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Abstract

The homotopy limit problem for Karoubi’s Hermitian K-theory (Karoubi, 1980) [26] was posed by
Thomason (1983) [44]. There is a canonical map from algebraic Hermitian K-theory to the Z/2-homotopy
fixed points of algebraic K-theory. The problem asks, roughly, how close this map is to being an isomor-
phism, specifically after completion at 2. In this paper, we solve this problem completely for fields of
characteristic 0 (Theorems 16, 20). We show that the 2-completed map is an isomorphism for fields F of
characteristic 0 which satisfy cd2(F [i]) < ∞, but not in general.
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1. Introduction

The homotopy limit problem for Karoubi’s Hermitian K-theory [26] was posed by Thomason
in 1983 [44]. There is a canonical map from algebraic Hermitian K-theory to the Z/2-homotopy
fixed points of algebraic K-theory. The problem asks, roughly, how close this map is to being
an isomorphism, specifically after completion at 2. In this paper, we solve this problem com-
pletely for fields of characteristic 0 (Theorems 16, 20). We show that the 2-completed map is an
isomorphism for fields F of characteristic 0 which satisfy cd2(F [i]) < ∞, but not in general.

The main ingredient of our method is developing G-equivariant motivic stable homotopy
theory for a finite group G. Our particular emphasis is on G = Z/2, and on developing motivic
analogues of Real-oriented homotopy theory along the lines of [17]. Karoubi’s Hermitian K-
theory can be shown to be a Z/2-equivariant motivic spectrum in our sense. This can be viewed
as an algebraic analogue of Atiyah’s Real KR-theory [1]. Viewing Hermitian K-theory in this
way is crucial to our approach to the homotopy limit problem, as the solution uses a combination
of equivariant and motivic techniques (such as the Tate diagram and the slice spectral sequence).

There are other benefits of equivariant stable motivic homotopy theory, such as construc-
tions of interesting motivic analogues of other Real-oriented spectra, notably a motivic analogue
MGLR of Landweber’s Real cobordism E∞-ring spectrum MR [29,17]. Applying “geometric
fixed points” to MGLR also allows the construction of a motivic analogue of the non-equivariant
spectrum MO , which was a question asked by Jack Morava. These constructions however lead
to many new open questions, and a thorough investigation of these new motivic spectra will be
done in subsequent papers.

To present our results in more detail, we need to start with the foundations of G-equivariant
motivic stable homotopy theory, which in turn requires unstable G-equivariant motivic homo-
topy theory. We work over fields of characteristic 0. In the unstable case, there are foundational
notes [46], but our motivation is somewhat different. In [46], a part of the motivation is to be able
to take quotient spaces, with the particular example of symmetric products in mind (which, in
turn, is needed in studying motivic Eilenberg–MacLane spaces). In the present paper, we do not
focus on taking quotients with respect to the group G, but are instead more interested in taking
fixed points, which is closer to the context of G-equivariant (stable) homotopy theory of spaces.
Because of this, we may stay in the category of (separable) smooth G-equivariant schemes, and
we can take more direct analogues of the definitions of Nisnievich topology and closed model
structure in the non-equivariant case.

When stabilizing, however, an important question is what is the “sphere-like object” we are
stabilizing with respect to, as clearly several potentially natural choices may arise. The answer
we give in this paper is to stabilize with respect to the “one-point compactification” TG of the
regular representation AG of the group G. Again, we can then mimic most the construction of the
motivic stable homotopy category in the non-equivariant case, as presented, for example, in [22].

In equivariant stable homotopy theory, the basic tools [32] are the Wirthmüller isomorphism
(i.e. equivariant stability with respect to finite G-sets), Adams isomorphism and the Tate diagram.
We give here motivic analogues of these tools at least in the basic cases. One of the important
features of the theory is that the correct motivic analogue of the free contractible G-CW complex
EG in this context is again the simplicial model of EG (rather than other models one could
potentially think of, such as EGet, cf. [38]).

As mentioned above, our first main application is a presentation of Karoubi’s Hermitian K-
theory as a Z/2-equivariant motivic spectrum KRalg in our sense. For G = Z/2, we find that
TG decomposes to a smash product of four different 1-spheres, namely S1 and Sα = Gm with
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trivial action, and Sγ , which is a simplicial model of S1 with the sign involution, and Sγα , which
is G1/z

m , i.e. Gm with the involution z �→ 1/z. Generalizing the methods of Hornbostel [15],
we prove that we indeed have a Z/2-equivariant motivic spectrum KRalg which enjoys three
independent periodicities, namely with periods α + γ , 4 − 4γ , 1 + γ α (the first two of which are
essentially proved in [15]).

Using this machinery, we prove that the inclusion c :S0 → Sγ is homotopic to η :Sα → S0

in the coefficients of KRalg, which answers a question of Hornbostel [15]. It also gives one
form of an answer to the completion problem for Hermitian K-theory: we prove that the Borel
cohomology of Hermitian K-theory is its completion at η. However, one may ask if Hermitian
K-theory coincides with its Borel cohomology when completed at 2 (there are many partial
results in this direction, e.g. [27,5,7]). We show that this is false for a general field, but is true for
characteristic 0 fields satisfying cd2(F [i]) < ∞. Examples include fields of finite transcendence
degree over Q, and R.

The other main focus of the present paper is a Z/2-equivariant motivic spectrum MGLR
which is an analogue of Landweber’s Real cobordism MR. The existence of such a spectrum
is strongly motivated by Hermitian K-theory. We construct such a spectrum, and further show
that it is a Z/2-equivariant motivic E∞ ring spectrum. There are many interesting implications
of this fact. Taking geometric fixed points for example gives a motivic analogue of unoriented
cobordism, which answers a question of Jack Morava. Even more interestingly, however, there is
a theory of motivic Real orientations, analogous to the theory of [17]. A motivic Real orientation
class occurs in dimension 1 + γ α, and is present both for motivic Real cobordism and for Her-
mitian K-theory. Further, a motivic Real orientation gives a formal group law, and hence a map
from the Lazard ring to the coefficient ring. In the case of MGLR, one can then use this to apply
the constructions of [10] to construct motivic analogues of the “Real spectra series” of [17], in-
cluding, for example, motivic Real Johnson–Wilson spectra and motivic Real Morava K-theories.
It is worthwhile remarking that one therefore has the ability to construct motivic analogues of
the various spectra which figure in Hill–Hopkins–Ravenel’s recent paper on the non-existence of
Kervaire invariant one elements [13], although the exact role of these Z/2-equivariant motivic
spectra is not yet clear.

The present paper is organized as follows: Foundations of unstable and stable G-equivariant
motivic homotopy theory in our setting are given in Section 2. The Wirthmüller and Adams
isomorphisms and the Tate diagram are presented in Section 3. The work on Hermitian K-theory
and the completion problem is in Sections 4 and 5. The results on motivic Real cobordism are in
Section 6.

2. The foundations of equivariant stable motivic homotopy theory

2.1. The site

Throughout this paper, we shall work over a base field k of characteristic 0. We begin with the
foundations of equivariant unstable motivic homotopy theory. Our definitions are different from
those of [46]. The main reason is that, similarly as in developing equivariant stable homotopy
theory in topology, our emphasis is not on the functor of taking quotient by the action of the
group, but rather on taking fixed points. Therefore, we gear our foundations toward making fixed
points (rather than quotients) behave well.

In this paper, we will consider the site S(G)Nis of G-equivariant separated smooth schemes
over k with the Nisnievich topology, where G is a finite group. In our definition, the covers in the
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G-equivariant Nisnievich topology are G-equivariant étale maps f in which for each point x (in
the étale sense) with isotropy group H ⊆ G, there exists a point in f −1(x) with the same residue
field and the same isotropy group. Note that for such X, XG is smooth closed: to show XG is
smooth, consider an affine cover (Ui) of X. Then(⋂

g∈G

gUi

)
(1)

is a cover of XG by open affine sets in X (because X is separated). In this setting, we have Luna’s
slice theorem [33], which shows that taking G-fixed points in each of the sets (1) gives a closed
smooth subscheme.

By the category of based G-equivariant motivic spaces we shall mean the category ΔOp −
Sh·(S(G)Nis) of pointed simplicial sheaves on the site S(G)Nis.

It may be worthwhile to point out that this category passes a trivial but important test: it
captures arbitrary G-sets. In effect, recall that the category of G-sets and G-equivariant maps is
equivalent to the category of presheaves (of sets) on the orbit category Orb(G), i.e. the category
of transitive G-sets and equivariant maps. For a G-set S, the presheaf on Orb(G) is

G/H �→ SH ,

and for a presheaf F on Orb(G), the corresponding G-set is

G/? ×Orb(G) F,

where G/? is considered as a covariant functor Orb(G) → G-sets.
It worth pointing out however that some constructions which are obvious on G-sets actually

require a moment of thought on G-equivariant motivic spaces as defined here. For example, the
forgetful functor from G-equivariant motivic spaces to H -equivariant motivic spaces, H ⊆ G,
is obtained by restricting the sheaf to G×H ? where the variable ? indicates an H -equivariant
separated smooth scheme.

On the other hand, for a normal subgroup H of G, the G/H -equivariant motivic space XH is
modeled simply by restricting X to H -fixed schemes.

On this category, we can put a closed model structure as follows (this is the original, now
called “injective”, model structure which Joyal described in his 1984 letter to Grothendieck, see
also Jardine [21]): The (simplicial) equivalences are local equivalences in the sense of [46], i.e.
maps of pointed simplicial sheaves F∗ → F ′∗ which induce an isomorphism on π0, and for each
local section u of F0, an isomorphism on πi(?, u). Here πi are the sheaves associated with the
presheaves of homotopy groups (sets for i = 0) of the simplicial sets obtained by taking sections
of the argument over a given object of the site.

The cofibrations are simply injective maps on sections; as usual, this specifies fibrations as
morphisms satisfying the right lifting property with respect to acyclic cofibrations.

The A1-model structure is obtained by localizing with respect to projections

X ∧ A1+ → X for X ∈ ObjΔOp − Sh·
(
S(G)Nis

)
.

The homotopy categories of the simplicial (resp. A1-) model structures on ΔOp − Sh·(S(G)Nis)

will be denoted by hs(G), ha(G), respectively.
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Lemma 1. Let V be a G-representation and X ∈ Sh·(S(G)Nis). Then the projection

π :X ∧ V+ → X (2)

is an A1-equivalence.

Proof. (2) has an “A1-homotopy inverse”, namely the zero-section map

q :X → X ∧ V+.

We have πq = IdX , and there exists an “A1-homotopy”

h : A1+ ∧ X ∧ V+ → X ∧ V+,

where h(0, u) = u, h(1, u) = qπ . Under such circumstances, π and q are inverse in the A1-
homotopy category for formal reasons. �
2.2. Stabilization

The first question in equivariant stable homotopy theory always is what to stabilize with re-
spect to. In this paper, we stabilize with respect to the “one point compactification of the regular
representation”. For an affine space V , denote the corresponding projective space by P(V ). Then
we put

SV := P
(
V ⊕ A1)/P (V ). (3)

Next, put

TG = SA
G

. (4)

The category of equivariant motivic spectra is then defined analogously as in [22]: By TG-spectra
(or simply G-equivariant motivic spectra or G-A1-spectra) we shall mean sequences (Xn) of
based motivic G-spaces together with structure maps

TG ∧ Xn → Xn+1. (5)

Morphisms of spectra are just morphisms in the category of diagrams formed by the objects Xn

and morphisms (5).
Similarly as in Jardine [22], to make the construction work, we need the following result:

Lemma 2. The switch

Tσ : TG ∧ TG ∧ TG → TG ∧ TG ∧ TG (6)

induced by the cyclic permutation σ of 3 elements is G-equivariantly A1-homotopic to the iden-
tity.
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Proof. We shall construct a G-equivariant linear A1-homotopy between

Id, Tσ : A3G → A3G. (7)

This can be accomplished by taking IdAG and tensoring it with a sequence of elementary row
operations converting the matrix (0 1 0

0 0 1
1 0 0

)

to (1 0 0
0 1 0
0 0 1

)
.

