POLY-BERNOULLI NUMBERS & MATCHSTICK GAMES ON CYLINDERS

REED COLLEGE COLLABORATIVE MATHEMATICS RESEARCH GROUP 2024

AMELIE EL MAHMOUD, CAOILAINN KIRKPATRICK, KYLE ORMSBY, ANGÉLICA OSORNO, DALE SCHANDELMEIER-LYNCH, RILEY SHAHAR, LIXING YI, AVERY YOUNG, SARON ZHU

JMM – 2025 JANUARY 9

MATCHSTICK GAMES

SATURATED TRANSFER SYSTEMS ON MODULAR LATTICES

Write $[m] = \{0 < 1 < \dots < m\}$ so that $[m] \times [n]$ is a **rectangular grid** poset.

MATCHSTICK GAME RULES:

- Vertical stick implies all sticks to its left
- Horizontal stick implies all sticks below it
- $3 \rightarrow 4$ in unit boxes

MODULAR LATTICES

KEY STRUCTURAL PROPERTY OF SUBGROUP LATTICES OF ABELIAN GROUPS

A lattice P is **modular** when $x \leq y$ implies $x \setminus y$

Equivalently, $[x \land y, y] \cong [x, x \lor y]$ for all x, y (diamond isomorphism).

MATCHSTICK GAME RULES:

• Q a subset of covering relations of P

•
$$x Q (x \lor y) \implies (x \land y) Q y$$

•
$$3 \Rightarrow 4$$
 in covering diamonds

$$\checkmark (z \land y) = (x \lor z) \land y.$$

THEOREM. A lattice is modular if and if it contains no pentagonal sublattice.

WHY MATCHSTICK GAMES?

Matchstick games on modular lattice *P* enumerate

- saturated transfer systems
- submonoids of (P, \vee)
- max-closed relations (Knuth)
- interior operators
- coreflective factorization systems
- cofibrant model structures

(See Tien Chih's talk!)

COUNTINGGAMES

THEOREM (Hafeez-Marcus-O-Osorno '22). The number of legal matchstick games on $[m] \times [n]$ is $games([m] \times [n]) =$

for $\left\{ {r \atop s} \right\}$ the Stirling number of the second kind counting s-block partitions of an r-element set, and these numbers satisfy the recurrence $games([m] \times [n + 1]) = games([m])$

$$\sum_{\substack{j=2\\j=2}}^{n+2} (-1)^{m-j} \left\{ \begin{array}{c} m+1\\ j-1 \end{array} \right\} \frac{j!}{2} j^n$$

$$\times [n]) + \sum_{j=0}^{m} \binom{m+1}{j} \operatorname{games}([j] \times [n]).$$

POLY-BERNOULLINUMBERS

BERNOULLI NUMBERS + POLYLOGARITHMS = COMBINATORICS

COROLLARY. Matchstick games on $[m] \times [n]$ are seminumerous with poly-Bernoulli numbers: $2 \operatorname{games}([m] \times [n]) = B_{m+1,n+1}$.

The poly-Bernoulli numbers $B_n^{(s)}$ [Kaneko 1997] are defined by

$$\sum_{n\geq 0} B_n^{(s)} \frac{z^n}{n!} = \frac{1}{1 - e^{-z}} \sum_{k\geq 1} \frac{(1 - e^{-x})}{k^s}$$

Then $B_n^{(1)}$ is the classical Bernoulli numbers, and $B_{m,n} := B_n^{(-m)}$ is a positive integer for $m, n \in \mathbb{N}$.

POLY-BERNOULLI NUMBERS

BERNOULLI NUMBERS + POLYLOGARITHMS = COMBINATORICS

THEOREM [Kaneko; see Knuth 2024]. The (re-indexed) pB numbers satisfy

$$B_{m,n} = \sum_{k \ge 0} (k!)^2 \left\{ \begin{array}{c} m+1 \\ k+1 \end{array} \right\} \left\{ \begin{array}{c} n+1 \\ k+1 \end{array} \right\}$$

and their exponential generating function is

$$G(x, y) = \sum_{m,n \ge 0} B_{m,n} \frac{x^m y^n}{m!n!} = \frac{e^{x+y}}{e^x + e^y - e^{x+y}}.$$

KYLE ORMSBY, REED COLLEGE, 2025 JANUARY 9

CAN WE GENERALIZE THESE FORMULÆ SO THEY APPLY TO OTHER MODULAR LATTICES?

WE WILL FOCUS ON LATTICES OF THE FORM $P \times [n]$ FOR P MODULAR.

