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Preface

This is the first ofaseries of altogether three or
four parts of lecture notes on some aspects of the
representationtheory of finite groups. It contains
a study of the prime ideals of the Burnside ring
(Grothendieck ring of permutation-representations)
of a finite group (Chapter I) and applications of
its results to the study of induced representations,
which are developed in the (categorical) framework
of the theory of Mackey-functors (Chapter II).

As an appendix I have included two papers, in which
our theory is applied to the study of Witt rings.
They have been written already in spring 1971
(about half a year before these notes, on the

occasion of the 60th

birthday of Ernst Witt) and
thus can be read more or less independently of
Chapter I and II., It may .even be reasonable to
look at them first, to get a first impression of
some more concrete aspects of our theory., After
having developed the fundamental concepts in the
first part we will study a new technique of mul-
tiplicative inductionprocesses in the second part -
and this study will indeed be rather technical. In

the third part we will apply our fundamental concepts

(Part I) and our technique of multiplicative induction



maps (Part II) to the study of (especially integral
and modular) group respresentations, In a possible
fourth part we may iﬁoorporate in our study also

the theory of monomial permutation representations
and its applications, as well as some further spedanl
results on various aspects of the structure of the

Burnside ring,

Bielefeld, den 1,12,1971 Andreas W.,M, Dress



§ 1 G-sets

Generally groups occur as symmetry- or automorphism-
groups of various (intra- or extramathematically)
structured objects, Thus they occur together with a
natural action on something. In the most simple case
of course this something is a finite set. This is the
situation, we want to consider now, but from a slight-
ly different point of view, starting with an abstractly
given group and considering arbitrary finite sets, on
which this group acts,

So let G be a finite group. A G-set is a finite set S,
on which G acts from the left by permutations, i.e. we

have a map G X S + S : (g, s) » gs with es = 3 (e the

neutral element in G) and g(hs) (gh)s for all
g, h € G, 8 € S,
Zecause for any g€G the map g£:S - S:s » gs has an

1: S*S: s = g-1sp

(right- and left-) inverse, given by g
aii these maps are automorphisms of S,
There are many natural examples of G-sets:

For instance the group G itself can be considered as

a G-set in two different ways, either by leftmultipli-
cation: G X G » G : (g, x) P gx or by conjugation:
CXG->G: (g, x)pegxeg .

The first case can be generalized by considering for



any subgroup U £ G the set G/U of left coséts

xUc G (x € G) with G x G/U =» G/U defined by

(g, xU) » gxU.

For U = E we can identify G/E with G, where G

is considered as a G-set via left-multiplication.

Instead of G/G we write also * or *; and call

this the trivial G-set. We also write %*; for the

subgroup U & G considered as an element in G/U.
Furthermore there are many natural ways,

to build up new G-sets out of given ones:

For any two G-sets S and T the disjoint union

S UTis a G-set in a natural way as well as

the cartesian product S X T (with diagonal

G-action: g(s, t} = (gs, gt)).

Next looking at the definition of the G-set G/U

as a set of subsets of G (= G/E) one may be led

to consider quite generally the set %(S) of all

subsets of a given G-set S or the set A (S) of

all subsets T € S with exactly i elementis (|T| = i)
as G-sets by defining gT = {gtgt € T§ for any
£ € G, T ¢ S. (0f course |T| = |gT}|, so A*(s) is

indeed a welldefined G-set).

Finally for any two G-sets S and T one can con-

sider the set ST of all set-theoretic maps of T

into S as a G-set, if one defines G X sT 5 sT . (g,f) » gf

by (gf)(t) = g(£(g”'t)) for all g € G, £ € ST, t € T.



of ooﬁrse all these constructions are related
to each other in many ways. For instance the canonical
interpretation of S' as a subset of B(T x S) (identify
£ € ST with its "graph" T = {(t, £(t)) € T x S |t€T} € T x S)
is compatible with the G-structures on both sets and thus
makes the last case appear as a special case of foregoing
one , on the other hand for S = ¥ (J * one can identify
sT with P(T), so the definition of sT seems to be the
mors general one,
But instead of playing around like this, to find out
the most fundamental constructions and examples, it
seems more appropriate to study the properties of the
above examples and constructions and to clarify their
relations systematically by considering G-sets as ob~-
Jects in a category. This will be done in the next
section.
But before we come to this, I want to prove at least
one proposition in this section. For this purpose 1
have to introduce one more notion: the orbitspace G\S
of a G-set 5 is the set of equivalence~classes with
respect to the equivalence-relation g on S, aefined
by: s € s w dg € G : gs = s' (prove, that this is
indeed an equivalence-relation!). Mapping any element
s € S onto its equivalence-class m G\S defines a map
P : S = G\S with p(gs) = p(s) for all g € G and it
is easy to see, that any G-invariant map £ : S = M
into some set M (i.e. a map with f (gs) = £ (s) for

all g € G) factors uniquely through p : S - G\S.



We want to prove:

Proposition 1.1: The orbitspace of G/U X G/V

(U, V arbitrary subgroups of G) can be naturally
identified with the set D(U, V) = {UgV|g € G} of
double cosets of U and V in G,
Proof: Define f : G/U x G/V » D(U, V) by
£(gU, hV) = Ug™ V. £ is well defined, G-invariant
(£(xgU, xhV) = Ug 'x" 'xnV = Ug 'aV = £(gU, hV)) and
obviously surjective, thus it defines a surjective
map

G\(G/U % G/V) - D{U, V)
which remains to be shown injective, i.e. we have
to show:
f(gU, bV) = f{g'U, n'V) = & x € G : xgv = g'U, xaV = n'V.
But we have:
£(gU, nV) = ©(g'U, h'V) = Ug™ 'nV = Ug'~ 'h'V =
2 u€U, v € V with ug-1hv = g'-ih'. Choose
x = g'ug-1 = h'v_ 'n”', then one has

xgU = g'ug 'gU = g'lU, xnV = h'v 'n hV = n'V g.e.d.

sark: In almost all cases in group-theoviry, where
double coset-sets are considered (e.g. the Mackey-
subgroup-theorem in representation—theory), the inter-
pretation of those sets as G-orbits in G-sets of type
G/U X G/V can be quite useful. Moreover this observa-
tion was one of the starting points for the develop -
ment of the "axiomatic representation-theory", con-

sidered in chapter 2 .



§ 2 The category of G-sets

For a finite group G let G" be the category, whose
objects are Just the G-sets as defined in § 1 and
whose morphisms are the G-equivariant or Jjust Ge-maps,
i.e. for any two G-sets S and T we have

LS, T]G. = HomG(S, T) = {® : S » T|p(gs) = gp(s) for
all g € G, s € S} for the set of G"-morphisms from S
into T with obvious composition and identities., We
call G" the category of G-sets.

We can consider G" also as the category of G-objects
in the category of finite sets, i.e. the category,
whose obJjects are pairs (S, as) with S a finite set
and Qg ¢ G 2 Aut S a grouphomomorphism and whosa
morphisms for any two objects (S, as), (T, aT) are

those settheoretic maps ® : S 2 T, for which the

diagsramm S —~R T
| .
Jag(e) La(g)
©
S — T

commutes for any g € G, or as the category of covarient
functors from the category & into the category of finite
sefs, where G has exactly one object; whose endomorphism-
semigroup is Just the group G itself.

Especially this last interpretation of G” as a category

of functors from a small (even finite!) category into

the category of finite sets allows easily, to deduce the
following proposition from wellknown facts about categories

of functors, especially that such categories preserve many

properties of the image-category.

-6 -



Proposition 2,1: G® contains an initial and a final

object (the empty G-set § and the trivial G-set *),

G* contéins finite proJective and injective limits.

A G-map ® ¢+ S » T between two G-sets S and T is in-
jective, resp. surjective in G" if and only if it is
monomorph, resp. epimorph as a settheoretic map. Any
object in G" can be decomposed uniquely into a sum

of indecomposable objecfs (% ¢). |

For non-categorists and also for the sake of explicitness
I want to state the most relevant parts of this proposi-

tion in a more concrete form:

Proposition 2.1':

a) For any object S there exists a unique G-map Mg: S = *e
b) For any two cobjects S and T the disjoint union S U T
together with the two imbeddings i : S = S T and

J: TS 0T is the sum of S and T in G".

c) For any two G-maps ®,: 8, > T (i = 1,2) there exists

the pullback S, ¥ S, in G":
1 T 2

5, ?TSZ = {(s19 52) € 51 x S, | ”1(51> = mz(sz)} as a
set with obvious (diagonal) G-action and projections

3 . . ® = * =

p;3 5, ¥ §, » 8, . For T (and thus 9. nsi)the

pullback S1 b4 82 is just the usual product of S1 and 82
T

in G” and equals the cartesian product S1 x S defined

2’

in § 1.

- 6 a -
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Remark: So far we have found a categorical ihterpretation
of disJoint sums and cartesian products. One can also give
an interpretation of the construction (S, T) » sT in the
same framework: For a fixed G-set T taking the product

with any G-set, resp. G-map defines a covariant functor

Pyt GA - é\: Sk TxS, v IdTJ<@. This functor now has

a right adjoint e which on the objects is precisely

the map: S » ST (and maps a morphism : S1 -+ 82 onnto
T

T
;8,7 £k oof (£

the morphism mT: ) S1T)), i.e. one

f4h!

has a natural isomorphism: HomG(T)(S, Y) > HomG(S, YT)
for any three G-sets T, S, ¥, mapping any G-map y: Tx S =» Y
onto the G-map y': 5 - T s (%, s) with y(°, s): T = Y:
t» (t, s).
ut I want to postpone a more thnorough study of tnese {a.d
related) facts, until this becomes necessary for the
further development of the theory, and first concentrate
on studying the relations between sums and products (or
more generally pull-backs) and their conseqguences.

Just let us remark, that by standard-meihods of
category-theory the adjointness of Pp and ey smplies for
»~nstance, that pT commutes with sums (or more generally

inductive limits), whereas e,, commutes with products,

T

pull-backs and projective limits.



For a more explicit form of the last statement of
proposition 2.1 one has to use the following definition:
A subset T € S of a G-set S is called

a G-subset, if gl € T for any g € G. Any G-subset T C S

can and of course will be considered as a G-set with the

G-action on T given Just by restricting the G-action on

5 to T.

A G-gset S is called simple, resp. indecomposable, if S+¢ and any
G-subset of S is either empty or S, resp. if for any two

G-sets ST’ S, with S1 0 52 = S, one has either S 6 = Py

2
&2abors‘1ezs, 52=¢.
Then one can state:

Proposition 2.,1': d) Any G-set S can be decomposed uniquely

into a disjoint union of indecomposable G-subsetis,.
n

Proof: If S= ( Si is one decomposition and S =
i=1 J

T
. J
]

o

another one, then S ='0 (Si N TJ) is a common refine-
i=1l,0eeyn1
J=Tgeee
ment. Thus by the finitenesas of S there exists a unigu«
finest decomposition of S, all of its components mu=t te
indecomposable.
On the other hand a decomposition of S into indecompoc-
sable subsets cannot have a proper refinement, thus
must be the unique finest decomposition of S,
We know this unique finest decomposition of S already:
it is exactly the decomposition of S into G-orbits
(S - equivalence-classes), considered in § 1. We state

this in:



Proposition 2,2: A subset T C S of a G~set S is a

G-subset, if and only if T contains with any element
s € S also the full G-orbit (E - equivalence-class)
of 8, i,e, if and only if T is a (disjoint) union of

full G-orbits in S,

Especially
&) Any Ge-orbit of S is a G-subset and the decomposi-
tion of S intb its G-orbits is the unique finest
decomposition of S into a disjoint union of iade-
composable G-subsets.
b) For any G-subset T € S the complement S-T is also
a G-subset,
c) For a G-set S the following three statements axre
equivalent:
(1) S is indecomposable.
(2) S contains exactly one G-orbit, (i.e. 5 is tran-
sitive: for any s, s' € S there exists g € G with
gs = s8'),

(3) S is simple.
Proof: Trivial verification, left te the reader,

We go back to proposition 2.1', d) once more and observe
that it states some kind of a Krull-Schmidt-Theorem for
r~sets, Thus by standard-arguments it can be rephrased
as:

Tj indecom-

n m
Proposition 2.3: If S = S, = Uy T_ with S

| i’
]

posable, then n = m and - after eventually renumbering -



. \

S.0= T, (1 = 4, eeey I

This again can be rephrased in the following (more cano-
nical and less classical) form: For a G-set S and a na -
tural number n write n-S or Jjust nS for the disjoint

foy
union of n copies of S, resS?/éhe empty G-set @, if

i of
n = 0O, and LT Si for the disjoint union of » G-sets 51,
i=1
Sy eses S Then we have
al r

sropesition 2.5': Any U=set S can be written in the

T
Yorm s o= L niSi with Si indecomposable and for wwo
i=1 ~ r X
Gesets $,3' with decomposivions 5 = S n.S,, S' = T a'.3,
. i7i Joita
i=1 L=
R . ~ , n Y
Lo Lmve 3 = 50 e LR AT (EET, cey T

Sgad. by standard-arguwieats LHias dlmplilies:

corollacy (P 2,5 j: 2008 8 T 2= 5" T for thwee G-yuis

sy ST, T, then I = i,

Jemaric: Cor., (P, 2.2, i is true only ifor finizte G- :is.

.
wonsidering infinite G-sets one would always have

0 BU0UTCSUTC e =20 (SYOUTUSOTY o)
vithieut having S o= T

T couurse one now Leg Lo try to determine Thoe dindoocmposabloo
wiv zample G-sews. s Jllo sext section these will Cosoiy vl
at to be - up te iswdorphism -~ just the coset-scis /U,
considered in § 1, ~ cspecially there are only finitely syl
To prepare this, ve ciose this section with the ¥ollowing va-
riation oif "Schur's Leama" for simple G~sets:

Lomma 2.

«) The image RP{T) = 5 of a Ge-map ® : T -» S is a G-subset ol L.
b) Any G-map @ : T -» S with T # $ and S simple is surjective.

c) Any G-endomorphism of a simple G-set is an aatomorphiszm.

The proof is left 1o the reader.



§ 3 Simple G-sets

Let us start with a definition, relating subgroups of G
with elements of G-sets:

For a G-set S and a subgroup U € G of G
let §° = {s € S | us = s for all u € U} be the set of
U-invariant elements of S and for an element s € S let

G, = le € G| gs = s |

be the stabilizer-subgroup of s.

(Prove, that G, is indeed a (sub-jgroup!).

Example:

(1) For any two G-sets S and T the set Hom (T, S) can
be identified with the set (ST)G of G-invariant ele -
ments in ST: |

£ € (ST)G & gf = £ for all g € G @

g(f(gﬂit)) =t for all g € G, t € T @

f(éqt)=é4f(t) for all g € G, t

e T e
f(gt) = gf(t) for all g € G, t € T @
f ¢ Hom, (T, S}
{(2) For s = gU € G/U we have
G_ = {h €G | ngU = guj = gug™'.

5

We state some elementary properties of SU:

Lemma J3.,1: For any two G-sets S and T one has
som =s’91% (sx17)¥= s’ x 1. Any G-map
P: S » T maps SU into TU.

Proof: Trivial verification.



Remark: Lemma 3.1 can be interpreted as saying that

the map S »w SU can be naturally extended to a covariant
functor from G* into the category of finite sets, which
commutes with sums and products. The next lemma shows,

that this functor is representable and represented by G/U,

Lemma 3.2: The map HomG(G/U9 S) =+ S: @+ w(*U) induces
a bigjection |
Hom, (6/U, S) S sY,
the inverse map given by s » @_ = mg with ws(gU) = gs.
Moreover ¢s is injsctive if and only if Gs = U,
Proof: Because ¥ € (G/U)U, we have m(*U) ¢ sV for any
p € HomG(G/U, S). Because m(*U) = @'(*U) implies

p(gU) = gw(*U) = g@“(*U) = @9'(gU) for any two G-maps
9, ' G/U.» S, such a G-map is completely determined
by @(*U) e sY. Finally for any s £ sV the map

P, = @ G/U » S: gU » gs is a welldefined (proofli)

G~map with $s(* = 8. Thus the map

o)
©(€ Hom,(G/U, 8)) » ®(¥;){c 5

E
P
o)
rﬂ
a,‘
ki
[}
~
9]
>
c
w
-~

T
bigjevtively onto 5,

At last we have:

9, injective e (@s(gU) = ws(hU) = gU = hU) @

(g@_(U) = hws(U) ® gU = hU) @ (gs = hs = gU = hU) &
(h"gs = s » h gl = U) @ ¢_ ¢ v,

On the other hand s ¢ SU implies U & Gs anyway and thus

we have:

@s inJective « U = Gs'



- 12 -

Now we can state, including some results of § 2:

Proposition 3,1: L.et S be a nonempty G-set. Then the

following statements are equivalent:

(1) S is indecomposable.

(2) For any s, s' € S there exists g € G with gs = s',
(3) S is simple.

() Any G-map T = S with T % § is surjective,

(
(

) Any G-map G/E + S is surjective.

o

6) There exists a surjective G-map G/E = S,
(7) There exists an element s € S, such that for any
s' € S there exists g € G with gs = s',
(8) The orbitspace G\S contains exactly one element.
(9) For any s € S we have a natural isomorphism G/Gs = S,

(10)rthere exists a subgroup U € G with G/U = S,

Proof: The equivalence of (1), (2) and (3) and (3) = (4)
has been shown in § 2. (4) = (5) is crivial, (5) = (6}
follows from HomG(G/E, S) = s = s £ P, (6) = (7) follows
from the explicit description of the map wE: G/E = S,
defined for any s € SE = 8, given in Lemma 3.2 .

(7) = (8) = (2) is trivial. (4; = (9) follows from

Lemma 3,2, applied for U = Gs and s € SU, because the
map ¢g: G/Gs + S is surjective by (4) and ingective by
the last part of iemma 3,2, thus an isomorphism.

(9) =» (10) and (10) ® (7) {(choose s = *u) are trivial

again.

Corollary(P. 3.1)1: For U, V < G one has G/U = G/V if

and onl? if U and V are conjugate in G (notation:U'N \'

or U R V).



- i3 -

Proof: If V = gUg™ ', then V = G for s = gU € G and

thus by Prop. 3.1 : G/V = G/U.

Un the other hand an isomorphism f : G/V ES G/U implies
Vv = G = G -1 . .
*y £(*,) = gUg ', if £(*,) = gU.

3.1) 2: Let S be a simple (indecomposable)

Corollary (P.

G-set and s € S. Then |G| = ]SiaiGsl, especially |S|

[stlic]

o o

¢

for any simple G-sct S {{M} the number of elements in a

ey M, especially !G| the order of Gj.

Prooi: This follows from S = /3,
ba

ceroilary (P, 3.1} %: Let S and T ve G-sets and ¥ a simpl
G=sei. Then the canonical map: ﬂomG(X,S) 9 HomC{A,T}
¥

< liere {(X,30T) is bijective.
Proci: This follows from X = G/Gx (x any elemen:i iu A} i

cesuior 3.1 and 3.2,

siticn should be discussed in the rest of thiszs oo f.own. s

Vire b in the special case U = L we have already wico.. i %

$ - .~ e ” P o P - - I 4 ;. N T . N -
yowol of Prop. ye i Lize facit Viie b G i RS o fiuve B A L S
J 2 g
it I (3/1? i e N A el SR A Ly W s 5 (s - .
= vy L€, aAflyY s LviLOCIClLl Dlay w7 > I T, ;
™ i

Lk Le unagueldy exiended wC L Gedal gl G/E = 3. Ui car o

gonecalized to

S2I1Ls are equivalent:

v i1} G acts frecly on S5, i.e. G = E for all s € S,

3

(20 8 is a disjoint union of G-seis, isomorphic oo G/E.

&

fiere are some more interesting consequsnces 0l Loaita F.0.

"3, There exdisve a subset 50 <. ¥, such that S5 iz Free over
M3 8 is oz projective oubject in G%, di.e. for any Jiagram
5
L in G" wiih sucjective Yy there exisgus ' : S
L N 5
v ‘ N
swuoh thuv ©Y - T commuies.
i
hd

[

i Let & be a Gesct. Then the follouwzng stale-

v
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Proof: (1) = (2) : S is a disjoint union of indecomposable
G-subsets by § 2 and any such indecomposable G-subset is
isomorphic to G/E by Prop. 3.1 .

(2) » (3) : For any simple subset of S choose an isomorphism
with G/E, let S, be the union of the various images of *p
under those isomorphisms and apply Lemma 3.2 for any single
simple summand of S and U = E,

(3) = (4) : Using standardarguments one chooses for any

s € S_ an element mé(s) € ¢-1(m(s)) and extends @!: S_ = T’
to aGmap ' : S -» T',

() = (1) : Again using standardarguments one considers the
projection Py G/E‘x S <+ 8.

By (4) there exists a G-map ¢ : S » G/E x S with p,9 = Id..
Therefore we have for any s € S: Gs < Gm(s) = E, because
G(a,b) = E for any (a,b) € G/E x S.

Go lar P ° 2 : If G acts freely on a G-set S5, then

|G| divides |sS

Now we want to apply Lemma 3.2 for arbitrary U < G and
S = G/V, V€ G. Then we get

Lemma 3.3: For U, V £ G two arbitrary subgroups of G

we have HomG(G/U, G/V) # ¢ if ond only if U is subconju-
gate to V in G, i.e. there exists g € G with g-1Ug <V
(notation: U SVoru % V). Especially there exist G-maps
G/U » G/V and G/V =» G/U if and only if U and V are conju-
gate in G, in which case all those G-maps are isomorphism.
Proof: By Lemma 3.2 we have

Homy (G/U, &/V) 4 # » (6/V)" 4 ¢

o dg € G with UgV = gV & g € G

with g~ 'Ug € V. The rest is obvious.