Now (6) can be identified as a “one point compactification” of Tσ in (7), a notion made precise
in the standard way using resolution of singularities (cf. [19]). �

The level-wise model structure on G-equivariant motivic spectra is defined so that

(Xn) → (Yn)

is a fibration, resp. equivalence if and only if each of the constituent maps

Xn → Yn

is a fibration, resp. equivalence in the A1-closed model structure on based motivic G-spaces.
Cofibrations are defined as maps satisfying the left lifting property with respect to acyclic fibra-
tions.

Letting

jX :X → JX

be natural level-wise fibrant replacement, the stable model structure has as equivalences (called
stable equivalences) maps

g :X → Y,

where

QTG
J (g) :QTG

JX → QTG
JY

is a level-wise equivalence where QTG
is stabilization with respect to shift suspension Σ ′

TG
. The

shift suspension is defined by (
Σ ′ X

) = TG ∧ Xn
TG n
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and the structure maps are

TG ∧ (TG ∧ Xn)
T−→ TG ∧ (TG ∧ Xn) → TG ∧ Xn+1,

where T is the map switching the two TG coordinates and the second map is IdTG
smashed with

the structure map of X.
If we denote by Ω ′

TG
the right adjoint to the functor Σ ′

TG
, then the functor QTG

is defined as

lim−→ Ω ′n
TG

Σ ′n
TG

.

Now in the stable model structure, cofibrations are cofibrations in the level structure, and fibra-
tions are maps satisfying the right lifting property with respect to cofibrations which are (stable)
equivalences. One proves similarly as in [22] that this does define a closed model structure.

Unless explicitly mentioned otherwise, by equivalence of G-A1-spectra we shall mean a sta-
ble equivalence.

2.3. Functors

There are many interesting functors in equivariant motivic homotopy theory which are defined
in an analogous way to functors from topology. We will mention only a few examples which we
will need here specifically.

There is a suspension spectrum functor

Σ∞
G :G-A1-based spaces → G-A1-spectra,

left Quillen adjoint to

Ω∞
G :G-A1-spectra → G-A1-based spaces.

There is also a “push-forward functor”

(?)fixed : A1-spectra → G-A1-spectra,

where one puts

(Efixed)n := SnÃG ∧ En

where ÃG is the reduced regular representation of G. (One uses the fact that we have a canonical
isomorphism ÃG ⊕ A1 ∼= AG.) Then the functor (?)fixed is left Quillen adjoint to the fixed point
functor

(?)G :G-A1-spectra → A1-spectra.

Another example of a functor in which we will be interested is, for a based G-A1-space X and a
G-A1-spectrum E, the G-A1-spectrum

X ∧ E,
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which is given by

(X ∧ E)n := X ∧ En,

with structure maps induced from those of E.
A particularly interesting case is the case when X = G+. In this case, we can actually also

consider the functors

F [G, ?),G�? : A1-based spaces → G-A1-based spaces,

which are the right and left adjoint, respectively, to the functor (?){e} which forgets G-structure
(= the right and left Kan extension). There are also analogous functors with spaces replaced by
spectra. We will need

Lemma 3. The adjunction between F [G, ?) and (?){e} on the level of spaces or spectra is a
Quillen adjunction.

Proof. It is obvious that (?){e} preserves equivalences as well as cofibrations, which implies the
statement. �
2.4. Equivariant motivic symmetric spectra

The category of G-equivariant motivic symmetric spectra for G finite will be needed in the
last section, where we will need a formalism for establishing E∞-ring structure on the motivic
Real cobordism spectrum. The required category of symmetric spectra is obtained by combining
the methods of Mandell [34] and Jardine [22].

One defines a G-equivariant motivic symmetric spectrum X as a G-A1-spectrum

X = (Xn)

together with symmetric group actions

Σn × Xn → Xn (8)

such that the structure map

(TG)∧p ∧ Xn → Xp+n

is (Σp × Σn)-equivariant. A morphism of G-equivariant motivic symmetric spectra is a mor-
phism of G-equivariant motivic spectra which is equivariant with respect to the symmetric group
actions (8).

Following Jardine [22], one defines a stable closed model structure on G-equivariant motivic
symmetric spectra as follows: Stable fibrations are simply morphisms which are stable fibra-
tions on the underlying G-equivariant motivic spectra. Stable equivalences are maps f :X → Y

of G-equivariant motivic symmetric spectra where for every W an injective stably fibrant G-
equivariant motivic symmetric spectrum,

f ∗ : hom(Y,W) → hom(X,W)
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is an equivalence of simplicial sets. Here an injective fibration is a map which satisfies the right
lifting property with respect to all maps which are level-wise cofibrations and level-wise equiv-
alences. An injective object is an object X such that the map X → ∗ where ∗ is the terminal
object is an injective fibration. (This is a precise equivariant analogue of the discussion on p. 509
of [22].) Recall here that the simplicial set

hom(X,Y )

is defined by (
hom(X,Y )

)
n

= hom
(
X ∧ Δn+, Y

)
,

where hom is the ordinary categorical hom-set, and Δn is the standard simplicial n-simplex.
Stable cofibrations are simply maps which satisfy the left lifting property with respect to acyclic
stable fibrations.

3. The Wirthmüller and Adams isomorphisms

3.1. The Wirthmüller isomorphism

Theorem 4 (The Wirthmüller isomorphism). If E is an A1-spectrum, then there is a natural
equivalence

F [G,E) � G � E. (9)

Proof. We will prove that G�? is right adjoint to the functor (?){e} in the homotopy category,
whence our statement will follow by uniqueness of adjoints. (Note that the functor (?){e} pre-
serves equivalences.)

First note that choosing an embedding

G ⊂ AG

yields a Pontrjagin–Thom G-map

t : TG → AG/
(
AG − G

)� G+ ∧ TG,

in other words,

t : TG → G+ ∧ TG,

or, stably,

t :S0 → G+. (10)

We define the unit to be, for a G-A1-spectrum E,

η := t ∧ Id :E → G+ ∧ E ∼= G � E{e}. (11)
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Let us, for the moment, not worry about whether this functor preserves equivalences; if we define
both unit and counit on the “point set level” (i.e. before passage to homotopy categories), and
prove the triangle identities in the homotopy categories, this will follow.

Let, then, the counit be defined, for an A1-spectrum E, as the map

ε : (G � E){e} → E (12)

gotten by noticing that non-equivariantly, G � E is just a wedge sum of |G| copies of E, and
taking Id on the copy corresponding to e ∈ G, and the collapse map to the point on the other
copies.

To verify the triangle identities, let us first look at “R → RLR → R” (where R, L stands for
right and left adjoint). One has an isomorphism

G � (G � E){e} ∼= (G × G) � E, (13)

which allows us to write our composition as

G � E → G+ ∧ (G � E) ∼= (G × G) � E → G � E, (14)

where the last map is obtained by observing that (G×G) � E is a wedge of G copies of G � E,
and taking the identity on the copy corresponding to e ∈ G, and collapsing the other copies
to the base point. In these terms, the composition of the first two maps is identified just with
a “multiplication by |G|” map, i.e. with the map (11) interpreted non-equivariantly as a map
S0 → |G|+, smashed with identity on G � E. We see that the composition of these two maps is
the identity.

Let us now consider “L → LRL → L”. Clearly, however, this map is just the composition

E{e} → |G|+ ∧ E{e} → E{e},

where the first map is the “multiplier map” and the second map is again the map which is identity
on the wedge copy corresponding to e, and collapse to the base point on the other copies. Clearly,
again, this is homotopic to the identity. �
Corollary 5. When f :E → F is an equivalence of G-A1-spectra, then

X+ ∧ f :X+ ∧ E → X+ ∧ F

is an equivalence of G-A1-spectra when X is the pushforward of a simplicial G-set S· where Sn

is a free G-set for all n.

Proof. We claim that the case X = G follows directly from Theorem 4. In effect, the theorem
implies that G�? preserves equivalences, and we have the natural isomorphism

G � E{e} = G+ ∧ E,

which proves the statement. Thus, the statement follows by induction on simplicial skeleta, and
by preservation of equivalences by direct limits of sequences of cofibrations (which is true for
model structures which are left proper [14] – an axiom satisfied for the Nisnievich topology and
generalized to the present equivariant context in a straightforward way). �
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3.2. The Adams isomorphism

Lemma 6. Let EGn be the simplicial n-skeleton of EG. Then there exists a G-set S and an
inclusion of vector bundles

Φ : AG ×G EGn → AS × BGn. (15)

Proof. We choose as an equivalent model of AG ×G EGn the G-A1-space

B
((

AG ×G EGn

)◦
,ΔOp,Δ·) (16)

where (?)◦ denotes barycentric subdivision, Δ is the simplicial category (we write the two-sided
bar construction so that the first coordinate is covariant and last contravariant) and Δ· is the
standard cosimplicial object

(Δ)n =
{
(x0, . . . , xn) ∈ An+1

∣∣∣∑xi = 1

}
(the “algebraic model” of the standard simplex cosimplicial object).

Now let

S = Gn+1,

λ(v, g1, . . . , gk) := (0, . . . ,0, v,0, . . . ,0︸ ︷︷ ︸
k

),

and define a map from (16) to AS by

φ
(
(w0, . . . ,wk), [s0, . . . , sk]

) := k∑
i=0

siλ(wi),

where σ0 ⊃ · · · ⊃ σk are simplices in EGn+1 and

wi := vi ×G σi.

Then φ is the first coordinate of (15), the second coordinate being just the projection to

B
(
(BGn)

◦,ΔOp,Δ·). �
Lemma 7. Let E be a G-A1-spectrum. Then there exists a natural (stable) equivalence

ψn : EGn+ ∧G E
�−→ (EGn+ ∧ E)G.

(The source is the simplicial n-skeleton of B∧(E,G+, S0).)
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Proof. Consider the G-equivariant inclusion

EGn
⊆−→ AG ×G EGn → AS × BGn

induced by the natural inclusion

G ⊂ AG.

Pull back via

G̃n := B(G,G,G) → B(G,G,∗)n = EGn,

we get

G̃n ⊂ AG ×G G̃n → AS × B(∗,G,G)n ⊂ SA
S ∧ B(∗,G,G)n+. (17)

Factoring out the complement of the image in (17), we get

SA
S ∧ B(∗,G,G)n+ → SA

S ∧ G̃n. (18)

(Note that the pullback of a trivial vector bundle is trivial.) Applying ? ∧G E to (18) gives

SA
S ∧ EGn+ ∧G E → SA

S ∧ EGn+ ∧ E.