TRANSFER MATRIX METHOD

BUILDING games($P \times [n]$) ONE LAYER AT A TIME

If G is a weighted directed graph with adjacency matrix A(G), then $(A(G)^n)_{u,v} = \sum_{n}$ length *n* walks i=0 $v_0 v_1 \cdots v_n$ $u = v_0, v = v_n$

of matchstick games on $P \times [1]$ with Q on 'bottom' and Q' on 'top'.

For A(P) := A(G(P)), we have

 $games(P \times [n]) =$

weight($v_i v_{i+1}$).

 $(A(G)^3)_{u,v} = 30$

Define G(P) to have vertex set games(P) and a directed edge QQ' with weight the number

EXAMPLE

SPECIALIZING TO $P = [1] \times [1]$

	• · · •• · · · • · ·	• · · •• · · · • · ·		• · · · • · · ·			
• · · • · · ·	6	3	3	3	2	3	2
• · · · • · · · · · ·	0	4	0	3	2	0	2
	0	0	4	0	2	3	2
	0	0	0	3	0	0	2
	0	0	0	0	3	0	2
	0	0	0	0	0	3	2
	0	0	0	0	0	0	2

DIAGONALIZABILITY

3 3 3 2 3 • · · •• · · · $\mathbf{2}$ **LEMMA** [CMRG '24]. For any finite modular lattice *P* 0 3 $\mathbf{2}$ • · · •• · · · · · · there is a linear extension of games(P) such that A(P)is upper triangular with equal diagonal entries $\mathbf{2}$ · •• contiguous and each contiguous block diagonal. It follows that A(P) is diagonalizable. 0 0 0 0

FORMULÆ&ASYMPTOTICS

THEOREM [CMRG '24]. For each finite modular lattice P, there are rational numbers b_i and positive integers λ_i , $1 \leq i \leq m$, such that

 $#games(P \times$

COROLLARY [CMRG '24]. The largest eigenvalue of A(P) equals ac(P), the number of antichains of P, and thus

KYLE ORMSBY, REED COLLEGE, 2025 JANUARY 9

$$\langle [n] \rangle = \sum_{i=1}^{m} b_i \lambda_i^n.$$

 $#games(P \times [n]) = \Theta(ac(P)^n).$

EXAMPLE

SPECIALIZING TO $[1] \times [1] \times [n]$

Set $P = [1] \times [1]$. The number of matchestick games on $P \times [n] = [1] \times [1] \times [n]$ is

$#games([1] \times [1] \times [n]) = -$

(An equivalent formula was discovered independently by Filip Stappers in the context of "max-closed relations".)

$$\frac{35}{2} \cdot 6^n - 12 \cdot 4^n + 3^n + \frac{1}{2} \cdot 2^n.$$

P	$\operatorname{games}(P \times [n])$
$[1] \times [2]$	$\frac{15471}{112} \cdot 10^n - \frac{406}{15} \cdot 8^n - 154 \cdot 7^n + \frac{315}{8} \cdot 6^n - \frac{154}{15} - \frac{154}{15} \cdot 6^n - \frac{154}{15} - $
$[1] \times [3]$	$\frac{\frac{12800093}{8580}}{\frac{59599}{75}} \cdot 8^{n} - \frac{\frac{45157}{2475}}{120} \cdot 7^{n} + \frac{719}{24} \cdot 6^{n} - \frac{797}{15} \cdot 5^{n}$
$[1] \times [4]$	$\frac{\frac{665038415449}{31039008} \cdot 21^{n} - \frac{168120903799}{68068000} \cdot 19^{n} - \frac{14810000}{68068000} \cdot 19^{n} - \frac{14810000}{68068000} + \frac{154547245}{154547245} \cdot 10^{n} + \frac{154547245}{1848000} \cdot 12^{n} - \frac{7966666013}{23520} \cdot 11^{n} + \frac{22150545}{4928} \cdot 10^{n} - \frac{179655}{572} \cdot 10^{n} - \frac{1796555}{572} \cdot 10^{n} - \frac{17965555}{572} \cdot 10^{n} - \frac{1796555555}{572} \cdot 10^{n} - \frac{17965555555555555555555}{572} \cdot 10^{n} - \frac{17965555555555555555555555555555555555}{572} \cdot 10^{n} - 1796555555555555555555555555555555555555$
$[2] \times [2]$	$\frac{\frac{1084132338269}{578918340} \cdot 20^{n} - \frac{23890508}{51597} \cdot 17^{n} - \frac{9333840}{32400}}{\frac{1561186}{1701} \cdot 11^{n} + \frac{3350007}{3920} \cdot 10^{n} + \frac{43367}{275} \cdot 9^{n} + \frac{320743}{11340} \cdot 5^{n} + \frac{65901}{9100} \cdot 4^{n} + \frac{3303091}{749700} \cdot 3^{n} - \frac{61}{106}}{\frac{106}{106}}$
$[1]^{3}$	$\frac{159923969}{530400} \cdot 20^n - \frac{3336709}{23400} \cdot 15^n - \frac{31273}{2520} \cdot 12$