€ G/E



By Lemma 2.1, ¢) and Prop. 3.1 we know alrcady,

that any G-endomoiphism of G/U (U € G) is a
G-automorpihiism, Using Lemma 3.2 cnce more, we can
easily compute the group AutG(G/U) of all G~automor-

phisms (= G-endomorphisms) of G/U:

Lemma 3o

With NG(U) = {n ¢ G|nUn~' = U} the normalizer of U
in G we have

aut (G/U) = X (Uj/U,
(&4 =3

s

more precisely: [or n € NC(U) deTine
4

- -1 e =
9, ¢ G/U » G/U : gUw gn ‘U = gin
I A . Lo f R
then @ € Aut,. {G/17) and
AV 3

No(U) = 2ut (G/U) ¢ oo
(5 4 (= A I

is a surjcctive grouphomomorphism with kernoel 7 & N _ (U},

. . . P4 N I
rroof: Onc wverifics casily e € AuLG\G/J} as well as
L

23 = o @  and . o= Id. .. en ¢t U
Ynem = Pnt Pn RSh! Gy °
The surjeotivicy Suillows fro.an Lemma 3,2, i@ we canl show,
SN . Y S o
climt for any gu ¢ (G/0}7 there exists n € N, (T) with
! G
o *U) = ¢Us. ont ou ¢ (u/u 1 implies Ugl = vd, ¢ Ug = u,
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The last remarks imply easily:

Proposition 3.3: If G and H are two finite groups

with G* = H®*, then G = i,
Proof: Any equivalence G* 3 H* must map G/E into
a projective simple obgject in H‘, thus into an
il~set, isomorphic to H/E. Therefore

G = AutG(G/E) == AutH(H/E) = 1,
Remark: U, Knauer has studied the same question
for the category of arbitrary (i.e. also infinite)
G-sects over an arbitrary semigroup G. He gives
necessary and sufficient conditions for two semi-
groups G and H, to define equivalent categories
of G-, resp. li-sets (i.e. to be Morita-equivaler -
in his terminology), and shows by constructing a
counterexample that Morita-equivalence does not

generally imply isomorphy (cf. [ 1)

We come back to Lemma 3.3. There we have seen:
HomG(G/U,G/V) £ ¢4 « U <V, In the rest of this
scction we want to study more generally conditions
for the existence of a G-map ® : S -+ T between arbi-
trary G-sets S and T. For this purpose it is con -
venient to define in an arbitrary category & the
"haifordering”™ < on the class of objects of § by

X < ¥ o LX,YJE + $ and the equivalencerelation

X ~Y o X <Y and ¥ < X,

We just state



Leomna 3.5: With X,Y,Z objects in §€ one has:

(a} If the sum X + Y exists in &, then
X< X +Y, ¥Y< X + Y and
X<Z,Y<7eoX+Y<7Z,

(b) 1f the product X <Y exists in &, then
X~Y < X, XxY < Y and

Z <X, Z<YeoZ<XyY.

Lemma 3.6: If S,T are simple G~sets, then

S ~T e S5 =T,
Proof: Let ¢ : S » T, § : T » 5 be G-maps. Then

¢y <« Hom (T,T) = AutG(T) and Y € HomG(S,S) = AutGib)

o
are automorphisms by Lemma 2.1, which implies, that

$ and y are isomorphisms, g.e.d.

Now assume the category € to contain finite sums and
products and define a class & of objects in § 1v bLe
r-closed, resp. to be l-closed {r for right, 1 ror lelt;

if § iy nonempiy and if "X < Y, ¥ & g = H € &Y o

"N, £ g 2 X v+ Y € 8 hold, remwp. if

X < ¥y, X € &=2Y ¢ " and "X,Y € & » X xT ¢ @Y heold,
01 course Ifor- any object X in § the class ﬂr(X) :{YEY<X§

is r-closed and X maximal in Rr(X) w.r.t.< and the class
R LK) = {Y|X < Y} is l-closed and X is minimal in

LX) Wer.t.<.
ﬂl\\) W t

Moreover we have:

~

wemia e

{a) If ® is r-closed, resp. l-closed in € and i7 X € ®



is maximal in & w.,r.t. <, resp. minimal in & w.r.t. <,
then & = gr(x), resp., & = Rl(X).

Especially any r-closed, resp. l-closed class & in &

is of the form Rr(x), resp. Rl(X) for some X, if any
class & of objects in § contains maximal, resp. minimal
elements w.r.t. <, e.g. if § contains only finitely
many equivalenceclasses w.r.t. to the equivalencerelation ~,
introduced above.

(b) One has Rr(X) = Rr(Y) e« X~ Y & Rl(X) = Rl(Y).

The proof is much shorter than the statement: (b) is
trivial, (a) has to be proved only for l-closed & (the
“rW_case is dual) and here it is enough to show:

Y € 8= X< Y. But Y € & implies X xY € f and XxY < X
together with the minimality of X implies now

XY ~X=2 X< XxY<Y=X<Yqg.e.d.

To apply these remarks to § = G"we define for any
G-set S the set U(S) = {U K G!lsU £ §i of subgroups

of ¢. Then we can prove:

Proposition 3.4:

{a) For S,T G-sets one has S < T & #(8) < u(T).
Especially S ~ T & U(S) = u(T) and there are only

finitely many equivalence-classes wr.t. ~ in G",

(b) Any r-closed, resp. l-closed class of G-sets is

of the form Rr(S), resp. Rl(S) for some G-set S.

Proof: We have to prove only the first assertion.



S50 assume S < T and choose a G-map ¢ : S - T,

9) U U . .
Because ®(S ) € T by Lemma 3.1 S # @ implies
™ 4 @, i.e. we have U(S) < u(T). On the other

hand assume U(S) < u(T) and write S in the form
Ii

UG/Ui (Ui € G). Obviously U, € u(s) € u(T) and
i=1

therefore G/U. < T by Lemma 3.2. But now Lemma 3.5(a)

G/U. < T, g.e.d.

implies S =
] i

nas e

i
Finally define for any set T of subgroups of G
the G-set S(%) = U G/V. Then

ves
u(s(®)) =T = UG | 4V € B with U ~ V| is the

"subconjugate closure" of B, because ( U G/V)U 3
VED

¢ o AV € B with (G/V)U $+ @3V ESDBwithU <

v,
especially we have U(S(B)) = 8, if and only if B is
'subcon jugately closed"”, i.e. contains with any V £ G
also any U € G with U N V.
On the other hand the set U(T) obviously is subconju-
gately closed. This implies:
(1) T ~ s{u(t)),
because U(S(u(T))) = u(T) by the last remarks,
and
(ii) there is a 1-1 correspondence between:
equivalence-classes of G-sets, r-closed classes
of G-sets, l-closed classes of G-sets, subcon-
Jugately closed sets of subgroups and finally
equivalence-classes of sets of subgroups, if

one defines i ~ % & a = %.



§ 4 1Invariants of G-sets

In this section we want to define and to study
certain numerical invariants of G-sets, which
- by a Theorem of Burnside - characterize G-sets

up to isomorphism.,

50 let S,T be G-sets and let U be a subgroup of G.

We define

and

@U(S) = [s7] .

The following statements are more or less obvious:

Proposition 4.i:

(a) 9y(8) = o.(s) if T = G/U;

i

(S v 8,) = oS ) * w,{S,);

t

() op(8,xS,) = 9p(8;) * on(8,);

)
)

wT(S1) + @T(sz), if T is simple;

N

n

©. (8) « o (8);
2 T Ly

) * 0« T < S, @U(s) £ 0« U € U(s);

1

o~
s

~—
)

(g) if U,V < G, then @U(s) < mv(s) for all G-sets S,
if and only if V % U, especially mU(s) = @V(s)
for all G-sets S, if and only if U § V.

{(h) If T7,T' are simple, then mT(S) = mT,(S) for all

G-sets S if and only if T = T',



Proof: (a):
(b):
(c):
(d):

(£):
(g):

(h):

4,i

Lemma 3.2

Lemma 3.1

Definition of products in categories
Cor.(P.3.1) 3.

Definition of sums in categories
Definition of ¢, < and U(Ss)

@U(s) < @V(s) for all G-sets S implies

wV(G/U) £ 0 (because @U(G/U) > 0) and

. therefore V ~ U. On the other hand

Vv

)

v

-1 . . U W
VcglUg = W implies: wU(S)zis |=|s"|<|s {:mv(
follows either from Prop. 3.1, Prop. 4.1,

(a) and (g), and Cor.(P.3.1)1 or more directly

from Prop. 4.1, f and Lemma 3.6.

Remark 1: (h) is true for arbitrary G-sets T,T', but

this can be shown only with some effort.

Remark 2: Because @ = @, for T = G/U and P gp. = Y * POp s
1772

ol
-4

it would be enough, to work only with the

invariants ®yr Tesp. the invariants Prpe But

sometimes it 1is more convenient to use the

mU's, sometimes the mT's. Thus we will use

both and pass freely from one notation to

the other one.

Theorem 4.1 (Burnside):

For S,S' G-sets we have: S = S' o mU(S) = wU(S') for

all subgroups U € G (e« wT(S) = wT(S') for any simple

G-set T)c



Proof: Let T be a complete system of simple (indecom-

posable) G-sets. By Prop. 2.3' we have S = ¥ n
TET
S' = ¢ n'TT with certain (even unique) nonnegative
TET
integers n

TT’

T n'T and it is enough to show: n, = n'T
for all T € T & wT(S) = mT(S') for all T € T.

The direction = being trivial assume mT(S) = @T(S'),
but T' = {T € Ting # n'Ti $ #. Then there exists an
element X € T', which is maximal w.r.t. < in T', and

for this X € T' we get:

-

= L (ng - n' e (T) = (ng = n' )e.(X) % 0
TET, X<T T T/¥X X X’¥X
(the last equality by the maximality of X in T', the

one before by Prop. 4.1, (f)), a contradiction.

Remark: This proof does not use the uniqueness of

the decomposition S = Z nT T, instead it offers another
proof for this fact. e One can also give a simple proof
of Cor.(Pe2.3)1: S UT=5S'"Q0T=S=S"' using Thm 4,1:
SUT=S'"0T= mu(s 0 T) = @U(s' 0 T) for all U < G

= wU(s) + @U(T) = ¢U(s') + @U(T) for all

UG = mU(s) = mU(s') for all UK G =S =5S",

For later use we state:

Lemma &4,1:

For any two simple G-sets S and T with S = G/U one has

95(5) = |Aut (S)| = (N (U) : U)

and
9g(S) | ®(8).

Proof: This is a restatement of Cor.(L.3.4)1.



Having established a complete system of
invariants it seems natural to ask for
a complete list of relations, which
hold for such a system of invariants,
so that for a given family of numbers
n, € Z (U £ G) one can decide, whether
there exists a G-set S with mU(S) = n;
or-not. Unfortunately such a complete
list of relations seems not to be known
in general, but on the other hand one
can develop quite a sufficient theory,
dealing with certain parts of such a
coﬁplete list, e.g. it is rather easy
to see, that there are no linear re-
lations over %Z , resp. Q@ between the

various different Py

I want to indicate three slightly dif-
ferent proofs for this fact right now,
to motivate the general procedure to be

developped in the next section:

S0 let @ be a complete system of
nonconjugate subgroups of G, so that
mU(S) = @V(S) for U, V € § and all G-sets

implies U = V, and assume T aUmU(S) =0
UEg
holds for all G-sets S and



some nonvanishing set of coefficients aU(U € G),

o t
ay € Zw,1.0.8.!

We have to get a contradiction,
(1) Choose U € § minimal with ay # 0. Then we have

Vgﬁavmv(G/U) = anU(G/U) + 0, because for

V<U, Vv + U we have a, = 0 and for V £ U we
have wv(G/U) = 0.
(2) We consider the |§|-tupels (mU(S))U ¢ g @S vectors

in 1 ®. If there exists a nontrivial linear rela-

Uueg
tion ¥ a,®,.(S) = O for all S, then the subvectorspace
UTy
Ueg
of 1 @, generated by all (q:U(S))UEE is of dimension
UeE

less then \E\.

Thus there exists a linear relation between the
|g| vectors (ch(G/V))UEG (Vv € §), i.e. tnere are

¢ zZ(V € §), not all b, = O,

integral numbers b v

\'

- / - . .
with VEE bV\ch(G/V))UEs = 0, i.e. with

Z b
VeQ

Let ' = {V[b, >0}, €'"' = {w|pb, < o}.

Vch(G/V) = 0 for all U € g.

Then the above relation implies:

@U(VgSDbVG/V) = wU(wgﬁ"(-bw)G/w); i.e.

U by G/VZE y (-b,;)G/W, a contradiction to
VEG' WE@I 1

proposition 2.1', because any G/V (VEE') is non-
isomorphic to any G/W (WEE'').
(3) Now consider T @ not only as a vectorspace but

Ues
also as a product of fields (g ®), i.e. as a



i-algebra. Because of Prop. 4.1, b) the @-span

of the elements (QU(S)) € T Q is a subalgebra,

U €T "yeo

on which tlie progjections

Pyr TG (Xpyee 2 Xy
Ucl
define difrerent ringhomomorphisms onto @, But those

are necessarily linearly independent, for instance

'y tne chinese remainder theorem,

To understand the interdependence between these three
proofs, consider the following linear map: with T a
complete system of nonisomosrphic indecomposable Ge-sets
and E.a complete system of noncongjugate subgrouns of

G define

o7 LS z (1),

' ) - e {7

¢: Q1 - @Y (fT)TET g (EET*TwU\‘))UEQ

(QS = i{qs)SEQang Q} the set of maps © = & for any set T;.

One has to show, that ¢ is surgjective. With Tespect to
, - T & . . . .
the natural basis of @° and @ the mup ¢ is given by

the matrix (@U(T)) and the first proof uses

Ue§, 7TeT
thie fact, cthiat this matrix is triangular witii a nowhere
vanishing diagonal if one orders T = {T.,, T., ...; and

{ - 2
i ~

. - 1 U ) P e .
¢ = {U,, Uy, we.f such that |[T.| < |1, .|
which has also been used in the proof of Thm. 4.1.
The second proof uses Thm 4.1 and Prop. 2.1°',

to prove the injectivity of ¢, which by |T| = |¢| implies

and G/Ui = Ti’

the surgjectivity of ¢. The last proof is perhaps the most
convincing one, because it uses only very basic facts,
but among them one, whichh nad been overlooked before:

the multiplicativity of the maps Prye One can even use

its idea, to give another proof of Thm. Yo and



of Prop. 2.3 at the same time (injectivity of ¢)
based only on Prop. 4.1, b) and g) (surjectivity of @)

and the fact |T| = |§].

In the next section we want to study the multi-

plicative structure of G-sets systematically.



§ 5 The Burnsidering and its primeideals

The last remark in § 4 shows, that the property of the
maps wU(U < G) to be wellbehaved with respect to sums

and products - taken in G" and ZZ respectively - can be
surprisingly helpful. Thus in this section we want to
study quite generally "wellbehaved" maps from the set
of isomorphismclasses of G-sets into arbitrary (commu-
tative) rings. It will turn out, that these maps are

essentially determined by the various maps @U.

Later on we will be led to study congruence-
relations between the wU modulo a prime p, thus dealing
with a first basic step conserning the interesting (and
principally unsolved) question of congruence-relations
between the 20 in general and associated numerical

and grouptheoretical problems.

The method is to construct first a universal solution
of the problem of "wellbehaved®" maps, i.e. a ring ({(G)
together with a map

{isomorphismclasses of G-sets{ = {I(G) : S » |S],

which commutes with sums and products, such that any
other such map into any ring R factors uniquely through
this map and a ringhomomorphism ((G) - R, and then to
study the universal object Q(G), the Burnsidering of G.

For this purpose we need the following well-

Known:



Proposition 5.1:

(a) Let A be an abelian semigroup, i.e. a set together

with a map AxA - A : (a,b) » a + b, such that a + b = b + a
and (a + b)+ ¢ = a +(b + ¢) holds. Then there exists an
abelian group I, the universal group associated to A,
together with an additive map A = A :ap ;, such that

any additive map o : A = B into an abelian group B

fectors uniquely through this map and a grouphomo -

morphism A = 4.
v

(b)) {(Constructiovn of K): Let A be the set of eguivalence-
classes (a,b) of pairs (a,b) € A~ A with respect to the

cquivalence-relation: (a,b) ~ {(a',b') & 4 ¢ € A with

~
a + b' + ¢ = a' + b + ¢c. Then A is in a natural way
. ) . N P / ™ TR Tt { Lot oy 37
a group, if one defines (a,b) + (a*,b') = {a+ta', b+b'j ,

. )

. . ~ . . N L
with (a,a) the neutral element and the inverse of (a,b ]
. . R . ~ Land ; ~e
being given by (b,a) . Moreover A o A : a » {(ara, a)
is a welldefined additive map and the thus existing

. ~ by o . /7N i
unigque map 5 : A - A with B(a) = (2 + a, a) i1s an
isomorphism. Especially A - A is injective, if and

only if a + ¢ = b + ¢ implies a = b for all a,b,c € A.

{(c) IT A,B,C are abelian semigroups together with a
"bilinear™ map f£: Ax B =» C (i.e. a map with f{a+a',b) =
= "{a,b) + f{a',b), fla,b + b') = f(a,b) + £{a,b')),
then f extends uniquely to a bilinear map of the asso-

cirated universal groups:

i

f:A‘ ">C.
specially il A s a "halfring®, i.e. an abelian semi-

group together with an associatvive and distributive

smultiplication A+ A - A : (a,b) » ab, then this mul-



tiplication extends uniquely to a multiplication
Ax A - A, which makes A to a ring (commutative,

if A has been commutative; 1 € A at least if 1 € A).

Moreover if B has been a "halfmodule®
over the halfring A, i.e. an abelian semigroup to-
gether with a bilinear map AJ(B'% B, (a,b) & ab
with a'(ab) = (aa')b(a,a' € A, b € B), then the

associated universal group B is in a natural way

an X-module.

¥e leave the verification of these facts to the
reader, just mentioning, that of course (a) and
(b) are proved together by showing, that the
group A together with the map A = K, described
in (b), have the universal properties stated

in (a).

Now we observe that the set (1 (G) of isomorphism-
classes of G-sets has the structure of a commutative
halfring, if we define sum;, resp. product of iso -
morphismclasses just by the isomorphismclass of the
disjoiﬁt union, resp. the cartesian product of the
representing G-sets, because one has obvious natu-
ral isomorphisms:

S1 V] 5, = 8§, W) S1;

0 82) 0 s3 =5, 0 (s2 0 SB);



Furthermore 1 € Q+(G) exists and is represented

by *G, because SX'*G = 5 for any G-set S.

Thus a map from the set O+(G) of isomorphismclasses
of G-sets into a ring R, which commutes with sums
and products, is nothing else than a homomorphism
from the halfring O°(G) into R and thus factors

uniquely through the universal ring, associated to

a7 (G), i.e. we have already proved part (c) of

Proposition {and Definition) 5.2:

Let (3"{(G) be the halfring of isomorphismclasses of
G-sets and let Q{G) be the associated universal ring, -
also called the "Burnsidering" of G. For a G-set 5 let
S| € ((G) be the element in (i(G), represented by S.
Then one has:

(a) [S] = [T] & S = T;

{(b) as an additive group ((G) is a free Z-module with
a canonical basis: the isomorphismclasses c¢i simple or
transitive G-sets, especially its rank equals the namber
of conjugacy-classes of subgroups of G;

(c) any homomorphism (i (G) =» R into any ring R factors
uniquely through (1{G), especially for any U < G one

has a unique ringhomcmorphism ¢ : Q(G) » Z with
$U(LSJ) = @U(S) = ;5“; and for any simple G-set T one
has as well a unique ringhomomorphism Qp 0(G) » z

with @T(LS]) = @T(s) = 1HomG(T,s)1.



{(d) Let T be a complete system of nonisomorphic

simple G-sats. Then the product-map

LYY

Tyt ((G) »mZ2
TeT © TET

is injective.

(e} Any homowmorphism v : ((G) » R {or: Q7(G) = R)
into an integral domain R factors (not necessarily
uniquely) through some Py Q(G) » zZ (U € G), resp.

some o, : ({G) = Z and the unigue homomorphism

Remark: Because (S| = |T] ® $ = T we do not loose

much Dy considering G-

W

ets directly as elements of
(@), i.e. by writing S(€ 4(G)) instead of [S],

S + T imstead of 3 U T and & - T iﬁﬂtiad of

.S - IT]}, the Tormal difference of G-sets,
exisiing in D(G).

Especiallyly Prop.3.2, (b)) any x € Q(G) can be

written anigquely in the form x = 3 n T with 7T

;:‘ T
TeT
. - .- 0N . P o
25 in Prop. 5.2, (d) a ccmplete system of

nuniscmorphiic simple G-seis and X is represented

G.

bt
W

by a G-get, ii and only if al fips

Proof: (a) foilows from Prop. 5.1, (b) and Cor. (P.2.3) 1

3
{p) follows from Prop. 2.3', which can be rephrased as
saving that ﬂ+(G) is o :ree avelian semigroup generated
oy the isomorphismciasses of indecomposable, i.e. simple
Y transitive G-setsgy

{c) has been proved above;

(d)} follows from Thm 4.1: Any x € (G(G) can be written



a2

in the form x = [S] - [S'] with S and S' G-sets.
Iif @T(x) = 0 for all T € T, then mT(s) = mT(s') for
all T € T, thus S = S' by Thm 4.1 and therefore
x = [s] - [s"] = 03
(e) we give two different proofs:
I: We prove a little more precise:

Proposition 5.2, (e)': Let ¢y : {I(G) » R a ring-

homomorphism into an integral domain. Then there

exists exactly one element T € TW = {X € T|y(X) % o},

which is minimal w.r.t. < in TW’ and for this T we have
§(x) = opn(x) ~ 1.

Proof:

(a) Assume T,T' € TW to be minimal and consider

TxT! .-.X;E:Tnxx. Because $(TxT') = ¢(T)- ¢(T') % 0 in R

there  exists X € T with y(n X) = nxw(x) £ 0, i.e.
with X € Tt’v and X < T, X < T! (ch(T) « 9y (T7) =

= cpx(TxT') = nxch(X) > 0!), thus by the minimality
of T and T' we have T = X = T'.

{(b) The rest of the proof is based on

Lemma 5.1: For any G-setSand T € T the decomposition

of Tx S into a sum of simple G-sets has the form

Tx S = ¢..{(S)+ T + T "XX with some nonnegative
T XET, X<T
A%
numbers n., < Z.
e
Proof: By Prop. 2.3' one has Tx S = T nxx with n € Z ,
XET X
n, » 0. But now cpY(sz) = cpY(T)-cpY(S) =0 if Y ¥ T,

thus 0 = mY( ETnXX) P nYwY(Y) zn, >0, i.e. n, = 0 for Y4T.
X



This implies TX S = ¥ nxx with n
X<T
We have to compute n

X € ZZ, ny = 0.

T* But computing the wvalue

of . on both sides yields:
®x(T) » ®(S) = n @ (T) which implies ¢.(S) = ny,
because wT(T) £ 0.