Delooping by SA
S
, we get

EGn+ ∧G E → EGn+ ∧ E.

The source is a pushforward of a fixed spectrum, so (?)G can be applied to the target. This is, by
our definition, ψn.

This map is an equivalence, since on the cofiber of the map from the k-skeleton to the k − 1-
skeleton of EGn+, we get a wedge of suspensions of the Wirthmüller isomorphism

F(G+,E{e})G → (G+ ∧ E{e})G. �
The map ψn depends on n, but clearly remains the same up to homotopy if we replace the map

Φ of Lemma 6 by a map homotopic through inclusions of vector bundles. Similarly, we clearly
obtain a homotopic map if we replace the set S by S ⊂ S′ without altering the inclusion Φ . Then
the usual “Milnor trick” shows that by enlarging S to S � S, we can make any two inclusions
Φ of Lemma 6 homotopic: On the level of AS , first apply a linear homotopy moving the first
S coordinates to the last, and then a linear homotopy between one choice of Φ using the first S

coordinates and another choice of Φ using the last S coordinates. Thus, ψn+1 restricted to the
n-skeleton of EG coincides with ψn up to homotopy, and we get

Theorem 8 (The Adams isomorphism). For E a G-A1-spectrum, there exists a natural A1-
equivalence

ψ : EG+ ∧G E
�−→ (EG+ ∧ E)G.
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3.3. The Tate diagram

Similarly as in the topological context [12], considering the cofibration

EG+ → S0 → ẼG,

for a G-equivariant motivic spectrum E we now may consider the diagram with rows cofibration
sequences:

EG+ ∧ E

=

E ẼG ∧ E

EG+ ∧ E F(EG+,E) Ê,

(19)

where

Ê = ẼG ∧ F(EG+,E)

is the Tate spectrum (note that the canonical map EG+ ∧ E → EG+ ∧ F(EG+,E) is an equiva-
lence by Corollary 5). By the Adams isomorphism, taking G-fixed points, we obtain a diagram
with rows cofibration sequences:

EG+ ∧G E

=

EG ΦGE

EG+ ∧G E F(EG+,E)G ÊG.

(20)

Either diagram (19) or (20) is referred to as the Tate diagram.
It is worth commenting on the functor ΦGE, which, in accordance with the terminology

of [32], we call geometric fixed points. Noting that

(TG)G ∼= P1, (21)

and using arguments similar to [32], we may compute, for a G-equivariant motivic spectrum E

given by

TG ∧ En → En+1, (22)

the geometric fixed points by taking G-fixed points on both sides of (22), including TG: we let(
ΦGE

)
n

= (En)
G,

and make the structure maps (recall (21))

P1 ∧ (En)
G → (En+1)

G. (23)
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4. ZZZ/2-equivariant representability of Hermitian K-theory

4.1. Z/2-equivariant dimensions

For the remainder of the paper, we will focus on G = Z/2. In this section, we will gen-
eralize the results of Hornbostel [15] and Hornbostel and Schlichting [16]. Let us first make
some remarks on the “dimensions” which occur for Z/2-equivariant motivic spectra. We have an
equivariant factorization

AZ/2 = A1 × A1−, (24)

where A1 has trivial Z/2-action and A1− has Z/2-action where the generator acts by −1. Next,
(24) induces an isomorphism

TZ/2 ∼= P1 ∧ P1−. (25)

We give P1 the base point ∞. In (25), P1 has trivial Z/2-action, while on P1−, the generator of
Z/2 acts by multiplication by −1.

Next, however, we recall that by the basic Nisnievich square [38], P1 and P1− decompose
further. In effect, if we denote by S1 resp. Sα the simplicial circle resp. Gm with trivial Z/2-
action, we have, as usual,

S1 ∧ Sα � P1. (26)

Regarding P1−, we get from the same diagram

Sγ ∧ Sγα � P1−, (27)

where Sγ is the (barycentric subdivision of the) simplicial circle with the canonical (= sign)
involution, and Sγα is G1/z

m , which is Gm with the involution z �→ 1/z. (In fact, (27) is more
easily seen if we change coordinates on P1− by a fractional linear map to move the fixed points
to 1, −1, which transforms the action so that the generator of Z/2 acts by z �→ 1/z. The basic
Nisnievich square then gives the desired decomposition.)

In any case, we conclude from (26) and (27) that we have a Z/2-equivariant decomposition

TZ/2 � S1+α+γ+γα, (28)

where, as usual, addition in the “exponent” of the sphere indicates smash product.

4.2. The periodicity theorem

Let R be a commutative ring with involution, and let M be a finitely generated projective
R-module. A Hermitian form on R is a bilinear map

ω :M ⊗Z M → R

which satisfies
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ω(ax, y) = aω(x, y), a ∈ R,

ω(x, ay) = aω(x, y), a ∈ R,

ω(x, y) = ω(y, x),

where (?) is the involution in R. For a projective R-module M with a Hermitian form ω, we
denote by

O(M) (29)

the group of all automorphisms A of M as an R-module which satisfy

ω(Ax,y) = ω
(
x,A−1y

)
. (30)

Comment. The notation (29) may seem odd, since thinking of the example of R = C, and (?)
being complex conjugation, it would seem more appropriate to denote this group as U(M). We
should keep in mind, however, that we can also think of (and in fact, the original emphasis was
mostly on) fixed rings, in which case the notation (29) seems to make more sense.

Now if we worked in the category of Z/2-equivariant smooth affine schemes, we could denote
by

KRalg
0 (31)

the Z/2-equivariant motivic space which is the fibrant replacement of the sheafification of

Spec(R) �→ ΩB

(∐
M

BO(M)

)
, (32)

where R is a ring with involution ?, or, in other words, the ring of coefficients of a smooth affine
Z/2-scheme, and M is a set of representatives of isomorphism classes of finitely generated pro-
jective R-module with a Hermitian form. Note: As stated, the definition may seem not functorial,
but we have the usual remedy: following [15], we may define for two finitely generated projec-
tive R-modules M , N O(M,N) as the set of isomorphisms A :M → N satisfying (30); these
categories are “functorial” with respect to base change, but not small; picking (small) skeleta
using the class axiom of choice gives functoriality for our definition.

However, as noted in [15], it is still not known if Hermitian K-theory is homotopy invariant,
in particular, if it satisfies Zariski descent on arbitrary smooth schemes. Therefore, extending this
definition to the site of Z/2-equivariant smooth schemes must be handled with care.

Comment. Since this paper was written, M. Schlichting alerted us to two developments: First
of all, in his new paper [42], he proves Zariski descent for Hermitian K-theory for arbitrary
schemes with an ample family of line bundles. Further, as a consequence, Hermitian K-theory
is homotopy invariant on regular Noetherian separated schemes over Z[1/2]. This simplifies the
treatment introduced below in this context.
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For a Noetherian scheme X, Jouanolou [23, Lemma 1.5], provides a finite-dimensional vector
bundle torsor W → X which is an affine scheme. Following Weibel, Thomason [49, Appendix],
we can make this construction functorial. Let us work, say, in the site of smooth separable
schemes of finite type over Spec(k). Consider the category CX whose objects are tuples

α = (Wα → X,
{
f ∗Wα

∣∣ f :Y → X
})

consisting of a torsor Wα of a finite-dimensional vector bundle over X, and explicit choices of
pullbacks of Wα by all maps Y → X in the site. Morphisms α → β are morphisms of torsors
Wα → Wβ over X. This defines a strict functor

Φ :Sm/k → Cat,

and the category assigned to an object V of Sm/k has a small skeleton IV . Such data give a
functor

?aff :=
∏

α∈Obj(I?)

Wα :Sm/k → affine schemes, (33)

and a natural transformation

Vaff → V

for any small subcategory C of the category of schemes over Spec(k).
To see this, start with a choice of IV for each V ∈ Obj(C), then expand IV to include images

of IV under Φ(f ) for all f ∈ Mor(C). After repeating this procedure countably many times,
take the union. This results in a choice of IV which gives the desired strict functor and natural
transformation.

Because this construction is strictly functorial, it is equivariant with respect to finite groups.
Of course, we must be careful with applying Hermitian K-theory, since Vaff is no longer a smooth
scheme. Nevertheless, it is easy to see that (33) is an inverse limit of smooth equivariant schemes:
all we need is to take the inverse limit (under projections) of products over sets of factors which
include, with each factor, all images under the finite group in question (i.e. take products over
sets of the form {gs | g ∈ G, s ∈ S} where S is a finite subset of Obj(IV )).

When we pass to coefficient rings, (33) turns into an infinite tensor product, i.e. a direct limit
of finite tensor products, and, as remarked above, in the equivariant case, the finite tensor prod-
ucts can be taken to be equivariant. Let us now specialize to the situation of interest to KRalg

0 .
Because of the fact that Vaff is not smooth, we do not want to consider finitely generated projec-
tive modules with a Hermitian form over OVaff directly, but pushforwards M of finitely generated
projective modules over finite Z/2-equivariant sub-tensor products V ′

aff : two such modules with
Hermitian form will be considered isomorphic if they become isomorphic after pushforward to
a larger Z/2-equivariant sub-tensor product V ′′

aff . Such modules over Vaff will be referred to as
strictly finite projective modules with a Hermitian form. Then we can replace (32) by the presheaf
of based simplicial sets on (G) given by

V �→ ΩB

(∐
BO(M)

)
, (34)
M
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where M ranges over representatives of isomorphism classes (in the above sense) of strictly finite
OVaff -projective modules with Hermitian form M . A key point is the following

Lemma 9. The canonical map from (34) to (32) is an equivalence of simplicial sets when V is a
Z/2-equivariant affine scheme.

Proof. Clearly, we may express Vaff as a directed inverse limit of Z/2-equivariant finite-
dimensional vector bundle torsors. For such torsor, we may further cover V by a finite system
of Z/2-equivariant Zariski open subsets over each of which the torsor is trivial. Since Hermitian
K-theory satisfies Zariski descent in the category of commutative rings with involution, as well
as A1-homotopy invariance (cf. [15]), the statement follows.

