, AND PRIME IDEALS

One of the problems we are interested in is determining the Tambara prime ideals of
GW. To approach this, we will first want to know the prime ideals of GW(F ). This content
is based on Chapter VIII of Lam.
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6.1. Orderings and signatures. The spectrum of GW(F ) is determined by the orderings
of F , so we will study those first.

Definition 6.1. An ordering on a field F is a proper subset P ( F (called the positive cone of
the ordering) such that
(a) P + P ⊆ P ,
(b) P · P ⊆ P ,
(c) P ∪ (−P ) = F .
Given such a set P , we shall say that F is ordered by P , or that (F, P ) is an ordered field.

Given an ordering P , we write x ≤P y when y − x ∈ P . The reader may check that ≤P
is a total ordering of F , and that P 7→≤P is a bijection between positive cones and total
orderings with inverse ≤7→ {x ∈ F | 0 ≤ x}.

The following proposition records some basic facts about orderings that I won’t prove
in these notes. Write σ(F ) for the set of sums of squares in F , and σ×(F ) for the nonzero
sums of squares in F . We call a field formally real when −1 /∈ σ(F ).

Proposition 6.2. Let (F, P ) be an ordered field. Then
(a) σ(F ) ⊆ P ,
(b) −1 /∈ P and P ∩ (−P ) = {0},
(c) F is formally real,
(d) P× := P r {0} is a subgroup of index 2 in F×, and
(e) if P ′ is another ordering of F and P ′ ⊆ P , then P = P ′.

It is possible to strengthen part (c) of the above proposition to the following statement.

Theorem 6.3 (Artin-Schreier Criterion). A field has an ordering if and only if it is formally real.

Given a formally real field F , it will be useful to pass to the largest formally real field
containing it.

Definition 6.4. A field F is called real-closed if F is formally real, but no proper algebraic
extension of F is formally real.

It turns out that real-closed field are always Euclidean (formally real with [F× : F�] = 2)
with F (

√
−1) quadratically closed. They have a unique ordering given by the positive cone

F� = F� ∪ {0}.

Definition 6.5. Let (F, P ) be an ordered field. An extension F ⊆ R is called a real-closure
of F relative to P if
(a) R is real-closed,
(b) R is algebraic over F , and
(c) P = R� ∩ F .

The final condition tells us that the unique ordering on R restricts to P . Thankfully,
real-closures exist:

Theorem 6.6. Every ordered field (F, P ) possesses a real-closure which is unique up to order-
preserving isomorphism.

We are very familiar with a particular real-closed field, namely R. You might recall that
C = R(

√
−1) is algebraically closed. This phenomenon is generic:

Theorem 6.7. If R is a real-closed field, then C = R(
√
−1) is algebraically closed.
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FIGURE 5. Albrecht Pfister, b.1934. Professor Emeritus at the Johannes
Gutenberg University of Mainz, the namesake of Pfister forms devoted
his career to the study of quadratic forms.

For a field F , let XF denote the (possibly empty) set of orderings on F . Given α ∈ XF

write Pα for the corresponding positive cone and ≤α for the associated total ordering of F .
For each α ∈ XF , fix a real-closure Fα of F with respect to α and let rα : F → Fα be the
inclusion map. The corresponding restriction map on Witt rings is resrα : W(F )→W(Fα).
Looking back at our computation of W(R), we see that it goes through verbatim to give a
canonical isomoprhism W(Fα) ∼= Z.

Definition 6.8. The composition of resrα with W(Fα) ∼= Z is the α-signature homomor-
phism

sgnα : W(F )→ Z.
Abusing notation, we will also denote the composite GW(F )→W(F )→ Z by sgnα.

It is simple to get our hands on sgnα(q): we simply diagonalize q, count the number n+

of α-positive elements and n− of α-negative elements, and finally have sgnα(q) = n+−n−.
In this way, it is easy to see that sgnα is always surjective.

Letting α range through XF , we get the total singature homomorphism

sgn : W(F )→
∏
α∈XF

Z

sending q 7→ (sgnα(q))α.