We now use Lemma 5.1 for our minimal T and get:

(Txs) = ¥(1) - 4(5) = 4(9p(8) < T + I m X)=p (S) ¥(T),
XET,X?T
because by the minimality of T one has {(X) = O

< < . . .
for X $ T. Because R is an integral domain, we can

divide both sides by y(T) % O and get {(S) = $p(S) 15

By Prop. 5.2, (d) (G) can be considered as a sub-

ring of 1w Z, which is finite over Z , thus a fortiori
TCT

over {1(G). W.l.0.5. we may assume the ring R to be an

algebraically closed field. Then any map § : Q(G) =» R

can be extended to a map {' : TZ - R by the going-up-
TET
Theorem (Cohen-Seidenberg).

But any such §' factors through a projection 7 Z -~ Z
TET
and the unique map Z - R, thus we have a commmutative

diagram
T 2L
T TET, -y
Q(G . A . >:§R’ q.e.d.
\\\c?\'l: ~

Corollary (P.5.2) 1: For U G, resp. T € T and p a

characteristic (i.e. p=0 or p a prime) let p (U,p),
resp. p (T,p) be the primeideal }x € Q(G)i@U(x)(resp.@T(x» =
= 0(p)}, i.e. p(U,p) = Kernel(Q(G) 2U Z - Fp) ,

3 Q.
p(T,p) = Ke(U(G) ST z » F with F_ the primefield of



characteristic p. Then any primeideal p in Q(G)
is of the form p(U,p), resp. p(T,p) for some
appropriate U £ G, resp., T € T, and p.
Proof: Consider the natural map § : Q(G)-R = Q(G)/p.
Then §(x) = mU(x)-1R for some U £ G by Prop. 5.2, (e)
and thus

p = {x € a(e)jy(x) = o} = {x € Q(&)|o,(x).15 = 0}

= {x € Q(G)|oy(x) = o(p){ = p(U,p) with p = char R.

Corollary (P, 5.2)2: For any prime ideal y§ € Q(G)

the quotientring Q(G)/p is a prime ring (i.e. either
isomorphic to Z or Fp, p ¥ 0), especially two homo-
morphisms {,y' : QI(G) » R into an integral domain

coincide, if and only if they have the same kernel.

Corollary (P. 5.2)3: For any commutative ring S

the primeidealspectrum Spec S ® {I(G) equals

Z
Spec S x Spec Q(G) = {(p,q)jchar S/p = char Q(G)/q}-
Spec Z

Proof: This is true for all rings with the property,

stated in Cor.(P. 5.2)2.

By Prop. 5.2, (d) we can consider {J(G) as a subring
0of a direct product of rings, isomorphic to £; thus
it seems to have a rather simple structure. Unfor -
tunately a complete and satisfying classification

of isomorphism-types, e.g. a complete list of easily
computable invariants of such subrings seems not to
be known - and, even if known, might not be wvery

useful for our purposes. But fortunately we can deal



with certain rather useful approximations of the
problem, to characterize {J(G) as a subring of

m4Z, i.e, we can decide, wether two primeideals
TET
p,p' in 1 Z intersect {1(G) in the same prime-
TET
ideal (i.e. we can describe the fibers of the

surjective map: Spec T £ -» Spec (U(G), - injectivity
of this map would imgig Q(G) = 7 2, which easily
can be seen to be wrong for G ieg)and we can com-
pute the elementary divisors of the embedding

(i{(G) ¢<»m Z, which in turn allows us to prove
TET

in € Zln -z < QG)} = |G| 2.
TET

Of course the first question is equivalent to the
problem, for which U,V € G and characteristic p
one has p(U,p) = p(V,p), resp. @U(S) = QV(S) mod p
for all G-sets 5, and also to the problem, through
how many different @ a given ¥ : Q(G) » R with R

an integral domain may be factored.

Of course for p = char R

0O we know already:

{1) p(U,0) = p(V,0) = o; = %, ® U~ V, resp.

p{T,0) = p(T',0) @ @, = ¢, ® T = T' (T,T' € T),

thus in this case there exists exactly one such

Or ¢ Q(G) » Z with §(x) = cpT(x)~‘|R and the correspon-
ding subgroups U,V,... € G with {(x) = wU(x)'1R

are conjugate.

Sc we may assume p # O, R = Fp.

By Prop. 5.2, (e)' any ¢ : {Q(G) »1Fp determines

uniquely the element T € T, which is minimal with



respect to the condition {(T) % 0, and for
“this T we have {(x) = mT(x) 1p+ Thus for a
given V £ G we have to determine the minimal

element T

1§

T(V,p) € T with @ (T(V,p)) % 0 (mod p)

and then we have of course %y = $T(mod p) and

(II) P(VQP) = P(W.P) had @V = @w(mOd P) & T(V’P) = T(W’P)

for any two subgroups V,W £ G,

Because mV(T(V,p)) % 0 (mod p) we have a fortiori

,wG/V(T(V,p)) = wV(T(V,p)) # O and therefore

(111) G/V < T(V,p), especially

i

(Iv) G/v = T(V,p) & 9,(G/V) F 0(p) & plo,(G/V) = (N (V):V),
because G/V = T(V,p) implies 9. (G/V) = ¢, (T(V,p)) ¥ 0(p),
whereas mV(G/V) % O0(p) implies T(V,p) < G/V by the
minimality and uniqueness of T(V,p), which together

with (III) implies G/V = T(V,p).

But - using (III) once more - (IV) is equivalent to:

(xv) 6/v £ T(V,p) & p| (Ng(V) : V).

Thus pi(NG(V) : V) implies the existence of a subgroup
W with V ? W and @ = @V(mod P), €.8. a stabilizer-
group of an element in T(V,p).

Because on the other hand p.(NG(V) : V) is equivalent
to the existence of a subgroup N with V 4 N and

(N : V) = p (we write V 8B N in this case), the most
natural guess of course is, that we may choose W = N,

i.e. that @, = @N(mod p). That this is indeed the case,



states

Lemma 5.2:

Let VAN < G and (N:V) = p%* a power of p. Then
o, = @y (mod p).

Proof: Let S be an arbitrary G-set. We have to show
mv(s) = mN(S) (p). But mV(S) = lSV[ and because

V 4 N the set SV is N-invariant, i.e. an N~subset

1

of S (s € sV and n € N implies v(ns) = n(n” 'vn)s = ns

for all v € V). Moreover N/V acts on SV, leaving
. . . N v N
pointwise invariant S , whereas the rest S - S

is a disjoint union of nontrivial tramitive N/V-sets,

all of which have a length % 1 dividing |N/V| = p%
U A .
(Cor.(P.3.1)2). Thus p||S -5 |, i.e.
- v | N
9y(3) = |s'| = |s¥| = @y (s)(mod p).
Corollary {L.5.2)1:
p P P
Assume V V1 <d ... < Vn = U, then wU = $V (mod p).
But now we have everything at hand, to solve our
problem: For any V £ G consider p-chains over
P P P
V : v V1 d...d v i.e. sequences of subgroups of G,
?

starting with V and such that any group in such a
sequence is normal of index p in the next one.
Because G is finite, any such sequence can be
continued to a maximal one, i.e. to one, which
cannot be continued any further.

P p p
iIf v« V1 <q ... < Vn = U is such a maximal p-chain

over V, then we have p /[ (NG(U) : U) - otherwise,

as observed above, our sequence could be continued -



and we have @ = @, (mod p). The first fact implies
G/U = T(Y,p) by (IV), the second fact implies
T(U,p) = T(v,p) by (II), thus altogether we

have T(V,p) = 4/U, i.e. the groups, at which a
maximal p-chain over V stops, belong to the class
of conjugate subgroups H £ G with G/H = T(V,p),
especially they are all conjugate and all maximal
p~chains over V have the same length.

Moreover for two arbitrary subgroups V,W £ G we
have @ = @w(mod p), if and only if there exist
p~chains over V and W respectively:

P p P p P p

V———'Voqv_ldooo QVn, W=W04h1<}ooc<w

i
(e.g. maximal ones) with V, ~W_; i.e. the

equivalence-relation V z Wep(v,p) = p(W,p) is
the finest equivalence-relation, which contains

P
~ {(G=conjugacy) and the relation <.

Already this result seems gquite satisfying, because
it allows us, to describe the relation V 2 W in
purely grouptheoretic terms. But on the other

hand, the notion of a p~chain still is a bit
difficult to handle, e.g. it may be guite difficuit,
actually to determine maxima#ﬁ—chains over a given
subgroup V, especially because generally there may
be many different maximal p-chains over V, even if -
as we have seen above -~ the final groups in such
chains are all conjugate, or to decide, whether
USVEWSGand g = ¢ (mod p) implies

Py = @y (mod p), or whether in case U,V € H £ G

and @ = @V(mod p) on G-sets one may also have



Py = mv(mod p) on H-sets.
But fortunately these matters can be simplified

considerably, using the following

Lemma (and Definition) 5.3:

For a group H let H(p) be the (uniquely determined!)
smallest normal subgroup in I with a p-power-index
(i.e. the intsrsection of all normal subgroups in H
with p~power-index). Then one has:

(a) H(p) is characteristic in H.

(b) If the p-part ‘H]p of |H| (i.e. the highest
power of p, dividing |H|) divides p% (i.e. if
(|H[,p“) < p%), then H(p) = <hpagh € H >.

(e¢) If ¢ : H= G is a grouphomomorphism, then
@(H(p)) c G(p), especially U V = U(p) g V(p)

and U S vV =2 U(P)S V(p) .

{d) (U(P))(P) - U(P).

(e UQV, (V:U) =p*a vip) o yle),

Proof: Easy, left fo the reader.

But now we can state:
Let U,V & G. Then Py = @V(mod p) @ U(p) ~ V\p)'

Proof: ¢ = @V(mod p) implies the existence of p-chains

b P p p p p
) 4'U1 .. QU _and VAV, < ,..dV_ with U~ V_,
d n ] m n m

But then by Lemma 5.3 (e) and (c):

olP) _ U1(p) - il = Un(p) ~ vm(p) - - v(p)

on the other hand U(P) ~ v(P) implies

Py = wU(p) = mv(p) = 9y mod p, g.e.d.
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We sum up our results in

Theorem 5.1

(a) Let p be a primeideal in Q(G), p = char Q(G)/p

and §

(b)-

P
(1)

(i1)

(iid)

(iv)
(v)
(vi)

(vii)

(viii)

= {U € G|p = p{(U,p)}. Then

Tp#¢- |
All maximal elements in Tb are conjugate;
they are exactly the subgroups U with G/U
(up to isomorphy) the unique minimal simple
G-set with G/U ¢ p, i.e. they are the mi-
nimal subgroups U €< G with G/U § p.

All minimal elements in § are conjugate.
If U € fp, then UP) is minimal in f o3

v

especially U is minimal, if and only i1f
U = U(p), i.e. U has no nontrivial
p-factorgroup. )
If U € ?p, then f, = (Vv & G{v(p) ~ U(P)}.
If U,V € Tp and U € V, then u(®P) = y(@),
If U< WV ana U,V € fy» them W € Ty
If U,V € Tp and UV € H< G, then

1}

Py = mv(mod p) also on H-sets.

If U,v € f and U € V, then there exists
P P P

ap—chainU<U1<... qUn=Vo lfUiS

minimal; then U = V(p) <1V, Moreover V is

maximal, if and only if V/U is a p-Sylow=~

subgroup in NG(U)/U.

For U,V « G and p a prime the following conditions

are equivalent:



b

i) Py = @V(mod Pl

(ii) p(U,P) = P(Vyp)'
(iii) U(p) ~~ V(p).

p P Y
(iv) There exist p-chains U < U, < ...40,
1Y p p
VgV, € .0 <V with U~V ,
1 o m n m D
P P
(v) IfU<U1<n.Egvv<v1%n.<vm

are maximal p-chains over U and V respec-

tively, then U ~ V .
n m

{c) For U,V € G we have

Proof:
{a), (i) and (ii) are restatements of results wbove,

(iii) and (iv) follow immediately from (V) above,

o(P)  y(p)

—

v): Lemma 3.3, (c)} implies
(V) implies U(p) ~ V(p), thus we have U(p) = Jip).
(vi)} follows from (v) and {iv), {vii) from (v},

wgP) L y(PJy

because the statement 18 indepeundent

of the imbeddings U,V € H or U,V ¢ G. (viii; folilows
from (vii}, applied to V = H, vecause by previcus
results the final group of a maximal pe-chalin ovar

U in V must be conjugate in V toc the final group

of a maximal p-chain over V in V, i.e. must be

conjugated in V to V, i.e. must be V itsell, g.e.d.

The next statement in (viii) is trivial
by now. But it implies, that there exists a i-1~
correspondence between groups V ¢ Tp with U gV
and p-subgroups of NG(U)/U, ~ thus the last state-
ment,

(p) and (c) are trivial by now.



Finally we have to prove:

Theorem 5,2:

Identifying Q(G) with its image in ©w & = {(G) with
TET
respect to the map T wT we have
TET

fn € z|n A(G) c a(e)} = |¢| z.

Proof: The proof is based on

Lemma 5.4:

NS
Consider (G) and ((G) both as subrings of

m (= @ 0(6)) = {(xp)peqlxg€ Q}, i.e.

TET
Q(8) = {(xp)nen € T Q|x, € 2}
0(G) = b4 ™ QIx Z{ and
T/TET TET T
R(G) = ¢ Z-(9.(5)) cma.
s€ THITRT =peq

Then T! = {Txaggrng S = (ag.(_.s__)_)TET | s € T}

P4
is a basis for Q(G).

Proof: By Lemma 4.1 we have sAutG(S)l = mS(S)]wT(S),
.
thus N ! : *'S is indeed an element in ﬁkG) for
utGisii

any S € T. Now compare the set T' with the canonical
. . S Pl

basis B8 = {18 = (6T)TET | s € T} of Q(G).

Because ]%k = lTl = [T'[, it is enough to show, that

any iS € B is an integral linear combination of the

elements of T'. We do this by induction w.r.t. <:

For S = G/E we have i s €17,

1
s = TAutg(S)]

1 _ G/E . .
because cpT(}AutG(G/Eﬂ G/E) = bT « For arbltrary S

we have

1
®s(Twege)T &) = !



and mT(TZ;;éTETT 5) = 0 for T £ S, thus
1

AutG S

n, o = P2(8) ¢ g,

T,S 3,(5)

But now by induction any i

S =i i with

E
s *rer,tfs "r,s v

T with T ; S is an integral
linear combination of the elements in T', thus the

same is true for iS’ Ge.o,.d.

Remark: In other words: If we order the elements in

T = {S1=G/E, S,eses} in such a way, that S, < S,

2 J

implies i &€ j, then the matrix
vg (Sy)
(a;,) = ( -37~—7-)- .
1] i,J ¢S. SJ 1,J
J
which transforms B into T' is triangular with 1's

in the maindiagonal, thus unimodular and therefore

Fa
T' is a basis of Q(G) as well as B.

Proof of Thm. 5.2: Obviously we have for n € &Z:
nﬁ?a) c Q(G) e lAutG(S)|[n for all simple G-sets

S o |N.(U) : U]ln for all subgroups U € G @ |G||n.

Remark 1:
o~
I want to point out, that the ring (Q(G) and the
ot
map T Qg : Q(G) =+ Q(G) depend only on the ring-
TET
structure of {I(G), because for instance the maps L
are exactly the various different ringhomomorphisms:
NS
Q(G) » Z. Moreover their product T Pp 3 Q(G) » Q(G)
TET

can as well be considered as the canonical imbedding

of (}(G) into its integral closure Q(G) in its total



quotientring, which is isomorphic to 1 @ 2= QRQ(G).
TET

Thus one can interpret Thm. 5.2 as a result,

~ Ny
concerning the conductor nggg = {xéﬁrablx-é(G) c Q(G)|

i
(i.e. the maximal ideal of {U(G), contained in Q(G)),

stating that this ideal intersected with Z'1Q(G)

is generated by lGi‘1Q(G)' Especially it implies,
that the order of G is determined by the ringstructure

of Q(G).

Remark 2:
Lemma 5.4 can of course also be used, to compute the

' Va4
elementary divisors of [(G) over Q(G); up to a reordering
¢of prime power factors they are more or less the num-
bers (NG(U) : U), especially they all divide |G|,- which

is also an obvious corollary of Thm. 5.2.

Of course there are some connections between Thm 5.1

and 5.2, as can be seen using:

Lemma 5,5:

Let R be a subring of a product of a finite number

of copies of Z, let ; be its integral closure in its
total quotientring Q ® R and let S C R be a multipli-
catively closed subsei with O ¢ S. Then the following
assertions are equivalent:

(i) Rg - ﬁs is an isomorphism

(ii)SﬂT§+¢ |

(iii) If p is a primeideal with S N p = @, then p

does not split in ﬁ, i.e. there is only one

primeideal g in R with g NR=p.



Now the fact, that by Thm 5.1 =« primeideal p € ((G)
splits in ((G) only if O % char ((G)/p = p divides

|G|, and Lemma 5.5, applied for R = (G),
S = {]G\n'1 ln > 0}, imply, that at least a power
Q(G) TN
Q(Gg
a(c)*

Onn the other hand, Thm 5.2 and Lemma 5.5 imply,

of |G| is contained in §

N
that a primeideal p in (G} splits in Q(G) only if
O % char Q(G)/p = p divides |G| and that for any

such p ] |G] there exists at lcast one primeideal §

— .

e vy

in (G}, which splits in Q(G).

W2 are now prepared, to develop the rather general
theory of Mackey-~functors in the following chapter.
Of course one can also use the above results as a
starting point for a more thorough treatment of the
ringtheoretic properties of {i1{(G) and théir relations
to grouptheoretic properties oif G, But here only
partial results are known - some indeed rather
peculiar - and we will deal with them only after

the general theory is developed,



Chapter II.

Mackey -~ functors

In this chapter we will develop a rather general
axjomatic theory, using the language of functors
and categories. This theory will be applied later
on to the study of integral representation rings
of finite groups, especially to induction-theory
and related topics.
To Jjustify a new axiomatic thecry one has to show,
that it covers various interesting examples and still
allows to draw sufficiently strong conclusions,; which
applied to the wvarious examples lead to édmittedly
important (known, unknown or conjectured) results,
thus offering a unified treatment of various, some-
times even rather different concrete problems.
Unfortunately one cannot do all three
things (giving examples, developing the theory,
applying the results to the examples) at the same
time. Moreover the main point of this lecture is
to apply cur theory to integral representationtheory,
where things get anyway rather complicated and lengthy,
whereas the best psychological justification for the
theory might be the fact, that applied to c¢lassical
examples it offers a rather easy, quick and unified
approach to many wellknown basic results (which of
course also will turmn out later as special cases of

considerably more general results).



Therefore we will first develop the axiomatic
theory ; giving only few examples and asking the
reader just to believe, that this general abstract
nonsense really has some useful consequences -
then consruct some rather general examples, mostly
related to integral répresentationtheory, which
can be discussed thoroughly only in the following
chapters, but finally include a section, where the
relation to classical examples and results is ex-
plained briefly and independent of the rest of

these lectures.



§ 6 Some basic definitions

We start with the definition of bifunctors between
two categories ¢ and . Later on § will be the
category G" of G-sets (G a finite group) and ® the
category Eg of abelian groups. But right now let

€ and ® be arbitrary. Then a bifunctor F : §€ = D

from € into ® is a pair (F*,F*) of functors F : & = ©
and Fy: € » D with F* covariant and F, contravariant,
which are identical on the objects of €, i.e, F asso-
ciates to any object X in € an object F(X) in © and
to any map @ : X = Y in € two maps

F (9) =9 & F(X) » F(Y) and F, () = py: F(Y) » F(X),
such that for any composition ®§ of maps in § one has
(0¢)" = @ ¢ and (9§)y = ¥4Py in D and

»*
(Idx) = (Idx)* = IdF(X) for any object X in §.

In other words: One may define for any
category ® the category Bi(@), which has the same ob-
jects asIS but morphisms LA’B]BiCS) = [A,BlE X LB,Als
with obvious compositions and ijidentities. Then a bi-
functor F : § 2% is nothing else than a functor
F : § » Bi(®). But this last description is unsuitable
for defining natural transformations between bifunctors
in a useful manner. Because if one wants to define
~ at least for a small category @ - the category 8 (&,d)

of bifunctors from € into ® in such a way, that 8 (€ ,9)
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preserves all those good properties of D, which

are geﬁerally known to be preserved by functor-
categories over I, then one has to define a na-

tural transformatian(): E =» F between two bi -
functors E,F : § » ® (i.e. a morphism in 8(€,D))

as a family of maps:

® (X) : E(X) » F(X) (X ranges over the objects of &),
such that for any map ¢ : X » Y in € one has two

commutative diagrams:

_ E (o) E,(®)

E(X) —> E(Y) E(Y) —> E(X)
X) . Q(Y) and |QXY x)

o .o e o X

F(X)—— F(Y) F(Y) > F(X),

i.e. such that @ is as well a natural transformation
from E* into F* as from E, into F_.

For our purpose we have to consider special bifunctors:
We define a bifunctor M : € + P to be a Mackey~functor,

if the following two conditions are fullfilled by M:

. P
(M1) If X —> X

2 .
;l iw is a pull back diagram in §,
X, —> Y
1
@ —%
' ¢
then the diagram M(X) — m(xz)
- % commutes,
. T

(X, ) ——> B(Y)
- ®

(M2) If X + Y = Z is the sum of X and Y in G with

i: X+X+Y =2, j: Y -+ X+Y = Z the canonical maps



of the summands into the sum, then
i*xj*
M(Zz) ———> W(X) x W(Y)
is an isomorphism, i.e. M(Z) together with the two
maps iy : M(Z) = M(X), Ju: B(Z) » B(Y) is the product
of M(X) and M(Y) in . Or in other words: M, trans -

forms sums in § into products in 9. We want to state

a few immediate consequences:

Lemma 6,1

IfFM : € » P is a Mackey-functor and ¢ : X » Y an
) »*
isomorphism, then @ : M(X) - M(Y) is the inverse of

Qe M(Y) > W(X),

Id
Proof: Obviously X -» X

yId va is a pull back diagram in §,

X=» Y
a
thus using (M1) we get a commutative diagram
Id
Mm(x) — W(X)
A A

m(x) — m(Yy)
99

* *
i.e. aga = Iqm(x). Because g, and o are isomorphisms,

*
we have also o a, = I%m(Y)’ g.e.d.

Lemma 6,2:

Let @ be the category G* of G-sets (G a finite group),

D an abelian category and M : € » © a Mackey~functor. Then
(a) M(P) = 0 and

(b) for any sum S J T of two G-sets S and T with the

canonical imbeddings i : S 4+ S U T, j : T = S O T the



composite % *

iej 1,x d g
= M(SOT) ——>W(S) x M(T)

m(s) & m(T)
is the canonical isomorphism
R(S) & M(T) » Wm(S) x (1),
existing in abelian categories.