To be precise, A1-homotopy invariance is technically only stated for rings with trivial Z/2-
action in [15], but the argument extends to the equivariant case. Hornbostel and Schlichting
[16] remark that the statement follows in general from Karoubi induction [16, Lemma 5.3], i.e.
from homotopy invariance of ordinary algebraic K-theory and Balmer–Witt groups. The case
of algebraic K-theory is trivial since it does not depend on the Z/2-action, while the case of
Balmer–Witt groups is a theorem of Karoubi [25, Corollary 3.10]. �
Theorem 10. We have A1-equivalences of Z/2-equivariant motivic spaces

Ωα+γ KRalg
0 � KRalg

0 , Hornbostel and Schlichting [16], (35)

Ω1+γαKRalg
0 � KRalg

0 , (36)

Ω4KRalg
0 � Ω4γ KRalg

0 , Karoubi [26]. (37)

Proof. We will first prove (37). Hornbostel [15] (following Karoubi [26] and Kobal [27]) writes
down fiber sequences

U → F
(
Z/2+,KRalg

0

)
H−→ KRalg

0 , (38)

V → KRalg
0

F−→ F
(
Z/2+,KRalg

0

)
, (39)

where H is “hyperbolization” and F is the forgetful map. He then quotes Karoubi [26] to prove

Ω(−U) � V, Ω(U) � −V, (40)

where −(?) denotes the analogues of all the above constructions with quadratic forms replaced
by symplectic forms. Essentially by definition, we have

V � Ωγ KRalg
0 . (41)

One next checks that

Ωγ U � ΩKRalg
0 . (42)

Indeed, to this end, it suffices to check that the map

F
(
Σγ Z/2+,KRalg)→ Ωγ KRalg (43)
0 0
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given by Ωγ H is the same as the one induced by the canonical “pinching map” (the Pontrjagin
construction)

Sγ → Z/2+ ∧ Sγ . (44)

This can be done directly from the definition. The left-hand side of (43) is represented by

ΩB

(∐
M

BGL(M)

)
,

where M is as in (32). One may in fact deloop once and consider the model of (43) in the form

Ωγ B

(∐
M

BGL(M)

)
→ Ωγ B

(∐
M

BO(M)

)
. (45)

Using simplicial approximation, the two maps (45) are then readily seen to coincide by definition.
Now by (41), (42),

Ω2γ KRalg
0 � Ωγ V � Ω1+γ (−U) � Ω2(−KRalg

0

)
. (46)

Similar arguments hold if we add −(?) everywhere, which gives (37).
Now (35) is essentially Proposition 5.1 of [15], namely that

KRalg
0 (R) → KRalg

0

(
R
[
t, t−1])→ Ωγ KRalg

0 (R) (47)

is a (split) homotopy fibration for every ring R (in [15], it is stated only for fixed rings, but
Theorem 1.8 of [16], which [15] cites, applies to rings with involution as well).

To prove (36), we remark that an analogous argument to [15,16] also holds with R[t, t−1]
replaced by R−[t, t−1] where involution is given by

t �→ −t.

In effect, to make this precise, we must review some of the concepts of [16]. Let (A, ?) be a
commutative ring with involution in which 2 is invertible. Consider an element f ∈ A which is a
non-divisor of 0, such that

f = −f. (48)

Recall from [16], 1.3, that a category with duality (C, �, η) is a category C with a functor � :C →
COp and a natural equivalence η : IdC → �� such that

IdA� = η
�
A ◦ ηA�.

The associated Hermitian category is then defined as follows: Objects are pairs (M,φ) where M

is an object of C and

φ :M
∼=−→ M�
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is an isomorphism such that φ = φ�η. A morphism α : (M,φ) → (N,ψ) is a morphism α :M →
N in C such that α�ψα = φ.

Using an analogue of Quillen’s Q-construction [16, Definition 1.3], defines spaces

εW(C), εU(C) = Ω
(
εW(C)

)
generalizing the corresponding concepts for rings, where ε ∈ {±1}, and the subscript ε indicates
replacing C with the category with duality (C, �, εη).

Let Σ be the multiplicative set generated by f . Then in [16], one defines a category with
duality TΣ as follows: Objects are injective morphisms of projective A-modules

i :P1 → P0, (49)

which become isomorphisms when we invert Σ . The group of morphisms from (49) to

i′ :P ′
1 → P ′

0 (50)

is the group of commutative squares

P1
i

P0

P ′
1

i′
P ′

0

(51)

modulo the subgroup of all squares (51) which split by maps P0 → P ′
1.

The duality is given by the contravariant functor (?)� where, for an A-module M ,

M� = Homskew(M,A) = {f :M → A
∣∣ f (am) = af (m) for all a ∈ A

}
.

Thus, the dual of (49) is

i� :P �
0 → P

�
1 .

The localization theorem, Theorem 1.8 of [16], then applies directly to our situation, and gives a
homotopy fibration

εU(TΣ) → εKRalg
0 (A) → εKRalg

0 (AΣ), (52)

where AΣ is the ring A with Σ inverted.
To identify the first term of (52) in the case of A = R−[t], Σ = {1, t, t2, . . . , }, however, we

cannot apply the dévissage theorem, Theorem 1.11 of [16], directly, since that result applies only
to the case when f = f , which differs from (48).

In fact, to extend the method to our case, we must carefully investigate the concept of mor-
phism of categories with duality

(C, �, η) → (D, �, τ ).
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This is a functor

F :C → D

together with a natural equivalence

λ : �F → F Op� (53)

such that the following diagram commutes:

F
η τ

��F �F Op�
�λ

F��.
λ−1�

(54)

(This generalizes slightly the definition of [16], which require an equality in (53). In fact, this is
precisely what Schlichting [41] calls a non-singular form functor. In the present case, we need
the generalized definition, which causes no substantial change in the arguments.)

Then, by letting F(A) denote the category of free A-modules, we define, in the situation
of (48), a morphism of categories with dualities

F : −εF (A) → εTΣ (55)

by sending M to

M
f−→ M. (56)

Recalling carefully (48), we let λ be the square

M�

Id

−f

M�

−Id

M�
f

M�.

(57)

We note that in diagram (54), the double dualization will introduce minus signs in both vertical
arrows of the comparison square, hence the minus sign in (55). Further, similarly to [16, Sec-
tion 1.6], the corresponding square (a morphism version of (56)) becomes split for morphisms
which are divisible by f , and hence we obtain a morphism of categories with duality

−εF (A/f A) → εTΣ . (58)

Further, (58) obviously extends to the respective idempotent completions (a technical point
needed in (48)), and hence induces a map

−εW(A/f A) → εW(TΣ). (59)

We now have
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Theorem 11 (Dévissage). In the present situation, i.e. a commutative ring with involution A in
which 2 is invertible, a non-zero divisor f satisfying (48), and the multiplicative set Σ generated
by f , the map (59) is an equivalence.

Proof. Analogous to [16,11], although a few comments are in order. Hornbostel and Schlichting
[16] state a dévissage theorem for rings with involution with the exception that (48) is replaced
by

f = f, (60)

and accordingly in (59), the minus sign on the left-hand side is deleted. That result is, in effect,
needed in the proof of (35) above. The strategy of the proof in [16] is to use Karoubi induction,
proving equality between Balmer–Witt groups and classical Witt groups in negative dimension,
and quoting [11] for a dévissage theorem for Balmer–Witt groups. The Karoubi induction argu-
ment works analogously in our case, in fact, the argument [16] can essentially just be adopted
verbatim.

Ref. [11], on the other hand, strictly speaking, does not apply to either our present situation
or to the case of [16], as [11] only considers fixed rings (i.e. where the involution is the identity).
However, studying the method of [11] in detail shows that it can, in effect, be adapted both to our
present case and to the case of [16].

To do this, let us first note that in the case of fixed rings, Gille [11] considers a substantially
more general context of Gorenstein rings with finite Krull dimension. The basic idea of the
proof is to filter by dimension of support, and use a localization spectral sequence [11, 3.3].
In the non-equivariant case, this reduces the statement to the case of local Gorenstein rings R

where the Balmer–Witt groups with support in the maximal ideal m are proved to be isomorphic,
with appropriate shift, to the Witt groups of the residue field. We do not know whether this
method generalizes to Z/2-equivariant rings in the generality of Gorenstein rings of finite Krull
dimension. The problem is that in the case of local Gorenstein rings, one relies on minimal
injective resolutions, the behavior of which under involution we don’t fully understand.

However, for our purposes, it suffices to consider regular rings. In this case, the Z/2-
equivariant analogue of [11, 3.3], leads to two different local cases. When the maximal ideal
m is not invariant under the Z/2-action, we are back to the non-equivariant case. In the case
when m is invariant under the Z/2-action, we need to show that the Balmer–Witt groups of a
Z/2-equivariant regular local ring R with support in the maximal ideal m are isomorphic, with
the appropriate shift, to the Witt groups of the residue field.

More precisely, we have the following. By Luna’s slice theorem [33], for a Z/2-equivariant
regular local ring R of Krull dimension n with maximal ideal m, we can find n generators

m = (f1, . . . , fn)

(called regular parameters) such that

f i = −fi for 1 � i � q,

f i = fi for q + 1 � i � n

for some q � n. Let k be the residue field. Our statement than reduces to the following analogue
of Lemma 4.4 of [11]. �
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Lemma 12. There is a natural diagram of isomorphisms

W(k) ((−1)q )W̃
n
m(R)

((−1)q+ε )W̃
n
m/fi

(R/fi),

(61)

where ε = 1 if i � q and ε = 0 otherwise, and the vertical map is the canonical one.

Remarks. W̃n
m(R) means the obvious extension of Balmer–Witt groups with support [11, Def-

inition 2.16], to rings with involution. A minus sign in front of Balmer–Witt groups on the
right-hand side of (61) indicates shift of the number n by 2 (the groups are 4-periodic).

Proof of Lemma 12. We will only consider the top row of the diagram. The naturality contained
in the diagram will follow from the construction. In the present regular case, we may use projec-
tive rather than injective resolutions. Let Db(Pfg,m(R)) denote the bounded derived category of
complexes of projective R-modules with finitely generated homology with support in m. Define
then a functor

ι :Db
(

P (k)
)→ Db

(
Pfg,m(R)

)
, (62)

which sends k to the complex

n⊗
i=1

(
R

fi−→ R
)
, (63)

where the target of each of the morphisms is set in dimension 0, and the tensor product is over R.
The behavior of (62) with respect to duality is analogous to the analysis we made above. On
the right-hand side, we can take the duality HomR(?,R), which however has to be shifted by n.
Further, one must be careful in choosing the signs in the duality isomorphism on (63). We may
choose the sign to be, say, (−1)k on the R-term which has dimension 1 in precisely k fac-
tors 1 � i � q in (63). Since the dual switches dimension of each factor between 0 and 1,
we see that the duality isomorphism on the right-hand side of (62) must be multiplied by the
sign (−1)q .

What is left is showing that the map (62) induces isomorphism of Balmer–Witt groups, which
is, in effect, our final reduction of the dévissage theorem. To this end, we consider the dia-
gram



456 P. Hu et al. / Advances in Mathematics 228 (2011) 434–480
Db(P (k))

ι
ι′

Db(Pfg,m(R))

a ∼

Db(Pfg,m,semis.(R))

∼ c

Db(Mfg,m(R)) Db(Mfg,m,semis.(R))

Db(Mf l(R))

b ∼

Db(Mf l,semis.(R))

∼ d

e

Here Db(Mfg,m(R)) denotes the bounded derived category of chain complexes of R-modules
with finitely generated homology with support in m, and the symbols Db(Pfg,m,semis.(R)),
Db(Mfg,m,semis.(R)) mean full subcategories on complexes whose homology is semisimple.
The categories in the last row mean derived categories of the abelian categories Mf l(R) of
modules of finite length, and Mf l,semis.(R) of semisimple modules of finite length. Compar-
isons of dualities in the spirit of [11, Theorem 3.9], have to be made, but no additional signs
arise here. Now ι′ is an equivalence of categories, as are a, c (by regularity) and b, d (by di-
rect inspection). All equivalences of categories which preserve duality induce isomorphism on
Balmer–Witt groups (e.g. of [11, Theorem 2.7]). Thus, it suffices to show that the map e in-
duces an isomorphism on Balmer–Witt groups. To this end, one first notes that the corresponding
Balmer–Witt groups are isomorphic to the classical Witt groups of the underlying abelian cat-
egories (Balmer [2]). Then, one uses the “Jordan–Hölder theorem” of Quebbemann, Scharlau,
Schulte [40]. �

By the theorem, setting A = R−[t], f = t , we obtain in our situation a homotopy fibration

−εKRalg
0 (R) → εKRalg

0

(
R−[t, t−1])→ Ωγ

ε KRalg
0 (R). (64)

But now note that if we put

G−
m := SpecR−[t, t−1],

we have a cofibration (
G−

m

)
+ → S0 → P1−. (65)

Recalling (27), the last term of (65) is

Sγ+γα.

