

II. And this one

. . . .

and its ring structure.

• • • • • • • • •

tistory

LEJ Browner

Heinz Hopf: 1927 $\pi_m(S^m) = \mathbb{Z}$

1931 1, V, J essential

Hans Frendenthal 1938 stable stams $\pi, 5 = \mathbb{Z}/2$

Lev Pontryagin, George V. Whitehead 1950 $\pi_2 S = \frac{1}{2}$

Hiroshi Toda, JP Surre 1952-58 $\pi_n S$, $3 \le n \le 13$ (Toda 1962: $n \le 19$

איזאיזאין איז אַראַנאַראַנע

Mamoru Minura 1963 w/ Tida #205 1965

 $\pi_{21}S_{3}\pi_{22}S$ (EK#0)

J. Frank Adams 1958 Adams spectral Fequence

J. Peter May 1965 n=28 except n=23

Mark Mahourald, Martin Tangora 1967 n≤37, n∈ {39, 42, 43, 44} hat

Differentials corrected w/ Michael Barratt (1970) and by R. James Milgram (1972) => ne 44 except 37,38

Bob Bruner New Adams differential $\Rightarrow \pi_{37}S, \pi_{38}S$

Stanley Kochman 1990 n=53 except 51, 58≤n=60; n= 55 corrected with Mahowald (1995)

Then The ring structure of $\pi_{*}5$ for $*\leq 24$ is given by Ι. $a = \mathbb{Z} \quad \bullet = \mathbb{Z}_{2}$ $\circ = \mathbb{Z}_{16} \quad \odot = \mathbb{Z}_{32}$ K y J J T T T T T T T - CE $v^{3} = \eta^{2} \sigma + \eta c = \eta (\eta \sigma + \varepsilon)$. (a) We already know $E_5(5) = E_{ab}(5)$ for the Adams spectral sequence in this range. Math-d (b) We know π, j and π, tmf in this range.

(c) Consider the ring maps
$$\begin{bmatrix} \pi_{s} \\ 1 \\ \pi_{s} \\ 5 \end{bmatrix}$$
 to deduce product
structure on $\pi_{s} \\ \downarrow \\ \pi_{s} \ twf$
Recall Fiber sequence $j \xrightarrow{4^{3}-1}$ by $j \\ 4^{3}-1$ by $j \\ 5 \end{bmatrix}$
 $\begin{bmatrix} 4^{3}-1 \\ 1 \\ j_{3} \\ j_{4} \\ j_{4} \\ j_{1} \\ j_{3} \\ j_{4} \\ j_{4} \\ j_{1} \\ j_{1} \\ j_{2} \\ j_{3} \\ j_{4} \\ j_{4} \\ j_{1} \\ j_{1} \\ j_{2} \\ j_{3} \\ j_{4} \\ j_{4} \\ j_{1} \\ j_{1} \\ j_{2} \\ j_{5} \\ j_{1} \\ j_{1} \\ j_{1} \\ j_{1} \\ j_{2} \\ j_{1} \\ j_{1} \\ j_{2} \\ j_{1} \\ j_{1} \\ j_{2} \\ j_{1} \\ j_{1}$

Furthermore, j -> ko -> bspin induces e: π, 5 -> π, j surjective with additive section, and: PROPOSITION 11.49 (cf. [8, Prop. 12.14 and Ex. 12.15]). The products of the j_n are given as follows: $j_{8k-1} \cdot j_{8\ell+1} = j_{8k+1} \cdot j_{8\ell-1} = \eta j_{8(k+\ell)-1}, \ j_{8k+1} \cdot j_{8\ell+1} = \eta j_{8(k+\ell)-1}$ $\eta j_{8(k+\ell)+1}$, and the remaining products are zero. പ Slogen: $j_{7}j_{1}=j_{1}j_{7}=\eta j_{7}$, $j_{1}=\eta j_{1}$ (indicer mod 8)

Also recall the timp ring structure $B\kappa = \epsilon \kappa$ In "constellation form", this becomes

Now compare The The The S -> The time e 3 π \sim T, tmf

Interns of Idams charts

L L

 $\pi_q S = \frac{2}{2} \left\{ \mu, \eta \varepsilon, \eta^2 \sigma \right\}$ with e(u)=jg $e(\eta^2\sigma) = \eta^2/7$ By E2 (5) ring structure, $v^{3} = \eta^{2}\sigma + h.o.t.$ Thus u3 = x u + y g = + y20 for some x, y e \$0, 15. $e(v^3) = v e(v^2) = 0 \quad \text{so}$ $O = e(x\mu + y\eta e + \eta^2 r)$ $= x j_q + y \eta e(\varepsilon) + \eta^2 j_7$ > x=0, y=1, $\eta e(\varepsilon) = \eta^2 [7]$ Thus $v^3 = \eta \varepsilon + \eta^2 \sigma$.

: For $* \leq 12$, class; cal arguments with j suffice for ring structure. tmf starts to shine at $\pi_{15} \leq .$ π₁₅S: For *≤ 14, • $E_{ab}(\leq)$ = $F_2\{h_0^k h_4 \mid 3 \leq k \leq 7\} \oplus F_2\{h_1 d_0\}$ · hohy detects p, h, do = yK with 2 yK=0 hd. hd. hd. $\implies \pi_{15} S = \frac{2}{2} \{\eta \kappa\} \stackrel{\textcircled{\tiny{\baselineskip}}}{\Rightarrow} T_{15} S = \frac{2}{2} \{\eta \kappa\} \stackrel{\textcircled{\tiny{\baselineskip}}}{\Rightarrow} T_$ • $\varepsilon \cdot \rho = 0 \in \pi_{23}S$ • $\iota(\rho) = 0 \in \pi_{15} \operatorname{tmf} = \mathbb{Z}_{2}\{\eta_{k}\}$ determine ρ up to an odd multiple (Argument with $tmf/s \Rightarrow (\iota(\rho)=0 \Rightarrow \epsilon \rho = 0))$ ($\eta \epsilon \kappa \neq 0 \epsilon \pi_{23} S \Rightarrow (\epsilon \rho = 0 \Rightarrow \iota(\rho) = 0)$) $p := J(gen \pi_{15}SO).$

$e(p) = j_{15}$ generates $\pi_{15} j = \frac{7}{32} j_{15} j$
Now check ring structure $v \in$ $\eta \sigma^4 = 0$ by quadratic construction on $\sigma: S^7 \longrightarrow S^4$.
• $e(\sigma \varepsilon) = \eta \sigma j_{7} = 0 \in \pi_{15}(j) \implies \sigma \varepsilon \in ker(e) = \{0, \eta \kappa\}$
 Have (σ)=0 and (ηκ) ≠0, so σε ≠ ηκ.
Fin with $\xi K \in \pi_{22} S$: • $U^2 K = 4\bar{K} \implies U^3 K = 4U\bar{K}$ detected by h, Pdo
$0^{3} = \eta \varepsilon + \eta^{2} \sigma * \eta^{2} \sigma K^{z} D \Longrightarrow 0^{3} K = \eta \varepsilon K = 40 \overline{K} \neq 0$
• In particular, $\varepsilon K \neq 0$ detected by Pdo, hence $\varepsilon K = \eta^2 \overline{K}$.