* *
Especially i ©® j is as well an isomorphism as

* »*
i, x j4 and one has I%m(SUT) = 1 dy + J Jge

Proof:

(a) We consider P as the sum of @ and @ with the
¢ Id

identities j:::;¢ as the canonical maps of the
¢ Id
summands into the sum, Then (M2) implies, that the

Id,~Id,
diagonal M(P) —— M(P) xM(P) is an isomorphism,

which can hold only for M(¢$) = O.
*
(b) We have to show: i,i : T(X) = M(XOY) -» M(X) is
* ,
the identity and j,i : M(X) - M(X0Y) » M(Y) the
zeromap. But this follows from (M1), applied to the

pull back diagrams X —> X and $—> Y , and

\ixd li ! i
m(g) = 0.

Remark:

Of course Lemma 6.2 is true for mmch more general
categories than G*, e.g. categories of functors
into the category of sets, More precisely the proof
shows, that (a) holds for any initial object in an
arbitrary category, whereas (b) holds, whenever the

above diagrams are pull backs.
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Finally we want to give two examples of Mackey-

functors, defined over € = G*, G a finite group

and with © the category of abelian groups:

(1) We consider G-sets as compact (discret) to~

pological G~spaces and use complex G~vector bundles

over a G~set S (with not necessarily constant, but
finite fiberdimensions), to construct the Grothen-
dieckgroup KG(S). A complete treatment of this and

related examples without any reference to K

G

will be given in §'9. For any G-map: :S -» T the

~theory

pullback of bundles over T to bundles over S defines

a map @, KG(T) - KG(S). Moreover because ®:S = T

g

is finije, one has for any bundle | the direct

% (§) *
image ) with fibers ¢ (g)t =
T

G-action g-(

an additive map

m*: KG(S) - KG(T).

(M1) and (M2) are easily verified. Moreover there

a wellknown canonical isomorphism

K, (6/U) 5 x(U),

S

9 g
s€p” ' (t) °

p.<

z x )= L g
s€p ' (t) °° sep”'(t) °
* * *
Because ® (E ® §€') = ¢ (E) ® ® (§') one thus gets

and

(x, € 8.).

where X(H) is the characterring of U, especially

KG(*G) 5 %X(G). Thus the map 1 = Mo/ ° G/U =» *s

defines maps

Ng: X(G) = x(u),

n*: x(u) =» x(a).

is

These maps are easily identified with the wellknown

restrictien and induction of characters.



Now consider the pullback

G/U xG/V - G/V
| |

v N

G/U - G/G

and apply (M1) for @ = K, . Using Prop. 1.1 (G-orbits

G
in G/UxG/V are in 1-1 correspondence with the double
cosets UgV in G), (M2) and the identifications

KG(G/H) S X(H) one sees easily, that (M1) is equi-
valent with the Mackey-subgroup~theorem (see CR,;p324).

This of course was the reason for the choice of the

name "“"Mackey"-functor,

Finally let § be set of all cyclic subgroups C & G

and consider m = mg: S = U G/C - *_, Then

ceg

T\*‘ KG(*) - KG(S)

is injective, because K (S) = T X(C) and the pro-
ceg

duct of the restrictions X(G) » T X(C) is obviously
ceg

G-.

injective. Moreover

n"(Kg(8)) 2 |G| Kg(%y)
by Artin's inductiontheorem (with |G| %={|G|-a| a€u}
for any abelian group %), using again the above iden-
tification,
It will be one of the first applications of the
theorie of Mackey-functors, to show, that the injec-
tivity of m, together with the fact, that KG is a
Mackey~functor, already implies Artin's theorem,
Moreover with § = {H € G|ZC€H, C cyclic, H/C a p-group}
the set of hyperelementary subgroups of G our theory

implies the surjectivity of the inductionmap



T X(H) » X(G).
HED

Of course Brauer has shown, that in this case
$ may be replaced by the even smaller set of
elementary subgroups, so our theory does not
lead to the best possible results for KG.
But on the one hand the techniques of Mackey-
functors apply as well to rational representétion-
rings, where  is known to be the smallest possible
set, on the other hand it is possible to refine our
theory by considering monomial and not only permu-

tation representations, to get the Theorem of Brauer

as well as the Berman-Witt-Theorem as applications,

(2) For any G-set S let G*/S be the category of G-sets
over S, (For a category © and an object X in §& the
category &/X has objects the pairs (Y,p) with Y an
object in € and ¢ : Y » X a morphism in § and morphisms
[(Y’Q)’(Y|’¢|)]G/Y = {y € [Y’Y']Sl@ = @'y}, i.e. a
morphism from ¢ : Y -» X into ¢': Y' - X is a commutative
triangel Y -_JLa Y' in G.).

A S

X

Because ¥ is a final object in G*, one has obviously
G /* = Gg*,
In G"/S one has sums: (T,p) + (T',0') = (TOT',p0p' :TUT=S ).
Thus the set of isomorphismclasses Q+(S) in G*/S has
naturally the structure of an abelian semigroup. Let
(i(S) be the associated group. Of course Q(*G) is Jjust

the additive group of the ring Q(G), considered in § 5.



For any G-map : @ : S = 5' I want to define
additive map;:

a*(9)

n*(@)

such that (} becomes a Mackey-functor,

*

v : 0Q(s) » n(sY)

Pyt Q(s') =~ Q(S),

i}

It is enough to define additive maps

o s Gh(s) » a'(s1),

Pyt AT(ST) - 7(8),
which is rather easy: for (T,a) € O+(S) we define
w*(T,a) = (T,pa : T » S') € G7(s), for (T,g) € Q7 (s')
we define @,(T,3) to be the pull back B = Bi$ of B
with respect to @, i.e. we construct the pull back

T. S -._CP.,,;_, T

" P and define

9, (T,f) = (TxS, B:T«S =» S) € A7(s).
S S

Cne verifies ecasily, that both maps are additive and
thus extend from {07 to Q. (Mi) holds for (), because

by general category theory one has

Lemma 6.73: _
_ —_ P

In a diagram T - 51{52 - 52

= B |

i - ; ‘

v iy

R v

T - S1 - S
a ®

with the second square a pull back the first sguare
is a pull back if and only if the rectangle is a

pull back.



This shows that for (T,a) - or just o - in 0(51)
one has
* - —m
6@ (@) = valoa) = (9a)|, = 9(alg) = @ ¥y(a).

(M2) follows from the fact, that in G" a map into
a disjoint union of G-sets is always the disjoint
union of the maps of the preimages of the single

summands into these summands, i.e. from

Lemma 6.4:

Let S = S1 U 52 be the disjoint union of S1 and 52

with imbeddings: a, : S, - S(i=1,2). Then in a

e e
commutative diagram T1”“”J7 T ——2 T, the two
? i '
oo, Vv o, %
S, P8 e S,

squares are pull backs, if and only if T is the sum

of T1 and T2 with respect to the two maps:Bi:Ti - T{ai=1,.)

Remark: The property of G", stated in Lemma 6.4, of coursec
holds in all functorcategories over the category of seis
and might be an interesting axiom, to characterize

(of course together with other axioms) "set like"
categories,

By Lemma 6.4 the maps ﬂ*(ai) : ¥ (s) - n*(si) induce

a bijection ﬂ*(a1)x'ﬂ*(a2) : at(s) » n+(s1)xrﬂ+(82),

the inverse map being given by

(T1,y1:T1—DS1)x (T2,72:T2->82) = (T10T2,71072 : T,0T, = 5},
i.e. Lemma 6.4 verifies (M2) for Q.
As may be motivated by considering example (1) we are

interested in computing for any G-set S the kernel
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Kg(S) of (ng)y : A(6) = a(%;) » 6(s)

and the image In(s).of

(ng)™ = a(s) » a(xy) = ae).

So let T be a complete system of nonisomorphic

simple G-sets. We claim

Proposition 6.1:

(a) KQ(S) = {x € Q(G)]@T(x) = 0 for all T € T, T < S}
(p) IQ(S) = {x € Q(G)\@T(x) =0 for all T € T, T % Sj§
Proof:

Because x = X-X' € {1(G) is contained in KQ(S), if

and only if the projections ws : X xS =2 S and

Y4 ¢ X'xS » S represent the same element in Q(s),

i.e. get isomorphic after eventually adding another
object o ¢+ S' » S in G"/S, we need criterions for

the isomorphy of G-sets over S, similar to Burnside's
criterion for the isomorphy of G-sets, as stated in
Thm 4.1.

We can get such criterions either by first reducing
the problem to simple G-sets S, using the camnonical
equivalence G"/s1 0s, = G“/S1)<G“/SZ , then identi-
fying the category G"/S for S = G/U with the catego-
ry U”. of U-sets (see §9 ) and finally applying Thm 4.1
for U-sets or more directly by generalizing the state-

ment and the proof of Thm 4.1 to more general situations.

We will follow the second path: So let &

be a category, which contains finite sums (especially



an initial object, being identified with the
sum over an empty set of objects) and let T
be a finite set of objects of §, such that
(1) any object in § is isomorphic to a
finite sum of copies of elements in T,
(II) any endomorphism of an element in T is
an automorphism,
(III) for any T € T and any two objects S.s8, in €

the canonical map

[T,s1]E ) LT,SZJQ » [T,s, + S, I
is a bijection,
(Iv) for any T,T' € T the set of morphisms [T,T'jCS
is finite.,
We call such a pair (E,T) or just the category €
a based category and T the basis of §. The objects
in T are uniquely determined up to isomorphism:
They are exactly the indecomposable objects in §,
especially the initial object is not contained in T.
Moreover w.l.0.g. we may and will assume T to contain
only pairwise nonisomorphic objects. (I), (III) and
(IV) together imply ws(S') =[[S,S']G\< » for any
two objects S$,S' in §; (II) implies for T,T' € T:
T~T!' ©« T=T', i.e. T = T' using the above assumption.
Thus the relation < defines a strict ordering on T
in this case.
Of course G" is a based category with basis a com-~
plete set of nonisomorphic simple G-sets. We want
to show, that for any G-set S the category G"/S

is based, too. More generally let S be an arbitrary

object in €.



Because a sum of objects (Si.cpi 28, o s)iEI

in §/S is just the sum I Si of the objects Si
i€l
in § together with the canonical map:

= P, z Si -+ S, one verifies easily:
i€ i€l

Lemma 6.5:

If (§,T) is a based category and S an object in §,
then (&/S, T/S) with T/s = {(T,9)|T € T, ® € [T,S]}
is a based category, too.

We can generalize Thm 4.1 to based categories and
claim (even generalizing the statement for € = G"

slightly):

Lemma 6.6:

Let (8,T) be a besed category and X = % x.T,
T
TET
xX= ¢ xfT and S objects in §.
TET
Then Xp = x% for all T £ S, T € T,if and only if

o (X) = mT(X') for all T ¥ S, T € T. Especially

X = X' o u(X) = ¢T(x') for all T € T & X, = X
for all T € T.

Proof:

Of course x, = x% for T £ S, T € T implies

(%) = TETXT$Y(T) ;ET?Y<TxTwY(T) ;ET?Y<Tx%mY(T) i

= @Y(X') for all Y € T, Y £ S, because Y < T and
Y ¥ S implies T ¥ S, thus Xp = X1 .
On the other hand assume mT(X) = @T(X') for all

T ¥ S, T € T. Then we have to show that
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T = {T € T|T % s, X ¥ x&} = ¢. Otherwise
choose Y € T!' maximal in T!' w.r.t <. Then

0 (X) = T x.9,(T) = = X 9o (T) =x,9,(Y)+ = X, (T)
Y rer T Y TE€T,Y<T T+ ¥ Ty TeT, YET © bt

oxy oy (¥) +T€T?Y¥Tx% 9y (T) = oy (X*),

because x,., = for Y ; T by the maximality of Y in T?'.

[}
T = *p

Corollary(L.6.6) 1: The abelian semigroup O+(E)

of isomorphism-classes of objects in ¢ (with com-
position the “categorical" sum in §) is freely
generated by the isomorphism~classes of the ele-
ments in T, especially {I1(G) is a free abelian group

with the same basis and O+(&) -+ QI(€) is injective.

Now we can prove Prop. 6.1 easily:
(a) For x = X - X' € 3(G) we have:
x € KQ(S) # the projections yg : XxS » S and

1 . 1 s » s ~n _
y4: X'xX S » 5 are isomorphic in G /S & mTaS(Xx'S @+ S) =
= @p,g(X'xs o S) for all maps @ : T » S (T € T).

&nc%*#XxSaS)zliw:T-+XxﬂT—l$XXScmel

o g
S
and a map §y : T - X xS is nothing else than a pair
(¥,5¥,) of maps y : T » X, y,: T » S, thus
Pp,g(Xx8 »8) = [{(y,s¥,): T = Xxs|y, = a}
= [{¥,;: T » X{| = 9 (X). Thus:
x =X - X' € KQ(S) & mT(x) = mT(x') for all

T<S, TETe mT(x) = O for all T< S, T € T, qee.d.



(b) By the definition of (ns)*: (s) =+ a(*) = q(e)

we have obviously: IQ(S) = ¥ &T, thus
TE€T,T<S
IQ(S) = {x= Z xTe€Qq() | x, =0 for TET, TS|

TET

{x € Q(G)le(x) =0 for T €T, T« s},

qCEUd.
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§ 7 An Inductiontheorem for Mackeyfunctors

In this section we consider only Mackeyfunctors

from the category G" of G-sets (G a finite group)
into the category b of abelian groups. (The re-
sults generalize immediately to arbitrary abelian
image categories instead of gg).

As can be motivated for example by considering

Ex.{(1) in § 6 we are interested to study for a
Mackeyfunctor M and a G-set S the kernel gm(s)

(or just K(S)) of the map (ns)* : M(*) » W(S)

and the image Iy(S) = I(S) of the map (ns)*: T(S)~-M(*)
or occasionally more general for an arbitrary G-map
® : S » T the kernel Km(cp) = K(p) of o, : T|(T) »Mm(S)
and the image ];m(cp) = I(p) of cp* : MW(8) »WM(T).

A special, but important case of our
main result is the relation
(1) K(s) + I(s) 2 |G| |(¥)
for any G-set S and any Mackeyfunctor M. Already
this relation shows that for ® = XK., and

G

S = 8(8) = U G/C with 8§ = {C € G|C cyclic] the
ceg
injectivity of (ns)* : KG(*) - KG(S) implies

*
]G|~KG(*x§nS(KG(S)), i.e. Artin's inductiontheorem.

Before stating the main result just a

few remarks and definjitions:
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At first let us observe, that S < T implies
K(S) 2 K(T), I(S) < I(T), especially
S ~T=K(S) = K(T), I(S) = I(T), because

S < T implies the existence of a commutative

sS..n
triangle: iq//g* . Thus K(S) and I(S) depend
TNy

only on the equivalence class of S, i.e. on

u(S) (see § 3). Therefore it makes sense (and
also is closer to conventional notations as can
be seen again by considering example 1 in § 6)
to introduce the notation K(U) = K(S(u)),

I(u) = I(s(u)) (s(u) = 0O G/U, see § 3) for any
set U of subgroups of G gﬁg K(U), resp. I(U) in
case || = {U}| contains exactly one subgroup. Of
course K(4) = K(u), I(u) = I(U) with U the sub~
conjugate closure of {|. Moreover Lemma 6,2 implies
K(s 0T) = kK(s8) nk(t), I(s 0 T) = 1(s) + 1I(T),

especially X(U) = n K(U), I(u) = T 1I(U).
vey ucu

Now let T be a (possibly empty) set of
prime numbers and let T' be its complement (in
the set of all prime numbers), Thus any natural
number n can be written uniquély as the product
of its fr-part n_ and its m'-part n_ with

a &
n_ for n =Tp P defined byn_= T p P,

n pem
For | a set of subgroups of G define

o U = @nﬁ = U U {V€G|Ep € m,NQV with V/N a p-group
and N € U1}

and U = o U for 1w the set of all primes, i.e. T' = @.

Thus using the results of § 5 @nu contains with any
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- p
U€EUall V&G with V~U (i.e. p(V,p) = p(U,p))
for some p € T.

Finally for a G-set T we define

= s(a (4(1)))

V! G/Ve Thus T ~ T, < T
veg (u(1)) g m

T ~ § implies T_ = S, one has gﬂ(u(T)) = u(Tﬂ)
and the above remark can be translated into the
following form: For two simple G-sets X,Y with
X < T and X R Y for some p € 1 (i.e. p(X,p) = p(Y,p))

one has Y < T .,
1T

Now we can state:

Theorem 7.1 (general inductionlemma for Mackeyfunctors):

Let G be a finite group, M:G" » Up a Mackeyfunctor and
m a set of prime-numbers. Then one has for any G-set S
~ { . %

K(s) + I(5_) 2 |G|, * B(*)
and
6] .+ (1(s) n K(s_)) = 0
resp. for any set {l of subgroups of G:
K(u) + T(e ) 2 |6, B(*),
D™(*), and

especially K(u) + I(ou)

l&| o (X(u) n E(p u)) = o.

Proof:

(1) Outline: The idea of the proof is to reduce

the general statement to the case M = {§ and then

to apply the results of §§ 5 and 6. The reduction
is based on the following fact: Any G-map ® : S =» T
defines an endomorphism cp*cp*: ®(T) -» M(T).

Thus we get a pairing:



ot (T) x M(T) » M(T):

(p,x) cp*cp*(x),

which by bilinearity extends to a pairing:

Q(T) xW(T) » W|W(T).

The study of the behaviour of this map w.r.t. induction

(i.e. the maps ﬂ*(m), m*(w)) and restriction (i.e. the

maps (,(9), M, (p)) leads to the abstract definition

of exterior composition (or pairings) of Mackey-

functors or more generally bifunctors, which spe-

cializes (e.g. in the case M = (1) to the definition

of interior composition of bifunctors, Frobenius-

functors and Frobeniusmodules. In our case the

composition QxM -» M defines for {I =W on I the

structure of a Frobeniusfunctor and on any Mackey-

functor M the structure of an {J-module. Thus we can

apply T.Y. Lam's theory of Frobeniusfunctors, which

finishes the reduction to the case [ = .

We split up the proof into a sequence of Lemmata,

(2) Lemma 7.1:

Let M be a Mackeyfunctor from G"into Ub. For any

G-map ¢ : S » T in G"and x € M(T) define:

(@yx) = @ (y(x)). .

Then one has for any two G-maps ¢ : S = T, ¢': St » T

(a) {p O o'
with ¢ O o
(b) (CP ?Cp', x)

(C) (IdT,x> = X.

e

x) = (o, x) + (Pt,x)

S U S' 2 T the sum of ¢ and ¢'.

(@, x)) = {@'{P,x)).

Lt e e ———————
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Proof:

(a) Let 1 : S >S5S U S* and j : S' » S U S' be

the canonical imbeddings, thus ® = (p U @')i

and @' = (p U ®*')j and therefore

(@yx) + {B',%) = @ @y(x) + 9 @, (x) =

= (3 09) 1", (P00 )+ (®00) 3 5,(0 00 ),x =
= (90 9') (i 1,3 5,) (0 0 @) yx =

= (by Lemma 6.2, (b))(9 0 ') (9 0 @'),x =

(o O ©',x), qee.d. ‘

(b) Using (M1) for the diagram

®
Sxgty —/—>» g
T .
-— DxP ?
cpl’ T i/q)'

\Ef
S = T

we have:

(P x 9',x) = (¢ = w')* (@ x @'),x =
T T T

= (99')" (') ,x = @ (3 P,)P' 4% =
= w*(w*w'*)w'*x = m*¢*<w',x> = (@K' ,x))

and because @ x @' 2= ©'x @ as well (@ x ©',x)=(p', (P, x)).
T T T

(c¢) is trivial.
By Lemma 7.1, (a) the pairing
Q' (T)x R(T) » W(T) : (9,x) b {@,x)
is bilinear and thus extends to a bilinear map:
Q(T) x W(T) » W(T).

We have further, using the above notations:
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Lemma 7.2:

Let a : T* » T be a G-map. Then the following three

diagrams comnmute

(a) Q(T)xBM(T) — W(T)
JCEHES l‘m*(a)
Q(T') xW(T*') =  wm(T*),
(v)  Q(T) xm(T') Id"‘m*(“% Q(T) x :(T)
0, (a) x T Sa)
N A (a)

Q(T') xM(T") > Mm(T")

(¢) a(r)xm(r) BLa)xTd g1y, m(T)
(Eax (o) e

Q(T!) x M(T*) - R(T*)

i.e. {(a) for v € Q(T), x € M(T) one has
Ox((¥sx)) = Cayy Gux),
(b) for y € Qi(T), x € M(T') one has
(7,0 (%)) = o ({agysxD),
(¢) for y € A(T'), x € M(T) one has
@ 7% = & (yy0ux) .
Proof:
It is enough, to prove all formulas for elements
in Q+, i.e. for maps ¢ : S » T, resp. ¢p': S' = T?',

(a) and (b): Let ® : S » T represent an element in

: a
Q+(T) and apply (M2) to the diagram: T'xS -

S
T
fo P
o
T - T



Then we get for x € M(T):

— " P,

* : —
G.*<Cpax> = @*CP PX = Q QxPpX = @ PyGpXx = <CP!G'*X> =
= (a*(¢),a*x>

and for x € M(T'):

* * ¥* K e e e I e W ¥
(Py0 X) = @ P X = @ @ Pux = a P Qux = a (P,x) =

¥*
= Q (Q*¢’x>’ q.e.d.

(¢) Functoriality alone (already used above together
with (M1)) implies for @' : S' » T' € at(r):
ﬁa*(wg),X> = (a®',x) = a*m'*w'*a*x = a*(w',a*X>,
g.e.d.

Following ideas of T.Y. Lam (see | ])s slightly
varied with respect to our situation as stated in
Lemma 7.2, we now define (a bit more circumstantial
than necessary in the moment because of possible
further applications):

Let € be an arbitrary category and D,E,F : € = A

no'

(or any abelian category) bifunctors. A pairing or
exterior composition 1 : DxE = F is a family of
bilinear maps Ty : D(X)x E(X) » F(X), indexed by

the objects X in §, such that for any map @ : Y - X in §

one has three commutative diagrams:

T
(c1) D(X) xE(X) —>3 F(X)
D, (¢)xE, (®) !F*(w)
T W
D(Y) x E(Y) ——% 3 F(Y) ,

i.e. m*(rx(d,e)) = TY(m*d, w.e) for d € D(X), e € E(X),
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(cz) D(X) x E(Y) w~¥§:ﬁ§»£?l~§ D(X) x E(X)
~J
D, () x Id e (x)
. T ///% (%)
D(Y) x E(Y) L > F(Y) ,

ice. Ty(d,97(e)) = ® (Ty(wydse)), d € D(X), e € E(Y),

D*(m))<Id .
7

(C3) D(Y) x E(X) D(X)*E(X)
N
iId)<E*(¢) 7F(x)
v K ST ()
D(Y) xE(Y) --- ~»¢35ﬁ-—a F(Y) ,

i.e. rx(@*d,e) = m*(rY(d,@*e)), d € D(Y), e € E(X).