Thus, replacing R[t, t−1] by R−[t, t−1] in (47) yields

K̃
alg(P1−

)� −K̃
alg(P1),
0 0
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i.e.

Ωγ+γαKRalg
0 � Ω1+α−KRalg

0 ,

so (36) follows from (35). �
4.3. The Z/2-equivariant motivic spectrum KRalg

Comment. From (36), it follows that if we denote by R′[t, t−1] the ring R[t, t−1] with involution
t �→ 1/t , we get a split cofibration

KRalg
0 R → KRalg

0

(
R′[t, t−1])→ ΩKRalg

0 R, (66)

which answers a question implicit in [15, the paragraph before 5.1].

The periodicity theorem now implies

KRalg
0 � Ω1+α+γ+γαKRalg

0 � F
(
TZ/2,KRalg

0

)
. (67)

Thus, the standard method gives a Z/2-equivariant motivic spectrum KRalg whose 0-space is
KRalg

0 , and which satisfies

TZ/2 ∧ KRalg � KRalg. (68)

5. The completion theorem

5.1. The “Karoubi tower”

Let

c :S0 → Sγ

be the canonical inclusion of fixed points.

Theorem 13. The equivalence (35) can be chosen in such a way that the composition

S0 c−→ Σγ KRalg ι−→ Σ−αKRalg

is homotopic to η.

Proof. The composition

Z/2+ → S0 η−→ Σ−αKRalg
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is 0 since η = 0 ∈ παKalg (a formula true for any algebraically oriented motivic spectrum,
cf. [18]), which gives the top square of a diagram

Z/2+
0

Σ−αKRalg ∧ Z/2+

λ

S0

c

η

Σ−αKRalg

c

Sγ

ι

κ Σ−α−γ KRalg

ΣZ/2+
0

Σ1−αKRalg ∧ Z/2+.

(69)

The maps κ , ι exist for formal reasons. Thus, we have

η = ιc (70)

for some ι. Now we use the commutative ring structure on KRalg (defined by the standard meth-
ods analogous to other kinds of K-theory, i.e. tensor product of bundles, etc.) to reinterpret (69)
as a diagram

KRalg
η

c

Σ−αKRalg

Σγ KRalg.

ι
(71)

Let W resp. GW denote the Witt resp. Grothendieck–Witt ring of the base field. Taking πmα ,
m > 1 on (71), the diagram becomes a diagram of maps of W -modules

W
η

c

W

W

ι
(72)

by [15] and Theorem 10. Further, η is an isomorphism (multiplication by a unit), and hence so
are c, ι. (Recall that KRalg

α+γ = KRalg
0 = GW by (35).) We therefore know that the reduction of

the map ι ∈ GW to W is a unit. Now note that on πγ , the map in (70) becomes the inclusion

Z
[H ]−−→ GW.

Therefore, the proof of the theorem is concluded by the following result. �
Lemma 14. Let α ∈ GW be an element which reduces to a unit in W . Then there exists an m ∈ Z
such that α + m[H ] is a unit in GW.
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Proof. We have a β ∈ GW such that

αβ = 1 + n[H ].
Taking augmentation, we get

ab = 1 + 2n,

so the integers a, b must be odd, say,

a = 2k + 1,

b = 2� + 1.

We compute(
α − k[H ])(β − �[H ])= αβ − (2k + 1)�[H ] − (2� + 1)k[H ] + 2k�[H ]

= αβ − (2k� + k + �)[H ] = αβ − n[H ] = 1. �
5.2. The completion problem for Hermitian K-theory

The Tate diagram for KRalg (after taking fixed points) looks as follows:

KRalg
hZ/2

=

KH

q

KT

s

KRalg
hZ/2 (KRalg)hZ/2

(K̂R
alg

)Z/2.

(73)

Hence the top cofibration sequence is the one constructed in Kobal [27], where KH denotes
(affinized) Hermitian K-theory and KT is Balmer–Witt K-theory [15]. (Note however that we
are working with “affinized” versions of all the theories in question.)

One may also suspend by any dimension k + �α + mγ + nγα before taking fixed points
in (73). However, by the periodicities proved in Theorem 10 above, only suspensions by k + �α

give new information, and they are already contained in (73).
The completion problem asks in general in what sense (if any) the middle vertical arrow

of (73) is a completion, or becomes an equivalence after completion. To address this question,
first recall [12] that we may write the basic cofibration sequence

EZ/2+ → S0 → ẼZ/2

as the homotopy direct limit of

S(mγ )+ → S0 cm−→ Smγ ,

so the middle vertical arrow of the Tate diagram before taking fixed points

E → F(EZ/2+,E)
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can be identified with the canonical map

E → holim←−
n

E/cn.

Similarly, we may write

Ê = c−1 holim←−
n

E/cn, ẼZ/2 ∧ E = c−1E.

Using Theorem 13 above, we therefore deduce

Theorem 15. There are natural Z/2-equivariant equivalences

holim←−
n

KRalg/ηn � F
(
EZ/2+,KRalg), (74)

η−1 holim←−
n

KRalg/ηn � K̂Ralg. (75)

Note that η is an element in non-equivariant motivic stable homotopy groups, and there-
fore (74) and (75) can also be stated on the level of fixed points:

holim←−
n

((
KRalg)Z/2)

/ηn � (KRalg)hZ/2
,

η−1 holim←−
n

((
KRalg)Z/2)

/ηn � (K̂Ralg
)Z/2

.

However, we may attempt to go further and calculate the homotopy cofiber of the canonical map

KRalg q−→ holim←−
n

KRalg/ηn, (76)

which by the Tate diagram is the same as the cofiber of

η−1KRalg → η−1 holim←−
n

KRalg/ηn. (77)

The behavior of the theory K̂Ralg is described in the following result.

Theorem 16. The (∗+∗α +∗γ +∗γ α)-graded coefficients of K̂Ralg have periodicities γ , α, 4,
1 + γ α. Further,

(1) For n �≡ 0 mod 4, we have (K̂Ralg)n = 0.

(2) The map (ΦZ/2KRalg)0 = KT0 → (K̂Ralg)0 is the map

W → lim←−
n

W/In, (78)

where I is the augmentation ideal of the Witt ring W .
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Proof. First, note that Tate-cohomology is always γ -periodic, and the periodicities stated are
a formal consequence of that and the periodicities of Real algebraic K-theory proved in Theo-
rem 10.

The main idea of the argument proving (1) and (2) is to calculate K̂Ralg by a “slice spectral
sequence”. We shall however not discuss an analogue of Voevodsky’s theory of slices [47] for G-
equivariant spectra in the present paper. Instead, we observe that Borel and Tate cohomology can
be calculated in the category of naive G-equivariant motivic spectra, by which we mean ordinary
(non-equivariant) P1-spectra equipped with a (strict) G-action. KRalg-theory can be represented
in this category by the presheaf on the category of affine smooth schemes over Spec(k) which
sends Spec(R) (for a non-equivariant ring R) to

ΩB

(∐
M

BGL(M)

)
,

where M is a finitely generated projective R-module with a quadratic form, the action is by
A �→ (AT )−1, where T is adjunction with respect to the quadratic form.

To see that this is the right construction, recall the remarks in Section 2.1 on “forgetting
equivariant structure” on a Z/2-equivariant motivic space X: one applies the functor to schemes
of the form Z/2×?. In our case, Z/2 × Spec(R) is Spec(R

∏
R), where the Z/2-equivariant

structure can be taken as interchanging the factors, so if a Spec(R
∏

R)-module M is obtained
by change of basis from an R-module N , then we have O(M) ∼= GL(N).

The construction of the coniveau tower due to Levine [30,31] is functorial, and thus applies
automatically to the category of naive G-spectra. More specifically, Levine [31] defines, for a
motivic spectrum E, a functorial homotopy coniveau tower

· · · → E(p+1) → E(p) → E(p−1) → ·· · , (79)

whose homotopy (inverse) limit is E, which realizes Voevodsky’s slice tower [47]. Levine [30,
31] showed that the slices of ordinary algebraic Kalg are HZMot . The (unrigidified) Z/2-action
on the slice

HZalg → HZalg (80)

can be identified by comparison with the topological case [17]; in dimensions where no sus-
pension by γ or γ α is present, the action is trivial; v1 induces a periodicity. Applying the
construction (79) to a naive G-spectrum E, we obtain a double tower, indexed in n, p

FG

(
EGn+,E(p)

)
, (81)

whose homotopy limit is the Borel cohomology of E (recall that by EGn we mean the n-skeleton
of the reduced bar construction B(G,G,∗)). Therefore, “totalizing this (co)-filtration” in any
way we choose, we obtain a spectral sequence conditionally convergent to the Borel cohomology
of E. By inverting the pushforward of the one point compactification of the simplicial model of
the reduced regular representation of G (the direct limit of iterated smash products of this space
is ẼG), we obtain a spectral sequence conditionally convergent to Ê∗.
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In our present case G = Z/2, E = KRalg, we find advantageous the totalization of the degrees
(81) which equates, in filtration degree, one slice of the Levine tower with two cell dimensions
of EZ/2. Specifically, let

KRalg
〈〈n〉〉

be the homotopy fiber of

∏
k,q

∏
m+j−�=n

Σkγ+qα+jγ αFG

(
(EGk−2m)+,E(−�)

)
⇒
∏
k,q

∏
m+j−�=n−1

Σkγ+qα+jγ αFG

(
(EGk−2m)+,E(−�)

)
, (82)

where the maps are obtained by lowering either of the indices m, � by 1.
In the case of the corresponding Tate spectral sequence, which we by convention [17] grade

homologically, the fixed point spectrum of the associated graded object is a product of copies of
the smash product of the Moore spectrum MZ/2 with HZMot (by (80), the connecting map of
the 2-cell free Z/2-CW complexes into which we have cut EZ/2, when smashed with HZMot ,
is 2); this smash product is HZ/2Mot, whose coefficients we know by the Milnor conjecture,
proved by Voevodsky [45]. For instance, when j = k = � = 0, the term on the left-hand side
of (82) involving the 2m-skeleton of EZ/2 is in filtration degree −m. If we increase k by 1,
(which is where the canonical element c :S0 → Sγ is present), the 2m+1-skeleton will end up in
filtration −m (and similarly linearly in k). In the 1-st slice, everything is periodic by multiplying
by v1, which increases j and � by 1 (and again, similarly in multiples). This is the reason we
chose the filtration in the way specified above. Accounting for all the copies of HZ/2, we get

E1 = HZ/2Mot∗
[
λ,λ−1][σ 2, σ−2][c, c−1][v1, v

−1
1

]
= (KM(F)/2

)
∗[θ ][λ,λ−1][σ 2, σ−2][c, c−1][v1, v

−1
1

]
,

where the dimensions of elements are given by∣∣σ 2
∣∣= 2 − 2γ, |c| = −γ, |v1| = 1 + γ α, |λ| = 1 + γ α − γ − α, |θ | = 1 − α,

and the filtration degrees of all these elements are 0 except

deg
(
σ 2k
)= k

(we list all the dimensions, since with this filtration, the spectral sequence isn’t really a spectral
sequence of rings). But now comparing with the topological case (over the field C, see [17]), we
get

d1(σ 4k+2)= v1c
3θλ−1σ 4k,

so
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E2 = (KM(F)/2
)
∗
[
λ,λ−1][σ 4, σ−4][c, c−1][v1, v

−1
1

]
= E0

(
W∧

I

)[
λ,λ−1][σ 4, σ−4][c, c−1][v1, v

−1
1

]
.