Theorem 6.9 (Pfister’s local-global principle). For any field F , ker(sgn) = Wtors(F ), the
torsion subgroup of W(F ); moreover, every element of Wtors(F ) is 2-primary torsion.7

Since we have gone to the trouble of defining real-closures, signatures, and trace forms,
we may as well state the following incredible theorem of Olga Taussky-Todd from 1968:

7This means that the additive order of every torsion element is a power of 2.
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FIGURE 6. Olga Taussky-Todd, 1906–1995. The Czech-American (née
Austrian) mathematician Olga Taussky-Todd studied number theory un-
der Furtwängler in Vienna and became a faculty member at Caltech in
1957. She was responsible for correcting the collected papers of David
Hilbert and made many contributions to number and matrix theory.

Theorem 6.10. Suppose that (F, P ) is an ordered field with real closure R and f ∈ F [t] is a
separable polynomial with coefficients in F . Set A = F [t]/(f). Then

sgnP (trA/F 〈1〉A)

is the number of roots of f in R.

6.2. Prime ideals in GW(F ). For a commutative ring A, let SpecA denote the set of prime
ideals in A. We call SpecA the Zariski spectrum of A. It carries a topology in which the
closed sets are those of the form

V (I) = {p ∈ SpecA | p ⊇ I}.

A subbasis for this topology is given by the sets

D(f) = {p ∈ SpecA | f /∈ p}

where f ∈ A.
If p ∈ SpecA, then A/p is an integral domain and the quotient map A→ A/p has kernel

p. By the first isomorphism theorem, we can construct SpecA by taking kernels of surjective
maps A → R where R is some integral domain. In nice cases (such as A = GW(F )), we
can get away with only looking at surjective ring maps A→ Z and A→ Z/pZ.

Before we state the main theorem, we need to put a topology onXF , the set of orderings
of F . Note that each α ∈ XF induces a function F× → {±1} taking α-positive elements to
1 and α-negative elements to −1. Thus there is an injection

XF ↪→ {±1}F
×
.
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We give {±1} the discrete topology, and {±1}F× the induced product topology. Finally,
the Harrison topology on XF is the subspace topology relative to the above embedding.

Exercise 6.11. The product topology on {±1}F× has subbasis consisting of the sets

Ha,ε := {f : F× → {±1} | f(a) = ε}
where a ∈ F× and ε = ±1. The complement of Ha,ε is Ha,−ε, so Ha,ε is both open and
closed.

As such, XF has a subbasis consisting of sets of the form Ha,ε ∩XF , and these are also
open and closed.

Topologies with clopen subbases are automatically Stone spaces: compact totally discon-
nected Hausdorff spaces. Note that XF is discrete if and only if |XF | <∞.

Let X∗F = XF q {∞} denote the Harrison space of orderings XF with a separated point
∞. Let sgnα denote the α-signature for α ∈ XF , and let sgn∞ = dim. Let Sgn : GW(F ) →∏
X∗F

Z denote the ultra-total signature
∏
α∈X∗F

sgnα.

Theorem 6.12. The ultra-total signature induces the quotient map

Sgn∗ : X∗F × SpecZ→ Spec GW(F )

that glues all elements of the form (α, (2)) together. In particular, the prime ideals of GW(F ) are
all of the form

pα,p = {x ∈ GW(F ) | sgnα(x) ≡ 0 (mod p)}
where α ∈ X∗F and p is 0 or a rational prime number. We have pα,2 = pβ,2 for all α, β ∈ X∗F
Proof sketch. The proof is almost identical to the one Lam gives for Spec W(F ) in VII.7. In-
deed, since W(F ) = GW(F )/Z · H, we know that Spec W(F ) may be viewed as a closed
subspace of GW(F ) in bijection with prime ideals for which α 6= ∞. One then com-
putes GW(F )[1/H] ∼= Z[1/2] to get the open complement of the image of Spec W(F ) in
Spec GW(F ). This isomorphism follows from the identity q ⊗ H = (dim q)H ∈ GW(F ),
which tells us that after inverting H, every form is identified with (dim q)〈1〉.