If D = E = F,we say, that |' defines an inner composition
of F, and if E = F, we say, that [ defines an action of
D on F.

Remark: The G-functors, considered by J.A. Green in
L ], can be identified with Mackey-functors

M : G* » k~modules (k the base-ring considered in

Green's paper) together with an inner composition,

which is supposed to be k-bilinear.

The most interesting inner compositions of course

are the associative ones. For our purpose we specialize

even further and define a bifunctor F : & - gg together
with an inner composition I' : FxF - F to be a (commu-
tative) Frobenius-functor, if for any object X in &

the multiplication F(X)x F(X) = F(X) : (x,y) » Tx(x,y) = x-y

defines on F(X) the structure of a commutative ring with

a unit € F(X), such that for any ® : Y = X in €

P (x)
one has w*(TF(X)) = TF(Y) (i.e. @, is a ringhomomorphism).



And an F-module (or more precisely a Frobenius-
module over F) is defined to be a bifunctor
M: G = Ub together with an action [I' : Fx M = M,
such that for any object X in € TX defines
on M(X) the structure of an unitary F(X)-module,
i.e. an F(X)-module with IX(1F(X),m> = 1F(X)'m = m
for all m € M(X).
To state the next Lemma, we define for a bifunctor
F : @~ lpand a map ¢ : Y » X in & the subgroups

* ‘
Ko (@) = Ke(p, : F(X) » F(Y)) and I(9) = Im(p :¥(Y)-F(X)).

One sees easily, that for a Frobenius-module M : € = Ub
over an Frobenius-functor F : € - Ub the subgroups
KM(m) and IN(@) are indeed F(X)-submodules for any

2 4

¢ : Y - X in €, especially KF(m) and IF(m) are ideals

in F(X). Moreover we have:

Lemma 7.3 (T.Y. Lam):

(a) If D,E,F : G = 22 are bifunctors and if
I ¢+ DxE = F is an exterior composition, then for
anny map © : Y - X the composition ' defines maps:

Ko (@) < E(X) -+ K (%),

ID(cp) < E(X) = IF(CP)-

Ko{e) ~Ig(9) » o,

I5(9) x K (@) = 0.
{b) Especially for F : & = Uba Frobenius-functor
and M an F-module one has KF(w)' M(X) < KM($),
(@) - r(x) ¢ 1.(w), Kpe) - Iy(e) = Ip(e) - K (®) = 0
for any ¢ : Y = X, and it y : Z - X is another map
in §, such that n '1F(X) S KF(m) + IF($) for some

natural nuwaber n, then X, (o) + I,‘I(U) o> n - M{X),
& & -

n-(]iﬂ(g) N IM((P)> - 0.



Proof':

(a) The first formula follows from (C1), the second
and third from (C2) and the last from (C3).

(b) The first part is an immediate consequence
‘of (a), applied for D = F, E = F = M, the second
part follows easily from the first part:

nM(X) = n-ip gy M(X) € (Kp(9) + Ip(y))-M(X) =
= Ko (®) M(X) + T(v) M(X) € K(®) + T(¥),
n(Ky(¥) 0 Iy(@)) = n-1p 0y (Ky(¥) 0 Iy(e)) ¢
(Kp(®) + In(¥)) (K, (¥) n Iy(9)) <

¢ Kp(9) Iy (®) + Io(¥) Xy, (y) = o.

By Lemma 7.3, (b) our Theorem follows now from

in

Lemma 7.4:

The canonical pairing {Ix M - I, defined for any
Mackey-functor It : G"- Yp, defines for @ = QO

on (] the structure of a Frobenius-functor with

a canonical ringisomorphism O(*G) > 1(G) and on
any Mackey-functor @ : G"= dp the structure of a
Frobenius-module over {(};

and from

Lemma 765

The first formula in Theorem 7.1 is true for Il = Q.

Proof of Lemma 7..4:
¥For any G-set S we have to show at first, that the
multiplication (A(S) x((S) = {(S) defined by

A(S) <% (s) » O¥(5) & (2,4) P 0 (9, (¥)).



(p : TS, § : Y »8S) is associative and commutative

and that there exists a unit 1 € Q1(S). But

Q(s)
* *
P (Pul¥)) =9 (¥lgy) =@ vl, =@ 5 ¥ : TXY———> Y
vl w
ol
T 5> S,
*

ice. @ (94,(Y¥)) is the product of ¢ and § in the
category G/S and therefore associative and commu -
tative. Moreover the final object Idg : S » S in G"/s

represents the wanted unit in (S), for ¢ : T = S one

= Id,, and because

has of course w*(Ids) = Ids\cp T

G"/*G T G" one has the canonical ringisomorphism:
Q(*;) = a(ae).

Thus the first part of Lemma 7.4 is proved. For the
second part we have to show for any G-set S, Mackey-
functor M : G" - Up and elements x,y € Q(S),

m € M(S) : (Ids, m) = m, {(x,{y,m)) = {{(x,¥y),m). But
because w.l.o.g. x = ¢ : T2 S, y= 4§ : Y >8 € Q" (s)
and (P,{) = © X V this follows from Lemma 7.1, (b) and
(c).

Proof of Lemma 7.5:

(1) At first we want to show: |G|-1O(*)E KQ(S) + IO(S)
for any G-set 3. For this purpose we choose a complete
system T of nonisomorphic simple G-sets and consider

Va4
the imbedding T ¢ : Q(*,) = a(6¢) » m £ = Q(G).
TET T TCT

NS
Define e f. € Q(G) by

s' s )
1 T <8
e = .
opleg) {‘o T % s,
. 0 T <8
Pplfg) = 47 1 g s.



Thus eg + fS = ‘h(é) = 1O(G) for any G-set S. Moreover

£y and |Gleg, [G|fg € Q(G)

[G[-1Q(G) = |G| .eg + |G| -fg4

by Thm 5.2. But @ (|Gleg) = O for T £ S, ¢T(iG|-fs) =0
for T < S, thus by Prop. 6.1:

lG\-1Q(G) = |Gl-eg + |G|-£fg € IO(S) + KQ(S).

(2) Now we want to show:

Lemma 7.0:

1if I(Sﬂ) + K(S) € p, p a prime ideal in Q(G), then
p = p(T,p) for some T € T, T < S and some p § O

with p\lGl, p € ', Especially I(Sﬂ) + X(s) = q(a),

it {p| | |6| and p €} =g

Proof:

By Prop. 6.1 we have K(S) = N p(T,0) and
TET,T<S

I(Sﬂ) = TETOT{SHP(T’O). Thus the assumption implies

T<SOTET p(T,0) € p, and T*S:,TET »(T,0) € p. But an

intersection of a finite number of ideals is contained
in a primeideal p, if and only if at least one of the
ideals is contained in yp (otherwise there exists for
any ideal g, (i = 1,...,2) an element x, € 6, = P

and for the product y = 1] X, one would have:
i=1

e
m

[ [in Rl
=
N

n o8

¢, » but y ¢ p, a contradiction).

Thus we have a T < S, T € T with p(T,0) € p and we

have a T' § S_ with p(T',0) & .



Because Q(G)/p(TP) = Z any primeideal p in ((G),
containing p(T,0) is necessarily of the form

p(T,p) with p = char Q(G)/p. Thus we have

p(T,p) = p = p(T',p), i.e. T R T for p = char Q(c)/p.
Because T < 8 < STT and T * STT especially T # 1!

P
the relation T ~ T' implies O # P t\G|. Moreover

b
p & 1mand T' ~ T < 5§ would imply T' < Sﬂ' thus we

get p € ', q.e.d.

(3) Lemma 7.5 now follows immediately from (1) and (2)

and the purely ringtheoretic?

Lemma 7.7:

,

Let R be a commutative ring with 1 € R and let g be
an ideal in R. Let m' be a (possibly empty) set of
primenumbers., Then the following statements are
equivalent:
(i) for any primeideal p € R with @ € p one has

0 % char R/p = p € 1'.
(ii) There exists a natural 7'-number k with

k '1R € q.
(iii) There exists a natural number k with

k g € ¢ and for any natural number n the

relation n ~1R € g implies nn,- 1R S

Proof:
(i) » (ii) Consider the multiplicatively closed set
“

5 = {n -1Rln a natural f'-numberf. If g N S = @

one can find a primeideal p with a S p, p N S = ¢



(e.g. a maximal ideal with these conditions) and
for this p we have p = char R/p § w', because

otherwise p -1, € p N S § $. But this is a contra-

R
diction to (i), thus we have a natural T'-number k
with k <1R € a.

(ii) = (iii): The first part is trivial. Now assume

no. g € a. Because there exists already a 1'-number k

with k -1 € g we get (n,k) -1

R € ¢ and because

R

(n,k)[nn, we get also n_,-1, € a.

R
(iidi) - (i): Assume g C p and p = char R/p. p = 0O con~
tradicts k ¢+ 1y € g & p and O ¥ p ¢ 7' implies p . 1 € p,

thus | R € p, also a contradiction. Thus

we have O + p € m'.

Remark:

In this proof we have made use of Thm 5.2, to prove (1),
and of Thm 5.1, to prove (2). Already (1) implies

|G|« @(*) < K(S) + I(S), i.e. "Artin's Inductiontheorem"
for any Mackey-functor I! and G-set S, thus for this
part of the theory we do not need the study of the
primeideal structure of {(G). On the other hand (2)
together with (3) implies, that at least for a certain
power lG\n of |G| one has |G|™ . @(¥) c K(S) + I(S)

and then [Glﬁ, @(*) ¢ K(S) + I(S_) for any set T of
primes. Especially one gets W(*) = K(S) + I(Sﬂ),
whenever 1 contains all primedivisors of |G|,

without using Thm®5.2.

Of course, studying a given Mackey-functor Ti, one of
the basic problems is to find "small" (w.r.t. <)

G-sets S with I.(S) = Wi(*). This problem is not



solved by Thm 7.1, But it is easy to imagine, that
Thm 7.1 can be used very well, to deal with this
guestion. For the special case of Mackey-functors,
which are at the same time Frobenius-functors,

we will discuss this problem in the next section.
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§ 8 Green - functors

L.et us start with some more abstract deflinitions
concerning bifunctors. So let § be an arbitrary
category, F : € - %p a Frobenius-functor and
Mi : € =» U (i=1,2,3) three Frobenius-modules

over F. A pairing I': M1xM2 - M., is called F-bilinear,

3
if for any object X in € the pairing TX:M1(X)fo2(X) - Mj(x)
is F(X)-bilineaz.

We claim at first:

Lemma 8.1:

Let G be a finite group and M. : G- Up (i=1,2,3)
Mackey=-functors (thus (-modules). Then any pairing
T : m1>:m2 - mj is (l-bilinear.
Proof: For a G-set S, a G-map ® : T - S and elements
X, € mi(s) (i=1,2) we have to show:
rs(<tp’x]>’x2) = I‘S(XV],<CP,X2>) = <cp’1_\s(x1ixz)>’
*

But {@,+) = © @, and thus we get (using § 7, (C1),
(c2) and (C3)):
. * *
1S(<cplx1>’xz) = 1F‘S(cp cp:,ex11X2) = Cp I‘T(cp*x1’cp-)rx2) =

>X_ »
= © ®%TS(X1,X2) = <w,TS(x],x2)> and similarly

TS(X1:<®:X2>) = (w,TS(X1:X2)>-

be

N

Now let F' : § = ngénother Frobenius-functor.
A natural transformation & : F = F' is called a

(Frobenius-)homomorphism from F into F', if for any
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object X in § the map @x : F(X) » F'(X) is a
ringhomomorphism. Any such homomorphism
6& : F(X) » F'(X) can be used, to define an

F-module-structure on

F' :

L FAF 2 P @) ¢ F(X)=F'(X) » F'(X)

(x,x") H»G&(x)- x', such that the multiplication
becomes F-bilinear.

On the other hand, given an F-module-structure

' : PxF' » F' on F', such that the multiplication
F'x F' » F' is F-bilinear, then the map:

e

I FoF' :T. : F(X) »F'(X) : xp T(x,1F,(X)) = x

X ']F'(x)
is a Frobenius-homomorphism from F into F',

Moreover (&F)° = & and (I'*)°, thus we have a
1-1-correspondence hetween "bilinear" F-module-
structures on F' and homomorphisms F - F'., VWe

also call a Frobeniusfunctor F' together with

an homomorphism F - IF' a Frobenius-algebra over

F or an F-algebra.

We want to apply this to Mackey-functors. Thercfore
let us introduce for a bifunctor ¢ : G" = gg with an
inner composition, which is al the same time a
Mackey-functor and a Frobenius-functor, the name
Green-functor and similarly the name Green-modules,
resp. Green-algebras over & for Mackey-~functors,
which are Frobenius-modules, resp. Frobenius-algebras
over .

Of course {1 is a Green-functor and one can also make
KG to a Green-funector, using the tensorproduct of

vectorbundles.
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Moreover Lemma 3,1 implies:

Lemma 8.2:

Let G be a finite group. Then any Green-functor

G : G" -~ gg is in a natural(and unique)way an
(l-algebra, i.e. in the category of Green-functors:
G" - 22 the functor {} is an initial object.

In this section we want to consider special
properties of Green-functors, especially we want to
consider G-sets S with I@(S) = @(¥*) for a given
Green-functor @. Of course I@(S) = @(*) o 1©(*)€ I@(S),
because I@(S) is an ideal in @(%).

At Tirst we have the basic

Theorem 3.1 (J.A.Green):

Let @ : G" =

(142

‘g be a Green-functor. Then there exists

a G-set 5 = 5@, such that for any G-set T we have
I©(T) = G(¥) o S < 7T.

Remark:

Of course S is determined only up to equivalence ~

by this property. But this implies, that 11(S) is

uniquely determined by ¢. U(S) is called the defect

basis ﬁ@ of §. Obviously one has:

G(*) » By c u(r),

6(*) » Dy < U.

I@(T)

I (u)

We also call S a defect-set of .

Proof:

By Prop.B.h(b) we have to show, that & = {T

&

1,(1) = 6(*)]

is l-closed. But T < T', T € R@ obviously implies T' & Rg,



- 80 =

thus it remains to show: T, T' € R@ =2 T xT' € R@'

But this follows immediately from

Lemma 8.3:

Let ® : G" =» Ub be a Green-functor and let

o8
X >

EL lB be a pull-back diagram in G". Then the
T—S '
o8

*
surjectivity of o (i.e. ) € Ig(a)) implies the

'@(s
p—

surjectivity of a (i.e. 1@(T') € I@(a)).

Proof:
*
Assume 1@(5) = g (x) for some x € (T). Then

* e ) -
1@-(TI) = B*(1C\)(S)) = B*(a (X)) = Q (B*(X)) € ‘[(;}(a)l
qe.e.d.

Another way, to prove the above statement, is Lo use
the following Lemma, which generalizes Mackey's
Tensorproduct-Theorem (cf. CR, p.325) to arbitrary

Mackey-functors:

Lemma &.h4:

Let @M, : G" = ¥Up (i = 1,2,3) be Mackey-functors with

a pairing T : Q0 _x3, » T, and let x- %

! >T! be a
1 2 3 \\(})SSB .
\\\ B
S
a‘%

pull-back diagram. BL
T

Then for x € ﬂ1(T), y Q‘Mg(T') one has:

To(a' (x), B (v)) = (o B) T (Fa(x)s Tx())e

Proof:

We write (o,-)s instead of Ts(o,o). Then we have:



(c3) x (M1) .

(@ (%), B*(Y)>S = ((xy 0B ) = ol (Kx,B CxY)p)
(C2) w e _  _ A e -
= a B ((Bexs au¥)y) = (o X B)  (Byxy auydy).

Remark: Using Lemma S.!I one sees easily, that Rm is
l-closed for any Mackey-functor ¢ with an inner com-
position, such that @(%*) x®(*) -» ®(%*) is surjec~-
tive,

By Thm $.1 the problem to determine for a given Green-
functor G all G-sets S with IO(S) = ®(*) has been
transformed into the problem, to determine the defect
basis ®@ of @. Unfortunately there are many cases,
especially in integral representation-theory, in

which only lower and upper bounds for $© can bc given.
hut already the knowledge of sufficiently strong upper
bounds for @@ can be quite useful. Indeed in many of
the following results the surjectivity of the
inductionmap ®(S) = G(*) is much more important than
the minimality of S. Therefore they may be stated some-
times for any surjective inductionmap.

At first let us remark, that the proof of Thm 7.1

immediately yields:

Theorem 7.1"':

Let @ : G" = Uh be a Green-functor and X an arbitrary
G-set. Then there exists a G-map o ¢ S5 = X, such that
for any G-map B : T = X the inductionmap B%: J(T) = T(X)
is surjective if and only if qg-factors through 8, i.c.

if and only if there exists a morphism from ¢ into B in G"/X.
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Such a map g : S » X is called a defect-map
over X and of course it is uniquely determined

by @ up to equivalence ~ in G"/X.

Especially we define X to be without defect (w.r.t. ©)
if the identity IdY : X » X is a defect-map over X,
i.e. if for g : S » X the surjectivity of

*
¢ (a) : &(S) =» §(X) implies the existence of a

section B : X » S, i.c. & G-map with gff = Idx.

In a way a Green-functor ¢ is determincd
by its behaviour om G-sets without defect and the
theory of defects can be considered as a way to
reduce the study of § over arbitrary G-sets to
the case of G-scts without defect. More preccisecly

one has the following itwo propositions:

Proposition &,1:

(a) Two G-maps o, 285, 2 X (i=1,2) are dcfecl-maps

over Xi (i=1,2) resp., if and only if their sum

o, U a

] : 5.0 s, = X, U X, is a defect-map over

2 1 2 2
X. U X,. Especially X, U X, is without defect it

-
N

and only if X] and X, are without defect.

(b) If T is (as usual) a complete set of nonisomor-

phic simple G-sets and T@ = {T € T|T without def=ect

wel'sabt. ®}, then S = Y T is a defect set w.I"ot. &.
/l\ E T(r .

Proof:
(a) This follows immediately from Lemma 6.2 and

the definitions.
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() We have to show:

(i) 1Ir I@(SG = $(*), then S < §',

(11)I,(8) = 8(*).
(i): It I@(S') = §(*), then by Lemma 3.3 the induction
*

map & (¥) : (5xS') » G(S) with ¢ : 5xS' » S the

projection onto the first factor is surjective. osut

Dy (a) 5 is without defect, thus 5 < Sx3' < ', q.2.d.

v e

(ii) The vroof is based on the following

Lemma o.5:

et § be an equivalcnce-class of G=sets w.r.bt. ~.
Then one has

(a) If ¢ : X » Y is a G-map with X,Y € §, then the
image a(X), considered as a G-subset of Y (cl. § 2 ),
is in Q.

(b) 1t X is a G-set in & with a minimal number of

elements, i.e. |X | < |Y| for all Y € &, then:

0
(i) Any G-map ¢ XO - Y is injective and has
a left inverse o' : Y - XO, i.c, a'-0 = IdX .

O

(ii) Any G-map B : Y - XO is surjective and has
a section, i.e, a right inverse ' : X - Y,

‘B-B':Id .

(iidi) It X1 € & with |X]l = lXOl, then any G-map
o XO - X1 is an isomorphism, esp. A is
determined by & up to isomorphism and
EndG(XO) = AutG(XO).

We call XO a smallest G-set in f, resp. a smallest

G-set with XO ~ Y, if Y is any G-set in &

i ®
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Proof':

(a) We have X < o(X) < Y < X, thus o(X) ~ X,

i.e. a(X) € Q.

(b) The injectivity of ¢ and the surjectivity

of B follow immediately from (a). But this alrecady
implies (iii), which in turn implies, that any
u=map a' : Y - XO, resn, B o XO » Y is a left-,
resp, o right-inverse up to an automorphism of

,‘-LO, i.e. the rest of (i) and (dii).

lemark:

It TF = {T & T|T < Y for some (all) Y € &} and
\
if T'ﬁ = {1 ¢ Tgl’l" max, in TS“( Wer.t. <}, then one
can show: X = U 1T 1is a swallest G-set in &,
T&Té

This way one may construct"smallest objects" in a
~-equivalence-class £ of objects in any based ca-
Legory €, which then have the properties (i), (ii),
(idii).

nd of the proof of Prop. S.1, (b): Let XO be a

smallest defect-set weroslbe.e e If o 1 Y = XO is a

* * * .
G-map with a : ¢ (Y) = & (XO) surjective, then
* R _‘I:- * by 3 3
nY = (nx a) = “x a 1is surjective as well, thus
0 0

XO < Y and therefore XO ~ Y, But by Lemma 8.5 this
implies, that o : Y =~ XO has a section, i.e. X0 is
without defect. By Prop. 8.1, (a) this implies,

that any indecomposable (i.e. Simple) subset of XO
is without deflect, thus isomorphic to some [ ¢ T@

and therefore X < U T =38, I.(5) =@&(¥).
- ¢
rET,,
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Remark:

Unfortunately it is not true in general, that any
defect-set X is without defect w.r.t. ®, or equi-
valently: T' < T and T without defect does not ge-
nerally imply T' without defect. Indeced it will be
onne of the maindifficulties to show, that for certain
Green-functors ¢, associated with relative integral
representation theory, the above implication does
hold., We Will come back to this problem.

The following Proposition is a formal version of the
idea of R, Brauer, to use the surjectivity of tfthe in-

ductionmap % X(II) =» X(G) (with @ the set of elemcn-
Hee

tary subgroups of G) to characterize generalized
character (i.e. elements in X(G)) among class functions
(i.e. elements in € @ X(G)) by their restrictions to

7
elementary subgroups,.