Here we have identified the mα-line of HZ/2∗ with the I -power filtration associated graded
of the Witt ring via Voevodsky’s determination of the mod 2 motivic cohomology of a field
[48] and Orlov–Vishik–Voevodsky’s resolution of the Milnor conjecture [39]. The map from
KT = ΦZ/2KRalg proves that all of these elements are permanent cycles, as claimed. �

We observe that by [28, Corollary 5.2, p. 352],

∞⋂
i=0

In = 0, (83)

and thus the map (78) is always injective.
On the other hand, it is also immediate that (78) is an isomorphism if and only if there exists

an n such that In = 0, which is not true in general:

Proposition 17. If F is any field of characteristic 0, adjoining infinitely many transcendental
variables x1, . . . , xn, . . . , then the field k = F(x1, . . . , xn, . . .) satisfies

In �= 0 (84)

for all n.

Proof. We may consider the inclusion

k ⊂ k[√x1, . . . ,
√

xn]. (85)

This is a Galois extension, with the Galois group a product of n copies of Z/2. Thus, the mod 2
Galois cohomology of k maps to the Galois cohomology with Z/2 coefficients of (85), which is

ΛF2(a1, . . . , an),

with xi mapping to ai . Thus, we see that the symbol [x1, . . . , xn] is non-zero in KM/2(k), which,
by the Milnor conjecture (proved by Voevodsky [45]) implies (84). �

Thus, for the choice of k of Proposition 17, the map (76) is not an equivalence. One may next
ask ([7,27], etc.)

Does the map (77) become an equivalence after completion at 2? (86)

Here the notion of completion at 2 might seem ambiguous, since it could mean localization
LMZ/2 at MZ/2 or holim←− n

(?)/2n. Recall, however, the following result:

Lemma 18. There is a canonical equivalence

LMZ/2E → holim←−
n

E/2n. (87)
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Proof. (Following Bousfield [8], but reproduced to emphasize its independence, to a large de-
gree, of the model structure): First, note that we have a canonical map

E → holim←− E/
(
2n
)
, (88)

and that this map induces equivalence after smashing with MZ/2: because of stability, smashing
with MZ/2 commutes past the holim, so on the right-hand side of (88) we have

holim←−
(
E/
(
2n
)∧ MZ/2

)
, (89)

but the content of the parentheses is

E/2 ∨ ΣE/2, (90)

and the structure map of the homotopy limit is 0 on the second factor (this follows from writ-
ing explicitly the cofibration sequence with respect to multiplying by 2 and then, on the result,
multiplying by 2n).

Thus, (89), which is again the right-hand side of (88) divided by 2 is E/2, and clearly (88)
divided by 2 is the identity (since in each constituent of the holim, we get the identity to the first
summand of (90)).

Thus, (88) is an equivalence after smashing with MZ/2, so it suffices to prove that the right-
hand side of (88) is MZ/2-local. This means that for every spectrum Y with

Y ∧ MZ/2 = 0, (91)

the mapping spectrum from Y to the right-hand side of (88) is 0. Clearly, such a property however
is preserved by the holim, and for each constituent, this follows again from the fact that (91) is
equivalent to 2 :Y → Y being an equivalence. �

Let us also note that LMZ/2 preserves cofibration sequences, and E = KT is “completable”
in the sense that it satisfies

Hom
(
Z/2∞,π∗E

)= 0 (92)

by (83), and the fact that 2 ∈ I . We also immediately see then that the answer to question (86)
is no in general: if F is any field which contains

√−1, then 2 = 0 ∈ WF . Thus, completion at
2 is the identity on the coefficients of KT . On the other hand, putting F := Q(i), we see by
Proposition 17 that for the field F(x1, . . . , xn, . . .), the completion at I is non-trivial on the field
k defined there.

This further suggests restricting quesion (86) to fields of finite transcendence degree. In this
case, we can, indeed, prove that the map (78) becomes iso on coefficients after 2-completion. In
fact, we can prove a more general statement. We already remarked that 2 ∈ I .

Lemma 19. For any field k with cd2k[i] = n < ∞, and for any N > m � n + 1,

2Im + IN = Im+1. (93)
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Proof. The statement is trivial when i ∈ k. Thus, let us assume i /∈ k. First consider the Serre
spectral sequence in mod 2 Galois cohomology for the field extension k ⊆ k[i]. We have

E2 = H ∗
Gal

(
k[i],Z/2

)[([−1])], (94)

where [−1] is the generator of H ∗(Z/2,Z/2) = Z/2[([−1])], and [−1] has bidegree (p, q) =
(1,0). Further [−1] is a permanent cycle in (94), so one proves by induction that

[ − 1] :Ep,q
r → E

p+1,q
r (95)

is an isomorphism for p � r . However, note that En+1 = E∞ for dimensional reasons. Thus, we
have shown that

[ − 1] :Hm
Gal(k,Z/2) → Hm+1

Gal (k,Z/2) (96)

is an isomorphism for m � n+1. By the Milnor conjecture, we can then replace Hm
Gal(?,Z/2) by

Km
M(?)/2, which however is the associated graded object of W with respect to filtration by pow-

ers of the augmentation ideal I . Noting further that 2 ∈ W is represented by [−1] ∈ K1
M(?)/2,

(93) is just a restatement of this fact. �
We note that the book Elman, Karpenko, Merkurjev [9] contains several related statements,

but we could not find the precise statement of Lemma 19.

Theorem 20. The answer to the question (86) is yes on coefficients over a point for fields k

satisfying cd2(k[i]) < ∞.

Proof. By Theorem 16 and the subsequent discussion, it suffices to show that the canonical map

lim←−
n

W/2n → lim←−
n

W/In (97)

is an isomorphism. We shall use Corollary 5.2(3), p. 353 of Lam [28], which asserts that⋂
n

(
φ · W + In

)= φ · W (98)

for any Pfister form φ. Since 2k ∈ W is representable by a Pfister form, Lemma 19 implies that
for every m, there exists an n such that

In ⊆ 2m.

Thus, powers of the ideals 2 and I induce the same uniformity, and our statement follows. �
Comment. We note that an analogue of the theorem for p > 2 in the spirit of [20] is also true, al-
though less interesting. When cdp(F ) < ∞, the completion of W at p is 0 (since W is 2-torsion),
while its completion at the augmentation ideal is 2-complete, and hence the p-completion of (77)
is an isomorphism, both sides being 0.
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6. Motivic Real cobordism

In this section, we propose a construction of Real motivic cobordism. The main comment
toward motivating our construction is this: while the complex conjugation on MU may seem to
be a natural operation, it is not algebraic over C. However, the algebraic construction we propose
must work over all fields, hence also over C. Therefore, another analogy is needed. The analogy,
using the involution on matrices

A �→ (
AT
)−1

is strongly suggested by Hermitian K-theory. Using this construction, one may produce ana-
logues of Thom spaces, but additional technical difficulties arise in stabilization. We present
below one possible solution to this problem, and the new phenomena it suggests.

6.1. The construction of motivic Real cobordism

Consider the hyperbolic quadratic form on k2n:

q(x1, . . . , x2n) = x1x2 + · · · + x2n−1x2n. (99)

The associated symmetric bilinear form is

b
(
(x1, . . . , x2n), (y1, . . . , y2n)

)= n∑
i=1

x2iy2i−1 + x2i−1y2i . (100)

The b-adjoint of a matrix A = (aij )
n
i,j=1 is an n × n matrix ATb such that

b(Ax,y) = b
(
x,ATby

)
. (101)

Explicitly, putting ATb = (bij )
n
i,j=1, one has

b2i,2j = a2j−1,2i−1, (102)

b2i−1,2j−1 = a2j,2i , (103)

b2i,2j−1 = a2j,2i−1, (104)

b2i−1,2j = a2j−1,2i . (105)

There is an involution on the algebraic group GL2n given by

A �→ (
ATb
)−1

. (106)

Note that then the resulting group Z2 � GL2n acts on the quadric

Qt := V
(
x, y

∣∣ b(x, y) = t
)
, t ∈ k×, (107)
b
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where V (xi |E) (sometimes further abbreviated V (E)) denotes the locus of the equations E in
the variables xi , and the involution on (107) is

x ↔ y. (108)

Recall that Qt
b has the non-equivariant A1-homotopy type of

A2n − {0} � S(2n−1)+2nα. (109)

A non-equivariant A1-equivalence from (107) to (109) is the projection

(x, y) �→ x.

Lemma 21. There is a Z/2-equivariant isomorphism

Q1
b(x, y) → Qt

b

(
x′, y′), t ∈ k×

given by

x′
2i = tx2i , y′

2i = ty2i ,

x′
2i−1 = x2i−1, y′

2i−1 = y2i−1. (110)

Furthermore, this isomorphism becomes Z/2 � GL2n-equivariant, with respect to an isomor-
phism

ψ : GL2n → GL2n, (aij ) �→ (
a′
ij

)
,

where

a′
2i,2j = a2i,2j , a′

2i,2j−1 = ta2i,2j−1

a′
2i−1,2j−1 = a2i−1,2j−1, a′

2i−1,2j = t−1a2i−1,2j . (111)

Proof. A direct computation. �
Let us now define the join X ∗ Y of G-A1-spaces X,Y as the colimit of the diagram

X × Y × {0} X × Y × A1 X × Y × {1}

X × {0} Y × {1},
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where the horizontal arrows are inclusions, and the vertical ones are projections. Define further
the unreduced suspension X of G-A1-space X as the colimit of the diagram

X × {0} X × A1 X × {1}

∗ ∗.

It is possible to show that ∗ defines a symmetric monoidal structure. The join of n objects
X1, . . . ,Xn can be canonically identified with the coend of

XS ×C AS, (112)

where C is the category of non-empty subsets of {1, . . . , n} and inclusions,

XS =
∏
i∈S

Xi

is a contravariant functor by projection, and

AS = V

(
x1, . . . , xn

∣∣∣∑xi = 1, xi = 0 for i /∈ S

)
(113)

is a covariant functor by inclusion.
We would like to claim that

X ∗ Y ∼= X ∧ Y . (114)

Unfortunately, this is false. A partial remedy can be obtained as follows. Let X̃ be the functorial
fibrant replacement of X. We can then construct a contractible operad D and a natural equiva-
lence

D(n)+ ∧ X̃1 ∧ · · · ∧ X̃n → ˜X1 ∗ · · · ∗ Xn (115)

which satisfies the obvious operad action diagrams (associativity, unitality and equivariance).
The operad D can be constructed as follows. Consider the diagram of A1-spaces

A(n) = (AS)S

over S ⊂ {1, . . . , n} (see (113)). The arrows of the diagrams are given by inclusions of the sets S.
Let

B(n) (116)

be the fibrant replacement of A(n) in the corresponding diagram category of based A1-spaces.
Then we can consider

B(1) ∧ · · · ∧ B(1) (117)
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as an object in the same category of diagrams, where (?)S is(
B(1)

)
ε1

∧ · · · ∧ (B(1)
)
εn

,

where εi is 1 or 0 depending on whether i ∈ S or not. We can then let D(n) be the A1-space of
maps from the diagram A1-space (116) to the diagram A1-space (117).