Alternatively, we can view the isomorphism GI(F ) ∼= I(F ) as telling us that we have a
pullback square of commutative rings

GW(F ) Z

W(F ) Z/2Z.

dim

dim0

Applying Spec turns this into a pushout square in which Spec W(F ) and SpecZ are glued
together at their characteristic 2 primes. �

Remark 6.13. We can think of Spec GW(F ) as an X∗F -indexed bouquet of copies of SpecZ,
all glued together at the prime (2).

We conclude by mentioning an elaboration of Pfister’s local-global principle. One can
show that for an F -quadratic form q, the map q̂ : XF → Z taking α 7→ sgnα(q) is continuous
(i.e., locally constant). It follows that the image of the total signature homomorphism sgn :
W(F ) →

∏
XF

Z = ZXF actually lands in the set of continuous functions C(XF ,Z) from
XF to Z.

Theorem 6.14. If we view sgn as a map W(F ) → C(XF ,Z), then its kernel and cokernel are
2-primary torsion groups with ker(sgn) = Wtors(F ).
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The new content here is the cokernel portion of the statement. We can deduce that, as an
Abelian group, W(F ) ∼= Wtors(F )⊕G, whereG is a free Abelian group with rank matching
that of C(XF ,Z). Also note that upon inverting 2 we get an isomorphism W(F )[1/2] ∼=
C(XF ,Z[1/2]).

7. RESEARCH QUESTIONS

There are a lot of exciting new questions we can ask about GW when we think of it as a
Tambara functor. The following subsections outline several projects we can attack.

7.1. Computations. Given an explicit Galois extension F ⊆ E, we can attempt to explicate
all of the restriction, transfer, and norm maps in the associated Tambara functor GW. By
material presented in Angélica’s lectures, we know it suffices to determine these maps on
subextensions F ⊆ K ⊆ L ⊆ E along with certain exponential diagram data. We can hope
to make such a computation explicit as long as we know the structure of Gal(E/F ) and
GW(K) for each K ∈ Sub(F ⊆ E). Our first example should be R ⊆ C, and the result
should be isomorphic to the Burnside Tambara functor of C2. A more interesting example
would be the algebraic closure of a finite field, Fq ⊆ Fq . If we succeed at this, we might
look at the algebraic closure of a local field (such as Qp ⊆ Qp).

An important lemma in any such computations would likely be a formula for the norm
of a binary form. See Exercise 4.6, which includes Wittkop’s formula for quadratic exten-
sions. I do not believe that any formulas for proper nonquadratic extensions are known.
Note, though, that a general addition formula in Tambara functors is given in Section 4 of
Tambara’s On multiplicative transfer, and it should be able to specialize this result to GW.
There are also some interesting formulas in Section 1.4.1 of Kristen Mazur’s thesis and
Section 2 of Hill–Mazur, An equivariant tensor product on Mackey functors.

7.2. Prime ideals. By work of Nakaoka, quotient Tambara functors of GW correspond to
Tambara ideals in GW. Distinguished amongst these are the prime Tambara ideals, the
collection of which is called the Tambara spectrum of GW. Determine the Tambara spectrum
of GW and its relation to the Zariski spectrum of classical prime ideals Spec GW(F ). What
can we say about non-prime Tambara ideals of GW?

In a purely equivariant direction, we could also try to determine the Tambara spectrum
of the Burnside functor. By work of Nakaoka, this is known when the group of equiv-
ariance is Cpn , p prime. As a first case, we might consider cyclic groups which are not
p-primary.

7.3. The Dress map. For a profinite group G, let Â denote the Dress–Siebeneicher Burn-
side Tambara functor. For a Galois extension F ⊆ E with Galois group G, there is a
natural homomorphism of Tambara functors D : Â → GW called the Dress map. For
K ∈ Sub(E ⊆ F ), we know that K = EU for some open subgroup U ≤ G. Then
Â(G/U)→ GW(K) is the map taking U/V 7→ trK⊆EV 〈1〉EV for V ≤ U open. The mapD is
surjective level-wise with kernel called the trace ideal T . This is a Tambara ideal in Â about
which little is known. Previously, T has only been studied using Mackey functor structure
(in fact, we should write a proof that D respects norms), but perhaps we can say more by
invoking the Tambara structure.