Proposition S.2:

Let @ : G* » Up be a Green-functor and M : G* -

182

5
a Green-module over ., Let ¢ : 5 » X be a G-map
*
with ¢ () : ¢(S) » @(X) surjective. Then
*
(a) 32 () : 3(S) = w(X) is surjective,
(b) Wy(v) + M(X) ~» 4i(S) is injective and maps M(X)
isomorphically onto {x € (S)|a,(x) = B,(x)} with
a,B the two "projections™ S xS -» S in the pull-back

X
diagram S
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Proofl:
We have by Lemma 7.3:
(a): B(X) = 6(X) - R(X) = Iy(e) - M(X) € Iy(e); and

(b): K (o)

O(X) - ¥y (9) = I4(®) + Ky (@) = o.

iJecause ©®Q

W : S x S - X we have moreover
X

GuPy = BuPys 1eee 0, (W(X)) € R(S)"' ={x&R(S)|ayu(x)=p,(x)].
On the other hand assume x € SI(S)' and choose y & G(S)
with @*(y) = 1O(X)'

*
We claim: @, (9 (yx)) = x, which proves, that T, ()
maps M(X) onto M(58)* : 9, (@ (yx)) = o (B (yx)) =
= 0 (B (¥)Ba(x)) = " (Bu(3)an(x)) = &  (Buly))ox =

= 0, (@ (v))ex = Px(1g(x))ox = Tg(s)* = *

Remarik :

Sometimes (for example see L 3], §8 ) the last result
has been interpreted in the following way (with X = *
for the sake of simplicity): Let {{S|}| be the full
subcategory of G%, whosec objects are the G-sets T

with T < S. Then the various restrictions

(Np) ¢ B(*) = B(T) derine a map X(¥) » Lim i,
{isi]
which - after identifying im @, with S)' - turns
{si}
out to be an isomorphism by Prop. d.2 .,
Another - and probably nicer - interpretation is

the following: For any G-map © : 5 - X one can con=-

sider the Amitsur-complex

() Ko« 3

1
2111

X X X :

Applying .., and taking cohomelogy yields

ﬁ'(S)/m*CJ(X)) o U](m,ﬁ*), the first cohomology-groun

of T, w.r.t. Q. Thus we have by FProp. 9.2:
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n1(m,m%) = 0, whenever '@ : G" = is a Green-

e
e

(-L
=

module over a Green-functor § wit I@(w) = @(X).
Amitsur-cohomology is a generalization of group-
cohomology: If ¢ = nG/E:G/E - ¥, then

ni(@,m*) == ui(G,m(G/E)) for the natural action
of G = Aut(G/E) on 2(G/E). We will give some
further results concerning the Amitsur-cohomolog

of Mackey-functors and generalizing Prop. d.2 in

an appendix Lo this section.

Corollary (P.8.2) 1:

If §,8' ¢ G® » Up are Green-functors and if therc

exists a homomorphism i : ¢ » @', then I, , C % .
o=

<
Proofl:

This follows immediately from Prop. ¢.2,(a).

Now we want to apply the results of ¢ 7 to the
study of defcecct-basis. Using the "Artin-part™ of

Thm 7.1 (i.e. the case 1 = $) we get already:

Proposition o.:

Let ¢ : G" =~ 4b be a Green-functor, $ a G-scl,
no€ 4 a fixed ualural number vid 1ol @ A
be the unique homomorphiswm from ( into . Consliicw
the Tollowing statements:
(i) m o 1.y

‘-‘;‘__,"\*)
(i) m e (%) g 1(5)

€ I.(3)

(iii) n K@(S) = 0
(iv) @ (n « K4(8)) =0

(V)16 e n e gy € e T(S) g (8.

®(*)
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Then we have the Tollowing implications:
(i) & (ii) = (iii) = (iv) = (v), espccially for

\Gl-@(*) = §(¥) they are all equivalecnt.

Proof:
(i) o (ii) is trivial (I@(S) is an ideal in ©(%*));

(ii) = (iii) : neK_,(38) = n-@(*).K@(S) c IG(S)°K-'"'-'(S) = 0
A o Wi
(Lemma 7.3);
(iii) = (iv): This follows from the commutativity of

),
the diagram: Q(*) - ——> ©(¥)

]
i

lﬂ*(ns) i@*ms)
&

Q(s) — > u(S)
ﬂ*(ns)(x)
noe 9*()()

O implies @%(ns)(gg(x)) = 0, thus

@*(nx) = 0.

(iv) = (v): By Thm 7.1 we have \G\-1n(%) € KQ(S) + 10(5).
Multiplying with n and applying & we get:

]G]-n~1&(*) € EXHJKQ(S)) 4-&&01-19(8)) =

—

O+ HJtKIQ(S)) c nIS(S) c I@(S).

Corollary (P. &.3) 1:

if |Gl=s(¥) = ¢(¥), then b. € u(s) o K.(s) = v fov

any =-sct S,

Proof:

Choose n = 1.

Corollary (P. 8.3) 2:

Let €1 C ¢ be a sub=Green-functor of ¢ and assume

f
o

|Glew!(#*) = u'(¥). Then D = D_,.
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Prool:

oy Cor. (P.o,”) 1 we have o € b ye On the other

hand we have X.,(D, ) ¢ i (b,) = 0, thus D,, < b, ,
) i - o ] o — |

'
[

GeCad.

Corollarv (P.o.3) 3:

Let ©(*) be torsionfree. Then n 1@(*) € Iﬁ(S)
implies (n,|G|) - 1w(~) € L.(5).

Proof:

noe KU(S) = 0 implies now h“(s) = 1 KG(S) = 0,

thus |G| 1&;(*) € I@(S) and therefore

(n,|G|) = 1,@(*) € 1(3}(5).

To state further results we introduce for any
commutative ring R and any Green-functor & the
for the defect basis of R ® @ (which

Z
obviously is a Green-{unctor in a natural way)

notation Di
[P

. NN L .
and also DE instead ot %} in the special casc
: Y

W/

S Qoand wo= M= {p|p a prime with pR % R
s

it

- ‘
(and thus R = %TT ZL(—l-qu S TT'_\).

We collect a few facts concerning these notatious

in

Lemma $.0:

Let & : G" ~»

&

b be a Green-functor and ﬂ,ﬂ1,ﬂq,---

sets of primes. Then
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(a) For a G-set S we have D, < UU(S) & there exists

ul
@

a T'-number 11 € N with n e 1@(*) € IQ(S).

T R
(b) mc T, S D© c n@ , especially
. Nm .
D@1 2'5 Dg1 N Dgg (equality does not necessarily
hold!).
U, T4 o
(d) If m, = {p € Wpo(*) # 0(*)} = 7N Mo (%) thien
m m
D@ = D® .
(e) If @(*) is torsionfree and m, = {p € ﬂlpslG iy
™ M2
then D® = D@ .

Proof:

(a) This follows from the fact, that tensoring
with Zﬂ is the same as localizing w.r.te.
nel |n a natural m'-number),
i @(ae)l ;

(b) We have Zﬂ c Zﬂ, tlius a homomorphism:

1 T
Zn @Y = ZTT ® & and therefore Dg c Dﬂ] by
1 W W - "

Cor(P.3.2)1. An example with Dg1ﬂﬂz S D®1 N D_@2
will be given later,

m, T, T, ,

(c) Dy U Dy~ € b, follows from (b). Now let

5. (i=1,2) be delect sets for & ® @, i.c.

_ us i
u(si) = Dy (i=1,2). Then there exists a

Pl

natural r!-number u, with n . 1@(%) € l@(Si),

thus (n1,n2)~1@(*) € I@(S1) + I@(Sg) = Iy(s, Cs,)

and because,(n1,n2) is a (ﬂ]
ﬂ1UW2 :
Dy c u(s1 0 s,) = u(s1) U u(sz) =D U by

U 1,)'=number:
~



™
(d) D, '€ D

® follows from m, € 7 and (b).

1

@4

On the other hand let S be a defect-set for

L

Z ® B, i.es U(S3) = D,1. Then there exists

m, Y

a natural ﬂ;-number n with n e 1@(*) € I@(S).

3 = . ke i b ! -~ 1
Dut n nTT uﬂ, and nTT is a ﬂﬂﬂ1 c ﬂg(*) number,
ie€e n.oe G(*) = &(¥), and thus
nﬂ-t ¢ 1'\'.(*) S n '(nTTQ(*.)) = n@(*) < I@(S))

LA nl
i.es Dy S u(s) = Deo e

. P
{e) Again D@“ o DF by (b). So lct S be a defect-sct

for %ﬂ @ Ue Then there exists a natural

.
2

né—number n with n « 1

(n,|G[)

(n,]b]) is a m'-nuwaber, because ™ = T, U {pem|pf |G|
' Mo
Thauas .l)' — il ( S ) = . (1aColla

G(*) S IQ(S). But then

.

now we want to use Tl 7.1, Lo study the relations
hetween the deflect «ots DT for various 1. At Lirst

we have

Lemma 0673

It ¢ @ G° =

112

+b is a Green-functor and $ a G-sct,

such that any element in K@(S) is nilpotent, then:
~ . A . " TT Q

(a) for any set 1 of primes one has D@ c ﬁn(u(a)),

especially D@ < o(u(s)).
(b) |G\n . K@(S) = O for a certain power ‘Gi” ot |G|,



Proof:

(a) For any set 1 oi primes we have

lGlﬂ, . 1®(*) = X + ¥y with x € K@(S),
y € Iy(S_) by Thm 7.1. Assume x' = 0.
n n n n- n-1
Then \Glﬂ, o @(* = (x+y) = x + y(nex teeety )=
™ . e
=0 + yez € I, (sTr , thus Dy ¢ u(s_) = e (U(s)) by

Lemma 8.6, (a).

(b) Especially for m = ¢§ we get |G|n~ 1

for some n € [N and thus

)
c|Me K, (5) = 0.

The last Lemmata together imply now:

Theorem 3,2:

Let ¢ : G®*» ¢

12

2 be a Green-functor and assume, that
all torsion=-elements in ¢(*) are nilpotent (e.g.
@(*) torsionfree, More precisely our assumption is

cquivalent to char @(%)/p = O for any minimal primc-
ideal p in ©(*)), Then we have for any set T of

primes:

pT < & DY ially D. C ep®
g = Onlge especially Do o 9D,
Proof:

Let S be a defect-set of @ @ ¥, i.e. DQ = U(S).

By Lemma 3.6, (a) and Prop. 8.3 this implies
n e K@(S) = 0 for some n € N, thus K@(S) is
nilpotent by our assumption and therefore

m ,
- ﬁﬂ(U(S)) = @ﬂDg by Lemma 8.7, (a)a
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Remark 1:

Using Lemma Jd.7, (b) one sees easily, that also

in Cor.{P.5.3)2 and in Lemma 3.0, (e) the assuwaption
"3(*) torsionfree" can be replaced by the morc gene-
ral condition "all torsion-clements in @(%*) arc nil=-
paent" (replacing (n,|G|) by (n,‘G\K) for a certain

power | G I ke

of |G| in Cor.(P.8.3)2 as well, which
does not afflict the argument used in the proot

of Lemma 8.6, (e)).

Remark 2:

T
~y ¥

I3
7

I'or all results, concerning the defect-basis D
it would be cnough, to know only the qualitative

description of primeideals in {1(G), as stated in

Thm 5.1 (somctimes replacing |G| or lG\ﬂ' by cer-
tain powvers lG\k or \G l_r{r' = ([G\k)ﬁ,) and not the

quantitative result Thm 5.2. ELspecially Thm .2

can be based completely on Thm 5.1,

Remark 73:

In many special cases one gets the best results
by combining Thm 4.2 with Lemma 8.6, (d) and (e).
But it doesn't secm to e worth while, to state

all these possible implications as extra corollarics,

Remark U:

Let @ : G"» 9Up be a Green-functor and @ : (1 » &

the canonical homomorphism. Then obviously the

image ' =@®(Q1) € @ is a sub-Green-functor of &,

Q p¥

thus DG' G by Cor.(P.8.3)2 and under the

It
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assumptions of Thm 8,2 one can get useful upper
bounds for D6 by considering only the image of ()
in ¢, tensored with Q. This is one of the recasons

for the importance of permutation-representations

in the theory of induced representations.

By Thm 8.2 the problem of the determination of
the defect-basis of a Grecn-functor is partly
reduced to the study of those Green-functors,
whose images are Q-vectorspaces, i.e. to Green-
functors ¢ : G- §-mod. By Prop. &.1 this in turn

is reduced to the study of simple G-sets without

delect. Jliere we can state:

Yroposition o,l:

G-set. Then
(a) 8 is without defect wer.t. &, if and only if

there exists a lincar map ¢ : &(S) = @(or €), such

that the diagram 6%
Q(s) Rt > W(s)
e 9 e
z C o> @
commutes, where the "augmentation” ey = 9 {U(5) =7
N

maps an object g : S' - S5 in G"/S onto the number
of sections |{B : S » S' ¢ MomG(S,S')|qB = Ldskl,

which eguals the number of simple components of S',

isomorphic to 85



and

(b) S has a defect w.r.t. @ (i.e. is not without
defect!), if and only if there exists an
element x € (U(S) with es(x) £ 0, but 6%(x) = 0,
resp. if and only if(@s(x) = 0 for one (all)
element(s) x € Q(S) with es(x) = 914 (x) £ 0,
but ma(x) = 0 for all o & Tg, @ ? Idg,
(Tg = {a : T > s|T e T}, wa(B=S'+S) =

= |{y € HomG(T,S')‘BY = afl)e.

Remark:

These statements have mainly practical interest.
1f for a given Greenfunctor & : G"-» gzggg and a
simple G-set S one has reason to believe that S

is without defect w.r.t. ©, one has try to con-
struct a map € : G(S) » € as in part (a). Lf one
conjectures the opposite, one has to ind an ele-
ment x in Q(8) with es(x) + 0, but @S(x) = 0 and
in case there is no other information at hand, onc
may first construct an element x € ((S) with

es(x) £ O,but ma(x) = 0 for all maps ¢ : T = S € T
with o -f- Id5 (such an element is uniquely determined
up to a scalar factor, because if x and y are of
this type, then Qa(es(y)x - es(x)y) = 0 for all

o € Tg and thus eS(y)x = es(x)y!) and then has to

verify: 6%(x) = O.
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Proofl ol Prop. o.l'h:

(a) Assume

Q(s)

and let ¢ St - S

surjecctive. We have to
imt, becausc 5 -

in its equivalence

i.e. S < S,

there exists

clas

a commutative diagram

show,

ncing simple

S, 1t

that o has a

Ls

is

enough

Dy Thm 5.2 there exists an clement

o (x) ¥ 0 (e.g. =

](}ﬂ) and qyr(:c)

be a G-map with QW: T(S8Y) = &(s)

section.
a smallest G-set

to show B ~ Gt

x € Q(*) with

O for any simple [

with T # 5. By Bop.&1(a)we have tor any G-set

Y : (nY)*(X) # 0 e S <Y, thus we have to show

(g )x(x) § 0.

Now consider the commatative
/R O S
T,
Pq . [es
S (Ma) 3
a(x) > a(s) - T of
L 5
(nsl )\):\\ i G_,(_(O’.)
\i \IV
fi(s! = @
( ) égs'f (

The commutativity of the upper left triangel has

observed already in the proof of Prop. 6.1,

diagram:

bhecen

(a) |

the injectivity of @%(Q) follows from Prop. .2, (b).

Considering the various images of x in

this diqgram
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ve pot (@ ((n‘)*(x))) = 0g(x) £ 02 ((ng)(x)) + 0 =
0+ 0, (0) @ ((15).())) = By, ((ng)),(x)) =

(ns.)* X % 0, qe.e.d.

Now assume S to be without defect. In G"/S we have a
unique maximal ~-ecguivalence-class just below the
final class, which is represented for instance by

the sum 0 of all maps o : T =» S(T € T) with

o % Idg : og = ¢ o : 89 = U T = s,
(e:1»S)€T (a:T=S)ET

L S . S
o Ldg aF I

By its definition og has 1o section, Ye have morcover

Ke(es) =1

Q(s) = EMfZa = ZeTd, © I Q(US)'

S Q(US)!
a ls

Consider now the diagram:

Q (g w

(s®) RELEIA a(s) S 2 o

i@so ‘ lws l@s  '\> Q
@ (¢

8(s°) T en) o e(8)/1g0eg) -

The exactness ol the two rows and the surjectivity
of €y implies the exislecnce of(§5.

Decause 1@(5) € 6%(0(5)), but 10(5) ¢ I@(US)

- S hi% no defect and og N0 scction - the induced
map Z-§;@(S)/I®(US) is monzero, thus injective,
because ©(S)/l©(cs) is a ®-vectorspace. Thus there
exists the wanted map G(S)/I@(US) -+ @, which makes

the whole diagram commutative,
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A perhaps less dircct, but more instructive version
of the last part is the following: A map € : ©(S) » @
with the above properties exists, if and only if

Ke(Eg : Q(S) » ®(S)) ¢ Ke(es : Q(S) » #). Thus assuwmne
there exists x € ((S) with 6%(x) = 0, but es(x) + 0.
We can write x in the form v + noIdS with y € IQ(US)
and n = es(y + nIdS) = es(x) £ 0. DBut now(@%(x) = 0
implies O :(E%(y + n IdS) =:6%(y) + N e 1@(5)’ thus

R 1G(b) = —b)s(y) € I@(O’S) = 1@(5) € I@(O’S) = Iw((}'s) =

= @(S), a contradiction to 5 being without defect.

(b) The first part is a direct consequence of (a) and

has been stated just abéve. For the second part let

v € Q(S) be an element with 65(Y) + 0, @a(y) = 0 for

all o € TS’ a #F 1d | (eege v = (ns)*(x) with x € Q(*)

as in the proof ot the {irst part ol (a)). Ii‘@%(y) = 0,
then - as has been shown above - S has a defect w.r.t. ¥,
on the other hand, if S has a defect wer.t. ¢, then there
exists x € Q(S) with es(x) ¥ 0 and C%(x) = 0 and then
eg(x) = eg(y) § 0, & (xy) = QO (x) & (y) = 0,

ma(x) . @a(y) = 0 for all o € Ty, o % 1d

eg(xy)

n

CPO-(XY) S’
Thus there exists at least one such element (i.e. xy)
in Q(S) and because any other element z with ma(z) = O

for all o € TS’ o # qu differs from xy only by a

scalar, we have 6%{2) = 0 for any such element.

Now we want to characterizce those G-sets 5,
for which any G-set S' with 8' < 5 dis without delect,

As has been remarkcd above, this is not necessarily



the casc for an arbitrary Green-functor, and the
fact, that it is true for all Green-functors,
which occur naturally in integral representa-
tiontheory, seems to be an important feature of

this theory. Generally one can state:

Proposition 8.5:

Let & : G"» Q-mod be a Green-functor and S a

G-set. Then all G-sets S' < S have no deflect
w.r.t, &, if and only if the canonical map:
|, - Q(S) » ®(s) is injective.

In this case S is called faithful w.r.t. ©.

Proof:

(i) Assume that any 5! < S has no defect w.r.t. &

and let x € Q(S) be in the kernel ofWe% D QLS) > @(s).

S :Q;I
We have to show, that x = 0, i.,e. mc(x)\for all

a : T = 9 € TS' But by our assumption and Prop. 8.4

we have a commutative diagram

as) 5 a(s)

) .
\\\ 0y (o) NGy la)
ch.

\\& 6%\ \J
Q(T) - >  @(T1)
1 !
e:T 16
2 Co s g

(ma = €p Q,(a) is easily verified: For B : S' = S

we have mq(B) = | {y:T»5"|By = al]| = !{y':TeS'XTipTy':Id

o
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= ep(pp) = ep(B(a) (B)), where by = O, () (B) is
the projection of S g T onto T, in other words:

the functors Q,(a) : G*/S = G*/T : (B:5'+5) v (5'%T~T)
and Q*(G) : G*/T » G*/s : (B* +: ' > T) » (aB' = T' > S)

are adjoint to each other and this is used for

Bt = IdT : T =T, cf., also the proof of

Prop.6.1 (a)and § 2 ). NOW’Q%(X) = O implies

e (0, () @5(x))) = v (x) = 0, a.e.q.

(ii) The proof of the converse is based on

IS

Lemma .8

If B ¢ $' » S is a G-map, then the only ideal,
*
contained in Ke(Qd (B) : Q(3') » Q(S)), is the

zaro-ideal.

Proof:
Assume O # x € Q(s') and Q(8')ex < Ke(ﬂ*{b)).

Becausc O # x there exists {(a¢ : T = S') € TS'

with Qa(x) ¥ 0. Similarly as in § 5 , Lemma 5.1

(S': *1) we have xeq = @ (x)a + Z n vy with
a "A/ETSI i

ny £ 0 only for such (y : Y = s') € Ty, with
Y < a, ¥y * o in G*/S', especially |Y| >

t

But aex € Q(S')x < Ko(ﬂ%(ﬁ)) now implies

rl\l .

¥*
0 =0 (p)(ax) = o (x)Bo + T n By in Q(S)
7ET,

and, because Bo, By represent elements of the

canonical basis T of Q(s) and wa(x) £ 0, such
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an equation can hold only if Ba = By in Q(S),
ie. (Boo : T = S) = (By : Y » 8) in G*/S for
some y : Y = S' with ny # 0, a contradiction

to |¥| 4 |1

Now we can prove: If @ : G"» 22 is any Green-
functor (not necessarily with Q-vectorspaces as
images), then the injectivity of the canonical
map@s : 1(S) » ®(S) implies the injectivity of
@%, : Q(SY) » @(S') for any S' < S: choose a map

B : S' » S and consider the diagram:

a(st) - LBL_ o as)
. o,
s(s') -—3 Bl o g .

. *
Becausc(&% is injective we have Kc(E%,) < Ke( (B)).

But Ke«gg,) is an ideal, thus by Lemma 8,35:

Ke @s' = 0, g.c.d,

Now, if ¢ : G"» Q-mod is a Green-functor, Prop. Sl

implies casily, that a G=sel S' is wilhout decfecct

werst. G, if Qg Q(S') » @(S'") is injective.

Remark:

It scems sensible to define for any Green-iunctor

$ : G"» Ub (not necessarily Q-mod) a G-set S to be

faithful w.r.t. @, if the canonical map @S : Q(3) » ¢(8)
is injective. Using the above remarks and the fact,
that with 81 and S, also S1 U s, is faithful w.r.t. 9,

i
onc sees, that the class £ of G-scts, which are

faithful wer.t. ¢, is r-closed, thus therec exists
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a G=-sct 5, unique up to equivalence, such that

a G=sct S' is faithtul w.r.t. @, il and only if

S' < S8, Fortunately for all Greerfunctors &,
occuring in integral representationtheory, this
G-set S equals the defect base of & @ @, thus

does not offer new problems.