Now write Qb = Q1
b . Writing more specifically bn instead of b for the bilinear form on the

space k2n, we have by Lemma 21 a canonical map

Qbn1
∗ · · · ∗ Qbnk

→ Qbn1+···+nk
, (118)

which satisfies the obvious commutative, associative and unital properties; the map is obtained
by applying the morphism Qbni

to Q
ti
bni

where ti are the coordinates of the join (112) (note that

the map is defined and Z/2-equivariant even in the case ti = 0), and we are using the obvious
inclusion

Q
t1
bn1

× · · · × Q
tk
bnk

⊆ Qbn1+···+nk
for t1 + · · · + tk = 1. (119)

Therefore, if we denote

S(n) := Q̃bn,

then we get canonical maps

D(n)+ ∧ S(n1) ∧ · · · ∧ S(nk) → S(n1 + · · · + nk), (120)

which satisfies the obvious commutativity, associativity and unitality properties.
We will deal with the operad D later. For now, we need an analogue of the construction (120)

to Thom spaces. That is complicated by the fact that the isomorphism (111) is not defined for
t = 0, so the map (118) defined via (119) cannot be made GL2n1 × · · · × GL2nk

-equivariant by
twisting the group action on the target by the isomorphisms ψ of Lemma 21.

Fortunately, the quadrics Q0
b are contractible (they are cones), so they may be collapsed to

a point without altering the homotopy type. More precisely, we do the following. To simplify
notation, write

ui = x2iy2i−1 + x2i−1y2i ,

vj = un1+···+nj−1+1 + · · · + un1+···+nj
.

Let us write

Q(n) = Q1
bn

.

Now denote by Q′(n1, . . . , nk) the sheaf obtained from Q(n) by collapsing, by projection, for
non-empty subsets

S ⊆ {1, . . . , k}
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the subschemes

V

(
vj = 0 for j ∈ S,

∑
j /∈S

vj = 1

)
(121)

to

∗ × V

(∑
i /∈S

vj = 1

)
(122)

(i.e. we mean all the constituent variables of every vj , j ∈ S, are omitted). Note that some justifi-
cation is needed to make the construction, since the subschemes (121) are not regular. We proceed
in the usual way, i.e. choosing GL2n1 × · · · × GL2nk

-equivariant resolution of singularities, and
then collapsing the inverse images. (Obviously, this can be done in the present situation.)

Lemma 22. The natural map

Q(n) → Q′(n1, . . . , nk) (123)

is a Z/2 � (GL2n1 × · · · × GL2nk
)-equivariant equivalence.

Set

S(n) = Q̃(n),

T ′(n1, . . . , nk) = B∧
(
S0, (GL2n1 × · · · × GL2nk

)+, ˜Q′(n1, . . . , nk)
)
,

T (n1, . . . , nk) = B∧
(
S0, (GL2n1 × · · · × GL2nk

)+, Q̃(n)
)
.

Then we have Z/2-equivariant maps

D(p)+ ∧ T ′(n11, . . . , n1q1) ∧ · · · ∧ T ′(np1, . . . , npqp )
�−→ T ′(n11, . . . , npqp ), (124)

T (n1, . . . , nk)
�−→ T ′(n1, . . . , nk), (125)

T (n11, . . . , npq1) → T (n11 + · · · + n1q1 , . . . , np1 + · · · + npqp). (126)

The maps (124), (125), (126) are unital, associative and equivariant. Here equivariance means
with respect to wreaths of symmetric groups which preserve the notation with all possible rein-
dexings. For example, in (124), the general element of the equivariance group is a wreath of a
permutation of p elements with the wreaths of permutations of q1, . . . , qp elements, with the
permutations of n11, . . . , npqp elements, etc.

Additionally, we have Z/2-equivariant maps

S(n1 + · · · + nk) → T (n1, . . . , nk), (127)
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which satisfy permutation equivariance, and compatibility with all the structure. The diagram
worth mentioning explicitly is

D(p)+ ∧ S(n1) ∧ · · · ∧ S(np) S(n1 + · · · + nk)

D(k)+ ∧ T ′(n11, . . . , n1q1) ∧ · · · ∧ T ′(np1, . . . , npqp )
�

T ′(n11, . . . , npqp ),

(128)

where

ni = ni1 + · · ·niqi
,

which involves (120), (124).
We are now ready to get rid of the operad D. Indeed, this can be done formally as follows.

Consider the structure on the objects T (?), T ′(?), S(?) specified by (124), (125), (126), (127),
(128) (and all the implicit coherence diagrams we did not spell out). Let MD denote the monad
defining such structure, and let M∗ denote the monad defining the same structures with D re-
placed by the operad ∗ where ∗(n) = ∗. Then the bar construction

B(M∗,MD, ?)

converts our structure to one where D is trivial, i.e.

D(n) = ∗. (129)

Remark 23. We should remark here one important difference between our case and the situation,
say, of May [35]. In [35], the map of monads MD → M∗ would not be an equivalence, since the
construction of the monad involves factoring the space D(n) by the action of the symmetric
group Σn. When dealing with symmetric objects, however, the symmetric group action is a
part of the structure, and hence, in effect, the construction of the monad does not involve this
factorization. Hence, the monads preserve equivalence of operads (by which we mean a map of
operads which is an equivalence space-wise).

Hence, we may assume (129) without loss of generality.
We will next show that we may further “rectify” to produce an algebra over the monad M∗

with the additional property that

the map (125) is an isomorphism. (130)

Before showing how to accomplish that, let us comment on the significance. Note that if (130)
holds, then we simply have Z/2-equivariant maps

T (n1) ∧ · · · ∧ T (nk) → T (n1 + · · · + nk) (131)

which are associative, unital and equivariant with respect to all wreaths of k permutations of
n1, . . . , nk elements, along with a Z/2 × Σn-equivariant map

S(n) → T (n) (132)
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together with a commutative diagram

S(n1) ∧ · · · ∧ S(nk) S(n1 + · · · + nk)

T (n1) ∧ · · · ∧ T (nk) T (n1 + · · · + nk).

(133)

Note that (131), (132), (133) define a symmetric monoid in the category of Z/2-equivariant S(1)-
symmetric spectra. S(1) is a model of TZ/2. This object can be converted to a Z/2-equivariant
TZ/2-E∞ ring spectrum by the methods of Jardine [22]. Thus, we have

Theorem 24. The above construction produces a Z/2-equivariant motivic E∞ ring spectrum,
which we denote by MGLR.

Comment. 1. In analogy with the fact that the geometric fixed point spectrum of Landweber’s
Real cobordism is the unoriented cobordism spectrum, by applying the geometric fixed point
functor (Section 3.3), we may define a (non-equivariant) motivic spectrum

MGLO := ΦZ/2MGLR. (134)

Defining this analogue answers a question of Jack Morava.
2. There is also a purely topological application of our construction. There is certainly a

topological realization of our definition over the field F = C, which can be shown to give a Z/2-
equivariant spectrum equivalent to the spectrum MR of [17]. On the other hand, our construction
for F = R also has a topological realization, which is properly viewed as a Z/2×Z/2-equivariant
spectrum over the complete universe, with underlying non-equivariant spectrum MU . The two
Z/2-generators act on matrices by A �→ A, A �→ (AT )−1, respectively. (Note that this is not the
same thing, since we consider adjunction with respect to the hyperbolic form.) We denote this
spectrum by ML, in analogy with Karoubi’s L-theory [24], (recall [15, Appendix], that this is not
the same as the L-theory spectrum used in surgery theory, which, for rings which contain 1/2,
is equal to KT ), which is viewed properly as a Z/2 × Z/2-equivariant spectrum, indexed over
the complete universe, with underlying non-equivariant spectrum K . We will investigate the
spectrum ML in another paper.

Note that to finish the proof of the theorem, we still need to describe a construction which
converts (125) into isomorphisms. This is accomplished by a variant of a construction known as
May–Thomason rectification. We consider two categories. Recall that we are assuming D(n) = ∗.
We work Z/2-equivariantly throughout. A category K is the category of tuples T ,T ′ with
maps (124), (125), (127). These maps are required to satisfy the relevant permutation equiv-
ariances, and unitality and symmetry in the case of (124), and the diagram (128). A subcategory
L consists of all such structures where (125) is an isomorphism. Then we have two functors

R : L → K, L : K → L (135)

where R is right adjoint to L. In effect, R is the inclusion, and L is the functor which replaces T

with T ′.
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Then we have also monads MK , ML in the categories K, L respectively which define the
structures with the additional structure map (126), satisfying all the requirements stated above.
One sees that these monads preserve equivalences, so one has an equivalence

MK → RMLL. (136)

Again (see Remark 23 above), in contrast with the situation [37,36], we are not required to
index the operations (126) by an E∞-operad, because, essentially, the monads associated with
operads in the context of symmetric objects do not involve factoring through the action of Σn.
The required rectification functor from K to L is then the two-sided bar construction of monads

B(MLL,MK, ?). (137)

6.2. Real algebraic orientation, formal group laws, and the Real motivic spectra series

In this subsection, we would like to mention some extremely powerful implications of Theo-
rem 24. Essentially, we can now construct motivic analogues of all the “Real” spectra constructed
in [17]. First, we develop the notion of a Real-orientation of a Z/2-equivariant motivic spectrum.
Recall the Z/2-equivariant algebraic group G1/z

m defined in Section 4.1 above. Then we have a
natural inclusion

ι :S1+γα � ΣG1/z
m → BG1/z

m . (138)

Naively, it may seem appropriate to define Real-oriented motivic spectra as Z/2-equivariant
motivic commutative associative ring spectrum (not necessarily in any rigid sense) E such that
1 ∈ E0 is in the image of the map

ι∗ : Ẽ1+γαBG1/z
m → Ẽ1+γαS1+γα.

When this condition is satisfied, call E a G1/z
m -oriented Z/2-equivariant motivic ring spectrum.

Proposition 25. When E is a G1/z
m -oriented Z/2-equivariant motivic spectrum, then E∗(1+γα) is

a commutative ring.

Proof. (A variation of Lemma 2.17 of [17].) We must show that in the coefficients E∗, the map

ε : G1/z
m → G1/z

m (139)

given by z �→ 1/z induces multiplication by −1. However, the point is that taking the unreduced
suspension of (139), by Real orientability, the map into coefficients will factor through

π1+γαBG1/z
m . (140)

On (140), we have two mutually distributive unital group structures, one coming from the homo-
topy group, one from the multiplication on G1/z

m . By the standard argument, they must coincide.
Now ε resp. −1 are the inverses of the element given by the canonical inclusion in the two group
structures. �
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Proposition 26. When E is a G1/z
m -oriented Z/2-equivariant motivic spectrum, then

E∗BG1/z
m = E∗[[u]], (141)

where u is the class obtained from the definition of Real orientation. Additionally, the multipli-
cation on BG1/z

m induces a formal group law on the commutative ring

E∗(1+γα).