This project connects with the previous one since a surjection of Tambara functors A →
B induces an open embedding SpecB → SpecA. What is Spec Â, and how does Spec GW
sit inside of it?
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FIGURE 7. Andreas Dress, b.1938. Dress received his PhD from the Uni-
versity of Kiel in 1962. His early contributions were in representation the-
ory where he first introduced the notion of a Mackey functor. Dress cur-
rently studies computational biology and phylogenetic combinatorics.

APPENDIX A. SOME FIELD AND GALOIS THEORY

Below we review splitting fields, minimal polynomials, separable and Galois exten-
sions, the Galois correspondence, and some Galois group computations. As a reference
and learning tool, I highly recommend Keith Conrad’s field and Galois theory expository
notes, available here.

A.1. Splitting fields. For a field F , take f ∈ F [t] a nonconstant polynomial with coef-
ficients in F . Since F [t] is a unique factorization domain, f =

∏d
i=1 fi with each fi ∈

F [t] irreducible. Set F0 := F and define F1 := F0[t]/(f1). The inclusion of coefficients
F0 → F1 makes F1 a field extension of F0. Let α1 = t + (f1). Then f1(α1) = 0 ∈ F1,
hence f(α1) = 0 ∈ F1. Thus f(t) = (t − α1)g(t) for some g ∈ F1[t]. This g has a fac-
torization into irreducible polynomials in F1[t], and we may repeat the process to form
F2 := F1[t]/(g1) ∼= F1(α2) = F (α1, α2). Continuing inductively, we create a chain of fields
F0 ⊆ F1 ⊆ · · · ⊆ Fn with Fi ∼= F (α1, . . . , αi). The process terminates once f factors as a
product of linear polynomials in Fn. We call Fn a splitting field for f over F .

Theorem A.1. Let F be a field and f ∈ F [t] be nonconstant. If E,E′ are splitting fields for f
over F , then [E : F ] = [E′ : F ], there is a field isomorphism E → E′ fixing F pointwise, and the
number of such isomorphisms E → E′ is [E : F ].

A nice inductive proof may be found here.

https://kconrad.math.uconn.edu/blurbs/
https://kconrad.math.uconn.edu/blurbs/galoistheory/splittingfields.pdf
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A.2. Minimal polynomials. Let F ⊆ E be a field extension and take α ∈ E. The minimal
polynomial of α over F is the monic8 polynomial of least degree in F [t] with α as a root. It
should be clear that the monic and minimal degree conditions guarantee that the minimal
polynomial is unique.

Proposition A.2. If mα is the minimal polynomial of α over F , then mα is irreducible in
F [t].

Proof. If we could factormα, then one of its factors would have α as a root and have smaller
degree than mα, a contradiction. �

When f ∈ F [t] is nonconstant and irreducible, F [t]/(f) is a field. We write F (α) :=
F [t]/(mα) for mα the minimal polynomial of α over F . Note that [F (α) : F ] = degmα, and
that a basis for F (α) as an F -vector space is given by 1, α, α2, . . . , αdeg(mα)−1. If mα(t) =
tn + an−1t

n−1 + · · ·+ a0, then the fact that mα(α) = 0 allows us to write

αn = −a0 − a1α− a2α
2 − · · · − an−1α

n−1

and we can think of this as a “rewrite rule” for powers of α larger than n− 1.

A.3. Separable extensions. There are several related concepts that go under the name
“separable.”

Definition A.3. A nonzero polynomial f ∈ F [t] is separable when it has distinct roots in a
splitting field over K. If f has a multiple root, we call f inseparable.

Definition A.4. For a field extension F ⊆ E, an algebraic element α ∈ E is separable over F
when its minimal polynomial over F is separable; otherwise, α is called inseparable over F .

Theorem A.5. A nonzero polynomial in f ∈ F [t] is separable if and only if f and f ′ (the formal
derivative of f ) are relatively prime in F [t].

Exercise A.6. Fix a ∈ F× and use the theorem to prove that xn − a ∈ F [t] is separable if
and only if n 6= 0 ∈ F . (The final condition is equivalent to charF - n.)