Finally we want to giVve some examples of Green-
functors, to show, that any subconjugately closed
family of subgroups can occur as a defect base of

a Green-functor, that a G-sel without decfect is not

m, N,
necessarily faithful and that Dm1 ~ is not neccessa-
m ., -
rily equal +to D© nn, .
A/

At Lirst let us observe, that for any subfunctor ui!
of a Mackey-functor I : G"-» % the quotient ILi/ul'
G"= Up : S w» M(s) /M (S) is again a Mackey-functor
in a natural way (i.c. such that the map:
M > M/Mmr 0 2(S) - N(S) /M {(S) hecomes a natural
transformation). Especially if T is a Green-functor O
and W' = § € @ an ideal, i.c. N'(3) = 3(S) < ©(8)
an ideal in @(S) for any G-set $, tlien the quoticnt
@/S is a Greenjfunctor as well in a natural way.
Moreover for any Mackey-functor i
and any G-=set S onec has two natural subfunctors
:‘JIIS{ and ‘mé of i, defined by mg(T) = Km(p,r),
ﬂg(T) = %m(pT) with Pt T xS = T the projection
onto the first factor. Again for a Green-functor <

-

the subfunctors @2 and Cg are ideals in &, thus the
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. S I G e f L . - .
quoticnts @, = ¢/0., ¢7 = ¢/G, are again Grecn-iunctlors,
K el A o
We apply this to ¢! = {} and claim:

Proposition L,0:

(a) If S is a G-sct and T a sctl of primes, then

Eg = %ﬂ(u(s)) for 8 = QE, especially E; = u(s) -

thhus any subconjugately closed family of subgroups

of G can occur as a defect base ol a Green-functor -

2
&

™ - 2 E
and Q@ = ﬁﬂE‘ thus Thm 8.2 cannot be sharpened
< S

without additional assumptions.

¥

(b) Ir S ¥ *, then ¥ is a defect-set of @ ® Q,

s

but * is not faithiul w.r.t. 4 @ Q; (If one is
troubled by the fact, that & Q;(T) = 0 for T < §,

. . S G/
one may consider the direct product (@ & Ql)x Q.
and get the same statement if S ik G/E, 3 * *).

The proof is left to the reader, As a

corollary we have for G = UXV a cyclic group ol
order p + q (p # q two primos) and say |U[ = 7,
(V| = q, 85 = G/U U G/V : 15 = i% = {U,V,E}l 3

2 W
™ <y —- S sy l) —_ E‘Q Al y «< q —_ " r'-\Q il
for & = QK’ but . = & R 2 G and Vg = $q*© 2 G,

¢

s

&) p
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Appendix to §

Mackey=functors and Amitsur cohomology.

Let @ be an arbitrary category with finite pullbacks,

Then for any map ¢ : X - Y in € onc has the semisimplicial

Amitsur complex : in &:

1 2
O
=0y Lo oo -
U(p): Y — X e X Xg XEXFTXE oou,
ol
94 .
N no, an+1J x = [n]
thI‘e Cpm ‘}& ‘l-vo.ﬂo Y "X/ -y X

n+1 times
is the product (over Y) of the projections onto the
first m factors, i.e. k[ J,resp. the last n-m factors,

i.e. X[n mJ together with the natural identification

XLmJ < Xiu mj o Lnj
Y

Now if @2 : € » &b is a contravariant functor, one

gets a semisimplicial complex £(I1,9) in Yb by

=

applying T onto ﬂ(m). The cohomology=-groups Hlkm,m)
@)

of this complex-with 11°(@M,e) = Ke(Z(Y) = ~ 3(x)) -

*
are the Amitsur-cohomology-groups of Il wer.t. © ).

If ¢ ¢ Y' 2 Y is another map in &, one can
take the pullback of %(®) wer.t. o and gets thc com-
plex: ot

« 2 €
Y' oz U(p): ¥ o« ¥ ¥ X = Xt €Y' 3 XL L ees

*) In our context, it is scnsible, to numerate the 1Y as

indicated, in other connections it might be better, to
cut of the first step of ﬂ(M,@), thus starting with

o

D(X) 3 M(X¢K) 3 ... and to define 1% (2,0) =Ke (2(9 ) ) -1(9,) ) -
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which is casily identified with

ot

L2

Q«!(cp') H Y" <~ .X.' : X" ‘l E e e 0 .

Especially one has a natural transformation

(') = Y! ? U(p) = %U(p) and thus for any contravariant

D € - Ub homomorphisms:

i

S (o o1 (o 1), 1t Hl(a’m) = Hi(a) 1oy ont
U(M,yp) » U@,pt); 1 (Bye) - BTl Z DA% w(m,0r),

Morcover if Y' = X and o : Y' = Y equals ¢ : X =» VY,
then onc can show, that 1 (a) = I (¢) are zero-maps,
thus statements concerning the kernel of the 1" (a) = 117 (aq,i)

can alwayvs be specialized to statements, concerning the
cohamology=-groups nl(m,@) themselves,

We want to make such a statement in case 2} is not an

arbitrary functor, but the contravariant part of

]

Mackey=functor @ : € = Ub., Morc precisely let
W,,2 ¢ € » Ub be Mackey-functors and lct 1 1 QxT = ¢
be a pairing. It is easy to see, that for any

n N+ Jn , . .
wm : XL J - AL J one has a commutative diagram:
T

m(y) xo(xm)) s et

Tdp y¥ R (@) 0 (9

-~

mwxmm@“h—iﬁé e(xtn+ 1y,
where Tn is the composition of
m, (@) x Idg (xnl) 2(Y) xm(x[nl) - ‘JR(XLn]) xm(xL”J)
(wn: X[n] - Y the canonical map) with the given pairing,
evaluated at X[nl. Thus one has an induced pairing

m(Y) ;\(Hi(m,m) - Ili(g,cp).

We claim:
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Proposition 8.,A,1:

Let ¢ ¢+ Y' = Y be a morphism in §€. Then - using
the above notations - the pairing ﬂ(Y)x'Hl(ﬂ,w) - Ul(Q,m)

vanishes on ;p(a)x Ke(Hi(a,m)).

Proof:
i =1 i-1 Li-1] 1]
Let BT (R,9) be image of L (-1) m*(@j )5 (xt yom (XL 4)
Jj=0
. i . i
and ¢1(2,p) the kernel of T (—1)‘]€Q*(cpj), thus

j=0

vt (2,0) = ¢t (7,0)/mM(7,0).

Choose x € ci(m,w) and assume ﬁ*(ai)(x) € Bi(ﬁ,w'),
where ﬂ*(ai) : m(xLi]) » (Y'g xLi]) = m(x'tij)
comes from the projection ui : Y'; Xtij - X[i'J

onto the sccond factor, Let

y = My (a)(z) € Iy(a) e M(Y), # € m(Y').

We have to show: (y,x) € bi(ﬂ,m). ({y,x) the image
of v € M(Y) and x € a(xLi]) werete. the pairing
into a(xtily),

Because m*(ai)(x) € Mi(ﬁ,m'), we have

u € R(Y'g Ly e Ty i

i-1 . .
s . - -l )
(e )(x) = T (-1)7n,(0*}7 ) (u).
j=0 .
. RN FRAPIE 5 IS S D
We claim: {(y,x) = T (-1) Q*(wj (2 (o ) ({z,u)))s
J=0
consider the diagram
i=1
Y e XLi_1J€ W“?i”wmw XLiJ
A _ ,
!a ];l—1 [;1
e
> i-1 J X ) i
Y'¢ooo o Y'Y XL J\@, e Y'Y }(L J.

Both squares are pull-backs,
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Thus we have:
i=1 . .
-1 ® . i=1 N
L (-1)7 g, (o3 (8" (T Gz )
i=0 '
i-=1

1

- i %, i Lty , .
T (-7 s et (et V(G ) =
j=0 .

w* :’ i . i on
@ (@) (4ay 2 (=1)7 300
J= X

* ] . . 'K'/ N

8 (e (G, (af) (x) ) = @ et (=), =
%* N N

m (o')(z)’x/ =2 (yyx/g q:v?anq.:

Now consider the special cas=e, where Ml = @ is a
"Green-functor on §" (i.e. 2 “dackey~functor with

an inner composition such that any @(S) becomes a
(commutativej ring with a unit and any @,(®) : @(S) » 6(s"')
(p : S' » 8 a morphism iv &)} a unit-preserving homomorphism)
and t = 8 a Green~module over @, Then for any @ : X - Y
the groups Hi(m,@) can be gongidered as @(Y)-modules

and for any @ : Y'! =+ ¥ the kerunels of the maps

Bi(a,m) : Hi(m,@) -~ H"{,9¢) +ra annihlilated by the

ideal Ig(a) < @(Y), espesis.iy I@(w) annihilates

Hi(m,w), in particular Hi(g,m}, and we have

Hi(m,¢) = 0, in particular Hi(@,w) = 0, if

Q*(Q) : @(X) = ®(Y) is surlective, which generalizes

Prop. 8.2 and underlines anew the importance of the
surjectivity of induction-maps,

But even if nothing is knoewn about the surjectivity

of the induction-map, on:s can use the results of § 7,

to get some restrictions on @he structure of the

groups Hl(m,w) in case §@ = G* is the category of
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G-~sets, More precisely we have as a consequence

of Prop. 8 A,1:

Proposition 8 A,2:

If @ : € = 22 is a Green-functor on §, M : § - Eg

a Green~-module over @ and if @ : X » Y and a : Y' = Y
are morphisms in § with n o 1@(Y) € K@(m) + I@(a)

for some natural number n € N, then the kernel of
Hi(a,m) : Hi(m,m) - Hi(m,m') is annihilated by n

for all i = 1.

Proof:

If n e =u + v with u € K@(@) and v € Ig(a)

's(1)
and if x € H'(M,9) (i » 1), then n « x = {u,x)+{v,x) = 0,
((u,x) = 0, because ®_{(p)(a)} = 0, and (vyx) = 0 by

Prop. 8 A,1).

Of course, one can state many corcllaries for Mackey-

functors on G*, using [G[ﬂ,o € K(s) + I(Sﬂ).

V.
n{c)
I do not want to go into this in detail and just want

to remark, that we get among other results for instance:

If® : G* » 4p is a Mackey-functor and @ : X » Y a

G-map, then H' (R,0) is annihilated by |G| for 1 > 1.

Finally I want to remark, that, using the
covariant part of a Mackey-functer M : € - Y, one can

as well define homology-groupsﬁi(m,w) and even can put

together the two seqguences:
e maxhonxl i), L) en@)mxl2]) 4 Ll

m*(m\)\N /3*(w)

n(Y)
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to define Tate-cohomology-groups ﬁi(m,m). I have

not studied these definitions, but I guess, that one
can dualize the proof of Prop. 8 A,1 in some way,

to get similar results for the homology-groups
Hi(m,w) and that Prope. 8 A,1 might be the first step
for a general construction of cup=-products of
Tate-cohomology~groups, associated to any pairing
Mx Tt » ¢ of Mackey-functors,

Anyway - as will be shown in the next section -
there exists to any ZG-module M a Mackey-functor:

ﬂM: G"» %b and for this Mackey~-functor one can show:

Ifli(G,M) ;Ii(ﬁRM, ® : G/E » %),

Ht(G,M) = o]

. / 1
(Tys @+ G/E = *)(124),

Thus in any case our theory generalizes the usual
cohomolgy~-theory of ZG-modules. An application to

Witt rings will be given in Appendix A,
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§ o Examples

The theory of Mackey funciors grew out of an

attempt, to understand certain phenomena, which

had been observed in the study of induced modules

in classical, modular and integral representation
theory,

Now, to apply our theory to this subject, we have

to show, that Mackey functors indeed occur naturally
in representation theory, i.e. that there are well-
known representation-theoretic constructions, which
give rise to Mackey and Green functors, Unfortunately
it seems to be necessary for this purpose, to consider
these constructions from a point of view, slightly
different from the one generally taken by group
theoristas: See for instance the introduction of the
characterring in § 6, using KG—theory (which of course
is suggested by the work of Atiyah).

In this section now this example is generalized,

not by generalizing the base space = e.g. from finite
G-sets to compact Gespaces = but instead by generali-
zing the fibers from C-vectorspaces to arbitrary
R-modules (R a commutative ring without any specified
topological structurse, the most interesting case being
R =Z, R = Zp, R = 2 s R = Fp). This can be done, just

P
because the base-sets have no topological significance,



Furthermore because of certain further applications
(permutation and monomial representations and trans-
fer) it seems reasonable, to proceed even more gene-
ral at first and to admit the fibers to be objects
in nearly arbitrary categories,
I hope that this procedure will not horrify the
reader too much and will justify itself in the end.
Anyway before giving this general con -
struetion I want to describe another class of
Mackey functors, which is associated to ZG-modules
and their cohomology. So let G be a finite group.
A (left) ZG-module M is an abelian group (i.e. a
Z-module) together with a (left) linear action
of G on M, i.es a map GXxM > M : (g,m) » gm such
that g(m + n) = gm + gn, g(hm) = (gh)m, em = m
for myn € M, g,h € G, e the neutral element in G,
For a ZG-module M and a G-set S define $(S,M) = ,(S,M)
to be set of all Ge-maps: £ : S -» M, i.e. all maps
f : S Mwith f(gs) = gf(s) (g € G, s € S).
Obviously ©(S,M) can be considered as an abelian
group (with composition defined argumentwise:
(f1 + f2)(s) = f1(s) + fz(s)). For a G-map ® : T = S
between two Gesets T and S one can define two homo-

morphisms:

Py = 0y (®)M) : 2(S,M) » ©(T,M) : £» fo =and
* * *

o = 9% (p,M) : 9(T,M) = ¢(S,M) : £» @ £ with
cp*f(s) = T f(t) (s € 8).

tep™ ' (s)
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One verifies easily, that %(.,M) : G* - Up :
*
Sk a(s,M), o » (9 (9,M), 9,(9,M)) is a bifunctor.

We have moreover

Proposition 9,1:

The bifunctor g(+,M) : G* - Up is a Mackey functor.

T, - s T be a pullback diagram in G*

~> 8

|
8|

and £ € Q(T1,M). We have to show:

* %
Yy £(t) = @ Y, f(t) for any t € T

2 But
e £)(t) = (@ £)(4(s)) = T £(x),
(4e@ £)(t) = (0 £)(¥(t)) o T ()]
(27¥,£)(t) = £ (V) (x,y) = T £(¥(x,¥)) =
(x,y)€87 1 (¢) (x,y)€2™ " (¢)
= £ f(x) and (x,y) € "' (t) €T, 5T, @y =

(x,y)€87 " (¢)

= ¥(x,y) = t and @(x) = y(y) = §(t), thus the two

*
sums coincide.- In other words: {,® f(t) is the sum
of the values of f on the fiber of §(t) € S wer.t. @:T -8

&
*
and $ Y, f(t) is the sum of the values of f, lifted to

. . <
T1 3 T2, on the fiber of t € T2 WeTete & T1 s Ty, = The
But T, § T, being the fiberproduct of ¢ and { these two

fibers are essentially and the values of f on these
fibers are identically the same,

The additivity of $(e,M) is trivial.
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It is easy to see, that for U € G one has a natural

isomorphism $(G/U,M) » M'

= {m € Mjlum = m for all u € Uj.
(cf.pMLil). Thus g(G/U,M) = H°(U,M) and one may ask,
whether one gets the higher cohomology-groups by
considering M+ ¢(+,M) as a covariant functor from

the category of ZG-modules into the category of

Mackey functors and taking its derivatives, This

is indeed the case: of course first one has to assure,
that M » £(¢,M) can be considered as a covariant
functor, But any EG-homomorphism Wy : M - N defines

a natural transformation:

o 9(e,M) » o(s,N) : 9(S,M) » 9(S,N) : £ = uf,

thus a morphism in the category of Mackey functors,
Moreover M » ®(+,M) is easily seen to be left exact,
thus the higher derivatives exist. Using either the
explicit construction via injective resolutions of

M or the wellknown axiomatic description of cohomology
as a 8-functor (cf, (10 ], chap. W,& for instance)

one gets easily:

Proposition 9,2:

The functor § frem the category of ZG-modules into
thelcategory of Mackey-functors is left-exact. If bl
is its ith derivative, then one has a natural iso-
. i 2= i .

morphism: ¢ (G/U,M) = H (U,M), especially

i 2= i
9 (*,M) 3 H (G,M).
Moreover for U V € G and ¢: G/U - G/V : gU » gV
the maps

i . o d i i i
ox (9,M) : 27(6/V,M) = H (V,M) » & (G/U,M) = H (U,M)

and
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o' (g,M) = gt (c/u,M) = w(U,M) » ot(a/v,M) = w(v,N)

are the usual restiction- and oorestriction-maps,

I think, that this way of introducing
restriction and corestriction in cohomology might
be the most natural one, especially because one
gets the pullback (= Mackey) property gratuitously
(which is rather useful for instance for establishing
the action of the Hecke-ring on cohomology groups,
cfe [ 5 ] or [ 412 ]). Thus it might be interesting
to develop cohomology theory of finite groups, star-
ting with this point of view. But for the purpose
of these notes this would take too much time, espe-
cially because - as far as I have seen = no essentially
new results would occur; - it is just a matter of pre-
sentation.
Instead1) I want to indicate, how to get the other
functors, considered in homological algebra of finite
groups, as Mackey functors too: For this purpose it
is reasonable, to consider for any G-set S and any
ZG-module M the set M(S) of all (settheoretic) maps
from S into M as a ZG-module with composition de-
fined argumentwise as above and with the G-action
G~M(S) » M(S) : (g,f£) » gf defined by (gf)(s) = gef(g™'s)
for any s € S, (9(S,M) of course is easily seen to be

just the subgroup of G-invariant elements in M(S)).

1) Any reader not familiar with homological algebra
better may skip this part,.
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As above one has for any G-map: ®: T -+ S

two homomorphisms:

P, = M (®) : M(S) » M(T) : £ » £ and
¢* = M*(Q) : M(T) » M(S) : £+ g"f with
®f(s) = I £(t),
t€p™ " (s)

which even are ZG<homomorphisms, Thus to any
ZG-module M there is associated a Mackey functor
M(e¢) from G®into the abelian category of ZG-modules,
given by: S » M(S), ¢ » (M*(m), M, (®)).

Moreover we get this way a covariant functor from

of Mackey functors from G® into ZG-mod : M b M(+);

(M : MaN)p (fgh : M(e¢) = N(¢) : 6%(5) : M(S)oN(S):faurf).
This functor is exact.,

Now let F : 59:929 - ﬂg be any right - or left -

exact functor and define for any ZG-module M the

bifunctor F(e,M) : G® = Up by composing M(¢) with

F i F(S,M)=F(M(S)), F(@,M) = (F(M (9)), F(M(®))).
Obviously F(e,M) is a Mackey functor and again

M P F(e,M) can Be naturally extended to right-,

resp. left -« exact functor F from ZG-mod into

the category of Mackey functors from G"into Ub.
Its derivatives F. (for qkight—exact) or F* (for

F left-exact) again are Mackey functors., The im-

portant examples ars:
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F=98:Mp M¢ = {m € M{gm = m for all g € M|,
F

1}

Mw» M, = M/IGeM, where IG = | T n g € ZG|Zn 0}

G
g€G g
is the augmentation ideal in the groupring ZG,

more generally one may consider for any ZG-mo-
dule N the functors:

M HomG(M,N),

M»p HomG(N,M),

Mm» (Mo N)E,
P

Mp M@ N=.M® N/{gm®n - m®g-1n|g€G, mEM, neEN)
G Z

and so on,

Now we come to the other examples of Mackey functors,

generalizing KG-theory: At first let § be an arbitrarycategor:

(finite dimensional C-vector spaces in KG-theory)

and S a G-set, A §-bundle - or more precisely a

G-equivariant §-bundle - § over S associates to

any s € S an object §_ in € (the fibexr over S)

and to any g € G and s € S a morphism £(g,s) : g, ggs in G,

such that €(e,s) is the identity on Es (e the neutral

element in G) and £(h,gs)"%(g,s) : Eg 2 ggs - ghgs

equals g(hg,s). This can be described in more con-

venient form by first associating to any G-set S a
category g, whose objects are just the elements in S

with morphisms [s,t]q = {(s,8,t)|g € G, gs = t| for

any two s,t € S and :bvious composition ((s,g,t)e(x,h,s) =
= (x,gh,t)). Then a G-bundle & over S is nothing else

than a covariant functor § : S » € : s » gs,

(s,g!gs) » E(g,s) : gs d ggs
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Now its trivial, to define the category of §-bundles
over S as the category Lg,G] of covariant functors
from S into €: A morphism py from a C-bundle E over S
into another one €' is a natural transformation from
the functor § : S = € into the functor 5t S » G,
i,e, i is a familiy u(s):gs - 8! (s € S) of morphisms

in §, suchithat for any s € S and g € G the diagram

€8s - g(s) > B
ig(goﬂ) g'(g,s) commutes,
\i/ A\,
(gs Cae
E £s __ulss) 5 ggs

Note, that the category gkan also be realized as
the full subcategory of G*/S, whose objects are all
maps T - S with T = G/E, the isomorphism being given

by S 3 s m (fs : G/E»S : gm gs),
(s,e,t) » (p(g) : G/E » G/E) with p(g)(x) = xg~
ﬁé\jsk b %41

for all x € G/E,

———— — o

of finite dimensional €-vectorspaces our category

[g,@] can be identified with the category of G-equivariant
C-vector-bundles over S,

Let us also consider the case § = ==§£, the category

of finite sets, In this case a €-bundle € over a
G-set S is nothing else than a G-set over S:

obviously G acts in a natural way on the disjoint

union U g, of the fibers by : gx = E(g,s)x for
s€S



- 118 =

x€g < y §s, so 0 g, can be considered as a

8€S 8€S
G-set and the map U §s S : xhk s, if x € gs c 05
S€S s€s °

obviously then is a G-map. On the other hand, if
® : S* » S is a G-set over S, then ¢ : S' » S can

be considered as E-bundle & over S with fibers

g, = m—1(s) and E(g,s) : Ey = ggs defined by
x m» gx(x € §s = m-1(s)).

Also a S-bundle-morphism i : § - ' between two
@-bundles over S is easily verified to be just a

G-map over S between the corresponding G-sets over S -
and vice versa, Thus the category [g, Eggﬁ] can be

identified with the category G*/S of G-sets over S.

Especially we have [*G, Epsf] = G*/* = G*,

the category of (finite) G-sets,

This of course holds more generally: Because *_ is

nQ

just the category considered in §2 , which has ex-
actly one object, whose endomorphism-semigroup is the
group G, we have for any category € an iscmorphism
between L*G,GJ and the category of G-objects in €,
i.,e. the ;:tegory, whose objects are pairs (X,e)

with X an object in € and ¢ a grouphomomorphism

from G into Auts(x) c Ends(x), and suitable morphisms,

Now let ¢ : T » S be a G-map. ¢ induces

a functor Q : 2 - § : t e m(t)! (t,g,gt) » (w(t)-g-w(gt))v

thus we get a functor @,: [S,E] » [T,E) : E » Ep by

composing any § :

1

2 § with @. Interpreting € as a

@-bundle over S as in the beginning, &, = @,(8) = &g
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is just the bundle E restricted to T via ¢, i,.e.
the fiber of g, over some t € T is the fiber of §

over ¢(t) € S and the map §,(g,t) : Sty = gw(t) - g*gt

§m(gt) =§g$(t) is the map E(g,p(t)).