 $[2]^{*3}$ $\frac{2745}{112} \cdot 10^n - \frac{105}{8} \cdot 6^n + \frac{3}{7} \cdot 3^n + \frac{3}{16} \cdot 2^n$

 $[2]^{*4}$ $\frac{80223}{2240} \cdot 18^n - \frac{2745}{224} \cdot 10^n - \frac{35}{8} \cdot 6^n + \frac{12}{7} \cdot 4^n - \frac{35}{8} \cdot 6^n + \frac{12}{7} \cdot 4^n - \frac{12}{7}$ $[2]^{*5}$ $\frac{3559545}{63488} \cdot 34^n - \frac{80223}{7168} \cdot 18^n - \frac{13725}{1792} \cdot 10^n - \frac{25}{32}$

KYLE ORMSBY, REED COLLEGE, 2025 JANUARY 9

 $+16 \cdot 5^{n} + 14 \cdot 4^{n} - \frac{111}{35} \cdot 3^{n} - \frac{13}{48} \cdot 2^{n}$ $\frac{\frac{840037}{336} \cdot 11^{n} + \frac{735867}{560} \cdot 10^{n} + \frac{1482}{5} \cdot 9^{n} + \frac{101729}{13860} \cdot 4^{n} + \frac{28631}{8400} \cdot 3^{n} + \frac{7213}{34320} \cdot 2^{n}}{10000}$ $\frac{147245784937}{21021000} \cdot 18^{n} - \frac{1273644454}{75075} \cdot 17^{n} - \frac{1597}{75075} \cdot 14^{n} + \frac{45969602783}{4158000} \cdot 13^{n} + \frac{2096204}{75} \cdot \frac{10000}{75} \cdot \frac{1000}{75} \cdot \frac{1000$ $\frac{1}{2025} \cdot 14^{n} - \frac{14916213}{53900} \cdot 13^{n} + \frac{395263}{1575} \cdot 12^{n} + \frac{12446}{2025} \cdot 8^{n} - \frac{367959}{1300} \cdot 7^{n} - \frac{19267}{784} \cdot 6^{n} - \frac{1687}{69200} \cdot 2^{n}$ $\frac{\frac{159923969}{530400} \cdot 20^{n} - \frac{3336709}{23400} \cdot 15^{n} - \frac{31273}{2520} \cdot 12^{n} - \frac{2956707}{11200} \cdot 10^{n} + \frac{493}{10} \cdot 8^{n} + \frac{96831}{520} \cdot 7^{n} - \frac{13385}{288} \cdot 6^{n} + \frac{108}{175} \cdot 5^{n} - \frac{351}{32} \cdot 4^{n} - \frac{8621}{21420} \cdot 3^{n} + \frac{2453}{12480} \cdot 2^{n}$

$$+ \frac{3}{35} \cdot 3^{n} + \frac{1}{64} \cdot 2^{n}$$

$$\frac{5}{2} \cdot 6^{n} + \frac{12}{7} \cdot 4^{n} - \frac{19}{217} \cdot 3^{n} - \frac{125}{2048} \cdot 2^{n}$$

GENERATING FUNCTIONS

EXPONENTIAL GENERATING FUNCTION FOR HIGHER-DIMENSIONAL GRIDS

Set
$$G(x_1, ..., x_k) = \sum_{\substack{n_1, ..., n_k \ge 0}} 2\# games([n_1 - 1] \times \dots \times [n_k - 1]) \frac{x_1^{n_1} \cdots x_k^{n_k}}{n_1! \cdots n_k!}$$

By [Kaneko '97], $G(x, y, 0, ..., 0) = \frac{e^{x+y}}{e^x + e^y - e^{x+y}}$.

function in the variables e^{x_1}, \ldots, e^{x_k} .

CONJECTURE [CMRG '24]. The exponential generating function $G(x_1, \ldots, x_k)$ is a rational

BIBLIOGRAPHY

- for cyclic groups of order $p^m q^n$, Topology and its Applications, **317**: 1-20
- Kaneko (1997), Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux, 9 (1): 221–228
- Knuth (2024), Parades and poly-Bernoulli numbers
- Stappers (2024), OEIS A370966

DMS-2204365, DMS-1916439

KYLE ORMSBY, REED COLLEGE, 2025 JANUARY 9

Hafeez-Marcus-Ormsby-Osorno (2022), Saturated and linear isometric transfer systems