Proof. This is precisely analogous to the proof of the corresponding statement in [17]. �
On the other hand, with this definition, we don’t know how to construct Chern classes, or prove

universality of MGLR (in fact, we don’t even know that MGLR itself satisfies the condition).
The reason for this difficulty is, roughly speaking, that our theory has a Z4-grading: intu-

itively, in a well behaved definition, the α- and γ -graded parts of the theory should also make an
appearance. From this point of view, it is more reasonable to consider the following condition:

The unit class in Ẽ1+γ+α+γαS(1) extends to a class wE ∈ Ẽ1+γ+α+γαT (1). (142)

(Note that since BGL2 is connected in the Z/2-equivariant motivic sense, there is a canonical (up
to A1-homotopy) “fiber” inclusion S(1) ⊂ T (1).)

The trouble is, however, that we do not know if the condition (142) implies Gm-orientability.
What we do have, is a canonical map in the Z/2-equivariant stable motivic homotopy category

S2+2γα � G̃1/z
m ∧ G̃1/z

m → G̃1/z
m × G̃1/z

m → B
(
G1/z

m × G1/z
m

)→ BGL2 → T (1). (143)

(The last arrow is the 0-section.) Composing (143) with the cohomology class wE , we obtain an
element

λE ∈ π1+γα−γ−αE. (144)

Definition 27. We call a Z/2-equivariant motivic (not necessarily strictly) commutative asso-
ciative unital ring spectrum Real-oriented if it satisfies the condition (142), and if the class λE

of (144) is invertible as an element of the coefficient ring.

Example. The Z/2-equivariant motivic spectrum MGLR clearly satisfies the condition (142).
It follows that the Z/2-equivariant motivic spectrum MGLR[λ−1] (which can be constructed as
an E∞-ring spectrum by the methods of [10]) is Real-oriented. We do not know if the Z/2-
equivariant motivic spectrum MGLR is Real-oriented.

Now by Proposition 26, there exists a canonical map

L → MGLR∗
[
λ−1], (145)

where L is the Lazard ring, and in the standard grading of the Lazard ring, an element of degree
2k is carried by (145) to an element of degree k(1 + γ α). Now since MGLR is additionally
an E∞-ring spectrum, we may apply the constructions of [10], in particular “kill” or “invert”
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any sequence of elements in L in the spectrum MGLR[λ−1]. In analogy with similar spectra
in [17], we have in particular a Real algebraic Brown–Peterson spectrum BPR, Real algebraic
Johnson–Wilson spectra BPR〈n〉alg, the algebraic ER-theories ER(n)alg, and algebraic Real
Morava K-theories KR(n)alg (these occur one prime at a time, with most interest, as always, in
the prime 2).

Remark. Finally, it is worth remarking that using the method of Hill, Hopkins and Ravenel [13],
in certain cases, the motivic Real cobordism spectrum can be used to construct, in a completely
geometric way, examples of (homotopy) fixed point spectra with respect finite subgroups of
Morava stabilizer groups larger than Z/2. While the precise role of such objects in motivic stable
homotopy theory is not yet known, in view of the recent paper of Behrens and Hopkins [3], such
spectra may be considered a first step on a long road toward the conjectured motivic analogues
of topological automorphic form spectra [4]. The point is that the construction [4] of topological
automorphic forms relies heavily on Lurie’s machinery, which in turn seems to need calculational
input currently not available in the motivic case.

Proposition 28. The spectrum KRalg is Real-oriented.

Proof. In effect, this amounts to proving the following result, which is also of independent in-
terest as a geometric construction of some of the periodicity maps of Theorem 10. �
Lemma 29. The canonical inclusions SL2 → GL∞ resp. G1/z

m → GL∞ (here, as before, we

consider hyperbolic involution on SL2,GL∞), viewed as elements of K̃Ralg(S1+γ+α+γα) resp.

K̃Ralg(S1+γα) are invertible elements in K̃Ralg∗.

Proof. We need to prove that multiplications by the specified elements are isomorphisms in
KRalg-cohomology. By a trick of Max Karoubi’s [26, Lemma 2.4, Proposition 2.5, p. 276], it
suffices to prove this statement with KRalg replaced by L-theory, or topological Hermitian K-
theory over R. This theory is the “topological realization” of KRalg for F = R, and can be viewed
as a Z/2×Z/2-equivariant spectrum over the complete universe, whose 0-space is homotopically
equivalent to BU ×Z, and the two Z/2-generators act on matrices by A �→ A and A �→ (AT )−1,
respectively. (Again, note that the actions do not coincide, since the adjunction is with respect to
the hyperbolic form; in some sense, therefore, L-theory combines the information of both Real
and Z/2-equivariant K-theory.) The periodicity of this theory is treated by Max Karoubi in [24,
part III]. While the Z4-graded indexing is not discussed in [24] and this periodicity is left as an
exercise (Proposition 3.3), the statement amounts to observing that the representation given in
the statement of our lemma define irreducible Clifford modules of the given signatures (in the
case of SL2, the “equivariant K-theory” Z/2-generator acts by minus on one of the coordinates).
This follows, nevertheless, from the well-known fact that increasing signature by (1,1) or (2,2)

corresponds to tensoring the Clifford algebra with an algebra of matrices (again, the other Z/2-
generator acts by minus on one of the coordinates in the (2,2)-case). �

We will next prove universality of MGLR[λ−1] among Real-oriented motivic spectra. We will
need a couple of preliminary lemmas. First, let us consider the bilinear form

b(x, y) = x1y1 − x2y2 + · · · ± xnyn (146)
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(we continue using the convention x = (x1, . . . , xn), y = (y1, . . . , yn), and the involution
xi ↔ yi ; the signs in (146) alternate). Using this notation, let

Qn := Q1
b.

Then we have, in particular,

Q2n
∼= Qbn = Q(n). (147)

Consider also, from now on, GLn with involution A �→ (AT )−1, where the transposition T is with
respect to the form (146). Note that, as usual, in this notation, GLn acts equivariantly on Qn.

Lemma 30. The action of GLn on Qn is transitive, and the stabilizer of the point x0 =
(0, . . . ,0,1), y0 = (0, . . . ,0,±1) is GLn−1 ⊂ GLn (by inclusion of the first n − 1 coordinates).

Proof. The only non-trivial statement is the transitivity. Clearly, GLn moves any point on Qn to
a point (x, y) where x = (0, . . . ,0,1). Then we must have yn = ±1 (the sign being determined
by the parity of n). If we set

A =

⎛⎜⎜⎜⎝
1

1
. . . . . . . . . . . .

1
a1 . . . an−1 1

⎞⎟⎟⎟⎠ .

Then

(
AT
)−1 =

⎛⎜⎜⎜⎝
1 −a1

1 +a2
. . . . . . . . . . . .

1 ∓an−1
. . . 1

⎞⎟⎟⎟⎠ .

Thus, we see that

A

⎛⎜⎝
0
. . .

0
1

⎞⎟⎠=
⎛⎜⎝

0
. . .

0
1

⎞⎟⎠ ,
(
AT
)−1

⎛⎜⎝
cy1
. . .

yn−1
1

⎞⎟⎠=
⎛⎜⎝

0
. . .

0
1

⎞⎟⎠ ,

when ai = (−1)i−1yi . �
Lemma 31. The stabilizer group inclusion from Lemma 30 induces an equivalence

B(∗,GLn−1,∗) → B(∗,GLn,Qn).

Proof. We use the fact that Qn is covered by Zariski-open sets Ui such that if we denote by
pn : GLn → Qn the projection

A �→ A
(
x0, y0),



P. Hu et al. / Advances in Mathematics 228 (2011) 434–480 477
then (
p−1

n Ui → Ui

)∼= (Ui × GLn−1 → Ui).

We may put Ui = {(x, y) ∈ Qn|xiyi �= 0} (the assertion is proved by the same method as
Lemma 30). �
Theorem 32. Let E be a Real-oriented Z/2-equivariant motivic spectrum. Then

(1) We have

E∗(BG1/z
m × · · · × BG1/z

m

)= E∗[[t1, . . . , tn]], tk ∈ E1+γαBG1/z
m (148)

and

E∗(BGLn) = E∗[[c1, . . . , cn]
]
, ck ∈ Ek+kγ α(BGLn) (149)

such that the canonical inclusion G1/z
m × · · · × G1/z

m ⊂ GLn maps ck to the k-th elementary
symmetric polynomial σk(t1, . . . , tn).

(2) There exists a map of (non-strict) ring spectra

MGLR
[
λ−1]→ E, (150)

which induces the Real orientation on E.

Proof. First note that (1) implies (2). This is because by Lemma 31, we have a cofibration
sequence

BGL2n−1 → BGL2n → T (n), (151)

where the first map corresponds to the inclusion of the first 2n − 1 coordinates. By (1), in E∗-
cohomology, (151) induces a short exact sequence which we know explicitly. c2n is in the kernel,
and gives a “Thom class”

Σ−n(1+γ+α+γα)T (n) → E. (152)

Also by (1), these maps are compatible (up to homotopy) under the structure maps of MGLR
(and also under the ring structure), so passing to the homotopy direct limit over n gives a ring
map

MGLR → E.

This factors into (150) because we assume λ is invertible in E.
To prove (1), first note that we may factor (143) through

S1+γα ∧ BG1/z
m → T (1),

which gives a G1/z
m -orientation, which proves (148) by Proposition 26, as well as (149) for n = 1.
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The challenge in proving (149) for general n is that the usual tools (such as Schubert cells) do
not appear to be equivariant under the Z/2-involution. Our main tool is the observation that the
direct limit

holim−→
n

Qn ∗ · · · ∗ Qn (153)

is contractible, and we may obtain a spectral sequence in E∗-cohomology by filtering

B
(
∗,GLn,holim−→

n

Qn ∗ · · · ∗ Qn

)
� B(∗,GLn,∗) (154)

by the number of factors of the join:

Fk := Fk

(
B(∗,GLn,holim−→

n

Qn ∗ · · · ∗ Qn)
)

= B(∗,GLn,Qn ∗ · · · ∗ Qn︸ ︷︷ ︸
k+1 factors

). (155)

Note further that by Lemma 31,

F0 � BGLn−1. (156)

In fact, more generally, thinking of

B(∗,GLn,Qn) → B(∗,GLn,∗)

as a “sphere bundle”, and taking the “induced bundle” ξ via the inclusion corresponding to the
first n − 1 coordinates

GLn−1 ⊂ GLn,

we can then interpret Fk/Fk−1 as the “Thom space” of the k-fold Whitney sum

ξ ⊕ · · · ⊕ ξ.

Now this bundle is “E-orientable” via the inclusion

GLn−1 × GL1 → GLn

(and the assumption of λ being invertible in E∗), so using this we may deduce that the E∗-spectral
sequence associated with (155) (which one can show to be a spectral sequence of E∗-algebras)
has

E1 = E∗BGLn−1[cn]. (157)

Thus, we want to prove our statement by induction, showing that the spectral sequence collapses
to E1.
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To this end, we use (148) and comparison with the corresponding spectral sequence with GLn

replaced by

G1/z
m × · · · × G1/z

m︸ ︷︷ ︸
n times

.

One proceeds in the same way, and shows that this spectral sequence, to which (157) maps, has

E1 = (E∗[[t1, . . . , tn]]/(t1 · · · · · tn)
)[cn]. (158)

By the induction hypothesis, the map from (157) to (158) is an injection, while (158) collapses
by (148). Thus, (157) collapses, concluding the induction step. �
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