Definition A.7. A finite extension F ⊆ E is separable if every element ofE is separable over
F ; otherwise the extension is inseparable.

Theorem A.8. Let F ⊆ E be a finite extension withE = F (α1, . . . , αr). Then F ⊆ E is separable
if and only if each αi is separable over F .

Theorem A.9 (Primitive element theorem). Any finite separable extension of F is of the form
F (α) for some α.

Theorem A.10. An extension F ⊆ E is separable if and only if TrE/F is not the constant function
0.

A.4. Normal and Galois extensions. We need a condition beyond separability in order to
have a Galois extension.

Definition A.11. An algebraic extension F ⊆ E is normal if every irreducible polynomial
in F [t] with a root in E splits completely in E[t].

8A polynomial anxn + an−1xn−1 + · · · + a0 is monic when an = 1. When an 6= 0, we call it the leading
coefficient, so we can also say that monic polynomials are those with leading coefficient 1.
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FIGURE 8. Emil Artin, 1898–1962. Born in Austria, Artin made essential
contributions to algebraic number theory, especially class field theory and
L-functions. His 1944 exposition of Galois theory was the first such text
in English and remains extremely influential. He was a vocal opponent
of the Nazi regime and was forced out of his position at the University of
Hamburg in 1937 because his wife was half Jewish. He emigrated to the
U.S., taking positions at Notre Dame and then Princeton. He moved back
to Germany in 1957.

There are plenty of separable, non-normal extensions, e.g., Q ⊆ Q( 3
√

2). The polynomial
t3− 2 is irreducible over Q and has the root 3

√
2 in Q( 3

√
2), but is missing the roots e2πi/3 3

√
2

and e4πi/3 3
√

2.

Definition A.12. An algebraic field extension F ⊆ E is a Galois extension if it is normal and
separable.

If F ⊆ E is Galois, then every α ∈ E has separable minimal polynomial which splits
completely in E.

A.5. The Galois correspondence. Galois theory is essentially the study of automorphisms
of Galois extensions. For a general field extension F ⊆ E, we define Aut(E/F ) to be
the collection of field homomomorphisms (necessarily isomorphisms) E → E that fix F
pointwise. If [E : F ] = n <∞, then it is also the case that |Aut(E/F )| ≤ n.

Theorem A.13 (Emil Artin). A finite extension F ⊆ E of degree n is Galois if and only if
|Aut(E/F )| = n if and only if E is a splitting field of a separable polynomial with coefficients
in F .
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We have already discussed the Galois correspondence in the main text, but recall that
for F ⊆ E a finite Galois extension we have inverse bijections

Sub(F ⊆ E) � {H ≤ G}
K 7→ Gal(G/K)

EH ←[ H.

Example A.14. Fix a ∈ F× r F� and set E = F (
√
a). Clearly

√
a is a root of t2 − a = (t−√

a)(t+
√
a), and this polynomial is separable as long as charF 6= 2. Thus E is a separable

field extension of degree 2 (since t2− a has degree 2 and is the minimal polynomial of
√
a).

Also observe that the assignment ( ) : E → E taking x + y
√
a 7→ x − y

√
a is in Aut(E/F ),

so |Aut(E/F )| = 2 = [E : F ]. We conclude that F ⊆ E is Galois with Galois group
{id, ( )} ∼= C2. The corresponding lattice of subgroups / subextensions is e ⊆ C2 / E ⊇ F .

Example A.15. Let q = pm be a prime power and consider the field extension Fq ⊆ Fqn .
The Frobenius map Frobq : x 7→ xq is an element of Aut(Fqn/Fq) and in fact

id,Frobq,Frobq2 , . . . ,Frobqn−1

are all distinct elements of this group. Since [Fqn : Fq] = n, we conclude that Fq ⊆ Fqn is a
Galois extension with Galois group 〈Frobq〉 ∼= Cn. The corresponding lattices of subgroups
/ subextensions are the same as the divisibility poset for n (or its dual).

Keith Conrad has written down several explicit examples of the Galois correspondence
here.
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