Especially for € = ¢—modf the restriction g, of a

§-bundle, i.e. a G-equiwariant C-vectorbundle € over S
is just the restricted bundle as defined in equivariant

K-theory, for § = gggf the restriction g, of a G-bundle g,

=

i.e. a G-set 0 E, over S is just the resticted G-set
s€ES

over T, i.e. the pull back T % 0 §,» considered as a
s€S T

G-set over T.

Now to get a functor 2* : LE,SJ - [g,@] in the other
direction, the most natural idea of course is to take

a left- or a right-adjoint to P e It is well known,
that such an adjoint exists only under certain condi-
tions on the category § {(existence of limits) and can
then be gotten by a construction due to Kafin (cf[13 ]).
In our special case it is easy to see, that the
existence of finite sums ‘g )(_iL in € is (necessary and)
sufficient for the existe;;; of a left adjeint:

* *
For £ a G-bundle over T define @ (§) = & +to have the

*

fibers E = z E, with

S tECp 1(5) t
* * *
E (g,8) = z §(gst) = B = z g, > &8 .= L
cep (s) T heo(0)7F T Teep (a38Y

for a morphism yu : € - 1 of €-bundles cver T define

% * % #* *
@ (W) =w bru(s) = T, w(t): 5 ~»m.

t€p~ '(s)
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Now let m be §-bundle over S and € a §=~bundle

over T, Then to any morphism g : § - Q*(ﬂ) Ny »

i.,e, to any family of maps u(t) : Bt @ Myt = ﬂw(t)

compatible with the G-action, there corresponds

* *
exactly one morphism u': @ (§) = 5 = 1, given by
'(s) z (¢) = & T g n da
M8} = L M : = & - y an
t€p ' (s) ° tep '(s) © F

*
vice versa, Thus ¢ 1is the left adjoint of Q..

*
Again for € = m-modf, the bundle § over

S is just the direct image of the bundle § over T,
defined in equivariant K-theory for finite maps
(and any map between finite sets of course is finite),

*
for @ = Ens” the bundle E over S corresponds to the
*
G-set gs = 0 Q1 B, = 0 g, over S, i.e. the
S€ES s€S tep (s) t€T

same G-set over S, which one gets by composing the map

0 gt > T with ¢ : T & S,
teT

*
Because the definition of @ is rather similar to the

*
definition of § (9,M), one can expect:

Proposition 9, 3:

Let § be a category with finite sums, G a finite

group and T1 g T2~" ?»“9 T2 a pull back diagram
T1 —~~$~«~>s

*
of G-sets. Then the two functors y ¢ and
* - .
2, ¢ [21,6] - [22,6] are naturally equivalent
(or even identically equal, once for any finite

family of objects in @ a unique object, representing

the sum, has been choosen),



The proof is analogous to the proof of Prop. 9.1,
i.,e, it is based on the fact, that for any t € T2
the two subsets m-1(¢(t)) € T, and ¢(6-1(t)) c T,

coincide, The details are left to the reader,

Let us observe, that - by dualizing € -
we could as well consider the right adjoint of Pys
which of course exists if and only if €@ contains
finite products and is then defined analogously
to g* - just substituting products for sums,

For €@ = ¢—modf this does not lead to anything new,

tegory G—modf, for € = _ggf we get indeed another

====== =

functor, which does not respect sums (disjoint
union), but products, and thus is called multi-
Plicative induction, Its properties will be studied

extensively in chapter 3,

More generally, any construction which associates

to any finite family {Xili € I} of objects in §

an object F(Xi\i € I) in G and to any finite family

of merphisms {ui P Xy oo Yi|i € I} a morphism

F(ui|i € I) : F(xy|i € 1) » F(Y,|i € I) and has

similar formal properties as finite sums and pro-
LSRR ARD ARSIy

ducts (essentially\ifidépendence of the index set I

up to canonical isomorphisms and "associativity",

i.e. canonical isomorphisms F(F(Xi|i € Ij)|j € J) =

= F(xg\j € J, i € Ij), to get functoriality)

can be used, to define functors g; : [T,8] » (s,6],

such that Prop. 9.3 holds, Instead of explicitely



stating all these formal properties, let us
remark (and this will be enough for our pur-
poses), that for G the category of modules over
some commmtative ring R the tensorproduct
F(X,|i € I) = ® X, is such a construction
i i
i€x
(with ® X, = R for I = g 1),
i€l
w\tﬁu
Since moreover for a disjoint union S U TVUimbed-

dings i : S S O Tand j : TS 0 T the two

pp
=====

one could say, that for any category € and any
"construction" F in §, associating to any finite
family of objects, resp., morphisms in § an object,
resp. a morphism in § with similar formal proper-
ties as L, M or ®, there exists a Mackey-functor
from G* into theR "category of categories", map-~
ping any G-set S onto the category [S,8] of
§-bundles over S and any G-map ¢ : T < S onto

the pair of functors (g*,g;).

Since we do not want to get lost in categories,
it seems more appropriate, to consider only small
categories, i,e, such categories, for which the
isomorphism-classes of objects in [$,§] form a

set for any G-set S (e.g. the category of finite

T .
sets s_ or finitely generated R-modules for some



G-set S the set k(S,§) of isomorphism classes of

€-bundles over S and - after choosing a "construction" F -
to any Gemap ® : T » S the pair of maps

Py = ku(9,8) : k(s,8) » x(T,E),

#* ¥*
ch = kF(qJ!G') : k(.T!G) -» k(S!G)!

*
induced by @,, resp. QF. Thus we get:

Proposition 9.,4:

Let G be a finite group, & a small category and

F a "construction®" in §, associating to any finite
family of objects, resp, morphisms in §& aun object,
resp. a2 morphism in § with similar formal proper-
ties as sum or product or tensorproduct. Then there
exists a Mackey functor k(.,§8) from G*into the ca-
tegory of sets, which associates 1o any G~set 5
the set of isomorphism classes of Q-bundies over S
and to any G-map @ : T = 3 a pair of maps (m*,m;),
the first being given by restriction, the second
depending on F,

Of course, to apply our foregeing results, we are
mostly interested in Mackey functors from G® into
Eg, not into the category of sets, But following

the example of K_ -theory one easily defimnes at

G

least an abelian semigroup structure on k(S,8):

et §i (i = 1,2) be two G~bundles over S, Define

€ = §1 # §2 to be the G-bundle over S with fibers

€, = F(§2|i € {1,2}) and maps £(g,s) = F(g*(&,s)|i€{1,2}:
5s 2 ggs’

Of course the isomorphism class of £ depends only

on the isomorphism class of §1 and §2.
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Moreover the independence of F(Xili € I) from

2 1

the indexset I shows E' + £° = g g', the

+
F F
)

associativity of F implies(§1 + §2 + g3 2= §1+(g2+§3)’
F F F F
thus +. defines a composition on the set k(S,G)

F

of isomorphism classes of §-bundles over S, which
is commutative and associative, i.e. defines an
abelian semigroup structure on k(S,§8). We write
kF(S,G) for the set k(S,§8), considered as a
semigroup w.r,t, +.

F

For € = ¢—modf we can choose F to be either the

direct sum @ or the tensorproduct ® (over C),

Of course for two G-bundles §1 and g2 over S the

bundle g‘ 3 g2 e §1 @ gz is just the direct sum,

the bundle E' + E° =4r g'. ® €° is just the tensor-
®

product of these two bundles as defined in K_-theory,

G

For € = @ggf we can choose F to be either the sum

(dis joint union) or the product X and get for two

S-bundles (G-sets) ' and £° over S either their

1 2 1
g

e' 0 g% = ¢' + €° or their

disjoint union g

g2

X+ O+

(fiber) product £ e' x g2 over s,

S
Of course, finally we will have to consider both
structures at the same time to get Green functors,
but at first let us consider the case, where we
have just one such construction F on a category G.

Let ® : T » S be a G-map., It is trivial, that

Px : [S,€] » [T,8] commutes with + for any such F,
- F



i.e. that for two G-bundles g‘ and gz over S we
1 2 1 2
have @9,(8" + 8%) = @, (8') + @,(57).
F F
Moreover using the associativity of F one can
verify (by checking at the fibers)

Q;(§1 + gz) = Q;(§1) + Q;(gz) for any two G-bundles
4 h 2 -

*

g‘,gz over T, thus Pp commutes with +, too, and
- F

we get:

Proposition 9.4"':

Let G be a finite group, € a small category and

F a construction in & (as in Prop. 9.4). Then
there exists a Mackey functor kF(-,G) from G*
into the category of abelian semigroups, which
associates with any G-set S the set kF(S,G) of
isomorphism classes of §-bundles over S, con=-
sidered as an abelian semigroup with composi-
tion + defined by F, and with any G-map ¢ : T = S

P
the two maps:

k,(9,8) : kF(S,G) - kF(T,G),

k;(m,G) kF(T,G) - kF(S.G)-

defined by restriction (@) of S-bundles, resp. by

induction w.r.t., F (g;).

Composing this functor with the canonical functor
from the category of abelian semigroups into the
category of abelian groups, described in § 5, which
associates to any abelian semigroup its universal

(Grothendieck)group (the left adjoint to the im-



- 126 =

bedding (forget functor) of abelian groups into
the category of semigroups), we finally get a
Mackey functor: KF(-,G) : G* » Yy, which asso-

ciates to any G-set S the Grothendieck group

+

KF(S,G) of §-bundles over S, taken w.r.t. o,

and to any G-map ¢: T -» S the maps:

K*(@!G)
Kp(®,6)

defined by restriction, resp, induction w.r,.t. F,

KF(SvG) d KF(T,G) ’

KF(T,G) - KF(S,G),

Note that contrary to k,(9,8) the map K, (9p,8) de-

pends on F, since its domain KF(S,G) and jits range

KF(T,G) depends on F, Usually we will use the last

part of this proposition only if € contains finite

sums and F is the sum construction, In this case

we write K(S,E) and K*(Q,G) instead of KF(S,S) and

K;(m,G) and call XK(S,8) Just the Grothendieck group

of G~bundles over S,

For € = g:gggf of course the functor K(«,§) (=K®(-,G))
f

G* » ¥y, for € = Ens_ the

—-—

is just the functor KG :

functor K(+,§8) = (KU(-,G)) is the functor 1 : G* - Up,

considered as functors into the category of abelian

groups (i.e, for_getting the ringstructure on K.

and (1), whereas the existence of the O-vectorspace,

and Kx(O,Eggf) are the zero functors, But there are
other ways, to exploit the additional structure on

k(S,8), derived from ® (in case § = g:gggf) or from
)

x (in case € = Ens_), The first is - following usual
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K-theory -~ to forget the functors Q. (for F not
being the sum), but to use the fact, that in
many cases F is distributive w.,r.t. sums, i.e,
that ; : k(S,8) xk(S,8) » k(S,8) is bilinear,
to put a ringstructure an K(S,§8), which makes
K(+,8) to a Green functor. This will be done in
just a moment., Another way is to prove, ihat

- again for a distributive construction F =~

the map k;(w,ﬁ) : k(T,8) - k(S5,8) = K(S,§) is
an "algebraic map" and thus extends uniquely

to an algebraic map K(T,8) » K(S,§), commting
with the multiplicative semigroup-siructure,
defined on the rings X(T,§8), K(S,%), and thus
enabling one, to define further "multiplicative®
Mackey functors, This will be done in the next
chapter, )
Still I want to give one nontrivial example of
a "multiplicative™ Mackey functor right now;
Let § be the category of I-dimensicnal C-vector-
spaces and F the tensorproduct ®. Then KF(S,G)
is already a group - we write Pic(S) for this
group of 1-dimensional €-vectorbundles over S5 =
and for any @ : T 2 S we get homomorphisms:

®y: Pic(S) =» Pic(T), w; : Pic(T) = Pic(S}.

We leaveit to the reader, to vexrify, that for

S = G/U one has a canonical isomorphism between

of U,
A * 2y
Pic(S) and the abelian dual U= Hom(U,C ) = Hom(U/|\U,U],c )’

o~

and that for ® : G/U - * the associated induction map

%*

a &
®® : UG is8 just the dual of the transfer-map



G/l¢,c] » u/[u,Uu]| (ef. T 61 ).

The application of the general theory of

Mackey functors to Pic then gives resultis,
closely related to the theorems of Griin on
transfer in finite groups,

Now we go on in our construction and want to

get Green functors, So let § be a small category
with finite sums and a construction F, such that
F is distributive w.r.t, sums, i.e., if {Xi\i € 1}
is finite family of objects in ¢, j € I and

Xj = X3 + X&', then there exists a canonical
isomorphism between F(X [i € I) and F(Y |i € I)+F(zi|iEI)

with Y, = 2, = X, for i £ 3, Y

= X', Z, = X'*,
i J

J J J
For § = G-modf or more generally €@ = R-modf for

====== ==

any commutative ring R we may take F = & = &,

R
for € = Ens_ we may take F = X, the cartesian pro-
duct,

Then for any G-set S the set k(S,§) of G-bundles
over S carries two different commutative and
associlative compositions, one which we now call

"addition" and write "+" insted of "+" defined

z

by taking sums, and one which we now call "mul-
tiplication" and write "x'" oxr "®" or just "e

instead of "+", defined by F, and the multipli-
F

cation is distributive w,r.t. the addition, in
other words: k(S,§8) can be considered as a half
ring and its Grothendieckgroup K(S,§8) = KE(S,G)
taken w,r,t, addition as the associated universal

ring (cf. § 5 ).



We want to show, that the multiplication defined
on K(S,8) defines an inner composition

K(+,8) xK(+,8) » K(,8) of the Mackey functor
K(¢,§) : So let ® : T » S be a G-map., As we have
seen already (first part of Prop. 9.4') k, (v,C)
and thus K, (9,8) commutes with our multiplication.,
It remains to show, that for x € X(S,8) and y € K(T,§)
we have m*(m*(x)-y) = X o m*(y). Wele0oge we may
assume x to be represented by a §-bundle E over S
and vy to be represented by a §-bundle 1 over T.
Then m*(m*(x)-y) is represented by the bundle

*
(g, * M) , whose fibers at some s € S are given

by n_ (Byem), = X F(Eyxpom,)
el (s) X ceom (o) wg? g

= T R(5,my) =F(5, L my) = F(E,m)) =
tep™ ' (s) tee” ' (s)

= (gen"), (with F(X,Y) = ;. F(z%|i € {1,2}), 2'=x, z°=¥),

Df
*

i.e, are isomorphic to the fibers of g<m ,

Moreover one checks easily, that these isomorphisms

of the fibers are compatible with the G-structure,

* * # *
thus (E,+m) = Eem and (x,°y) = x*y , g.e.d,

The commutativity of the multiplication now gives

as well (y-x*)* = y*-x, iee, our maitiplication indesd
is an inner composition of Mackey functors.

Finally consider the value X,k = F(#) of F on the

empty family of objects in §, Associativity of F
implies F(X1,X) = X for any object X in §, thus the

trivial bundle n, over S, which associates to any



s € S the object X, with n1(g;s) = Id, for any
1
g€ € G, s € S, represents a neutral element 1K(S,G)

WeTetes the multiplication in K(S,§) and

vy K(5,8) » K(T,§) of course maps 1 onto

K(s,€)

1K(S,G)' Thus we have altogether;

Proposition 9.,5:

Let G be a finite group, € a small category with
finite sums and with a construction F, which
assioidates to any finite family of objects,

resp. morphisms in € an object, resp, a morphism

in § and is "associative" and"distributive®,

Then there exists a Green functor K(.,8) : G* » Up,
which associates to any G-=ast S the Grothendieck group
K(S,8) of G-bundles over S with multiplication derived
from F and to any G-map: ¢ : T - S the restriction
map 9, = K, (9,8) : X(S,8) » K(T,8), derived from

the functor g,: Lg,ﬁ] - LE,G], and the induction map:
w* = K*(¢,s) : K(T,8) -» K(S,8), derived from the left
adjoint g*: LT,&] » [S,8] to @,.

Of course for § = Ens_ the Green functor K(+,§) is
just {1, for € = C-mod_ it is KG. It will be one of
the main objectives of these lectures, to compute

the de 'ect base D(G,8) of these Green-functors for
various categories §, Note that D(G,§) does not
depend on the construction F, which is needed only

to ensure the existence of a defect base, As is
suggested by our notation S(G,G) already, one way

to compute D(G,8) will be to vary the group G,



especially to compare the defect base D(G,§)

of G with the defect base ®(U,8) for subgroups

and quotient groups U of G and to use induction

wer.t. |G|,

To state the main result we get this way still

for arbitrary §, write ER(G,G), resp. ﬁﬂ(G,G)

in case R = ZL%IP ¢ 7] € @, for the defect base

of R ® K(+,8):6* » ¥p (R a commutative ring) and
Z

ER(G) for the class of all finite groups U with

U € D,(U,8). Then we have:

Theorem 9, 1:

Let § and F be as in Prop., 9.5. Then:

(a) If € : G » H is a grouphomomorphism, then
DR(6,8) c {v < Gle(v) € mR(H,G)}, especially
@R(s) is closed w.r.t. quotients, i.e, if

G € QR(G) and N € G, then G/N € QR(S).

(b) ﬁﬂ(G) is closed w,r.t., subgroups, i.e. if
G € Eﬂ(G) and U € G, then U € Eﬂ(G) (1 any set
of primes),

(e) DR(G,6) = {U < Glu € SR(G)}.

Remark:

The last part of Thm 9.1 shows, that to compute
the defect base ER(G,G) for arbitrary groups

it is enough, to determine the class of finite
groups D (€), associated with any category § with
finite sums and an appropriate construction F
(and any commutative ring R)., The first two parts

state, that this class is closed w.,r.,t. quotients



o= 132 =

and subgroups, which sometimes can be used to
determine this class by induction, I don't know,
whether on the other hand‘any class of finite
groups, which is closed w.,r.t. subgroups and
quotients, can occur as such a class SR(G) for
an appropriate category @ and ring R, All classes,
I know to appear, are either the class of all finite
groups (€ = gggi) or of rather special type, always
contained in (and much smaller than) the class of
all finite solvable groups (§ more or less abelian),
For the proof of Thm 9,1 we have to study
relations (particularly restriction and induction)
between G-sets (and bundles over G-sets) and H-sets
(and bundles over H-sets), associated with a given
grouphomomorphism € : G » H, These relations of
course are rather fundamental and could have been
studied much earlier. I have postponed this until
now, since it is closely related and rather similar
to the study of restriction and induction of G-sets
(and bundles) over G-sets, associated with a given
G-map ¢ : T » S, and I didn't want the reader to
get mixed up between these two concepts (restriction
and induction associated with either a G-map ®:T-S
or a grouphomomorphism € : G - H), particularly be-
cause the second one being closer to usual repre -
sentation-theory might have prevented the reader
from getting familiar with the first one and its
many advantages. But now we have to consider both

concepts and to relate them to each other, Since
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we have to consider various groups at a time,

let us write K_(+,8) for the functor K(«,§):G*Up,

el
defined above,
Let ¢ : G » H be a grouphomomorphism, Restricting
the action of H on an H=set S to G wvia € we get a
G-set S\G = S\e = g*(S). Also any H-map ¢ : T = §
between two H-sets T,S is as well a G-map
mIG = mle = g*(m) between T|G and S\G. Thus
€ : G » H defines a functor g,: H* » G". 1t is
easy to see, that € % commutes with finite sums,
products and pull backs (mdre generally with
finite injective and projective limits). Especially
€ defines a ring -homomorphism Q, (€) : Q(H) - Q(G).
Now let M : G* = gg be a Mackey functor,
Composing M with €y We get a Mackey functor
Me = Me,, : H* > Up. Obviously for a given H-map
@ : T > S the induction map»ﬁe*(w) : Me(T) -» Me(S)
is surjective if and only'if'm(m]G) : m(T]G) - m(slG)
is surjective (since both maps are identical). Thus,
if S is a defect set of Me, we have a surjective
map m(ﬂSlG) : ﬁ(S‘G) a»ﬂ(*G), i.e,
g veel(slg)’ = sV 1 gi = (v<ale(v) € gyt
To prove Thm 9.1, (a), it remains to show
that :S(R®KG(.’G))€ c ®R®KH(.'G). But by Cor(P.8.2)1
this follows from the fact, that R ® KG(-,E)G can be
considered as an R @ KH(°,G)- algebra: associating
’ to any C-bundle or - more precisely = H-equivariant@ﬁmﬂ&SGWv
S W G-equivariant S-bundle g|. over S|,, which has the same fibers as g

with the G-action defined by restricting the H-action
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to G via ¢, we get a functor: [S,E] =» [S\G,G],

which commutes nicely with everything necessary,
(Of course this functor can as well be defined

using the canonical functor S|G » S : s = s,

===

(s,g,6(g)*s) » (s,e(g),e(g)*s)). This defines

the wanted natural transformation R®K ,G)aR@KG(-,G)e,

u(*
which makes R ® KG(-,G)G to an R ® KH(-,G)-algebra,
and thus proves Thm 9,1 (a), which will be applied
mostly to surjective homomorphisms:

€ : G» H= G/N, N = Ke ¢,

The proof of the second part (b) of Thm 9.1 will
be one of the main applications of the theory of
(algebraic and) multiplicative induction maps,

to be developed in the next chapter,

The proof of the last part is based on Prop 8.1 (b)

and on

Lemma 9,1:

Let @ be an arbitrary category and U < G a sub -
group of G, Then the two categories [gég,ﬁ] and
[*U,G] are equivalent, an canonical explicite
ezzivalence [gég,ﬁ] - [*U,GJ being given by
restricting anyGG—bund1:=§ over G/U and the
action of G on its fibers to its single fiber
over U = *U é G/U and the action of U on this
fiber, (In other words [SLE,GJ - L*U,GJ is the

composition of first restricting G to U, to get

a functor [G/U,E| - LG/UlU,G], and then using

=====
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the U-map: - G/U|U 2 ¥, 2 U € G/U, to get

*
U

a construction on §, the derived constructions

on [gég,s] and on [*U,G] correspond to each other

WeTrast, this oanonic:; equivalence, especially if

€ and F are as in Prop 9.5, then the restriction

of §-bundles over G/U onto theizr fikers over

U = % € G/U defines an isomcrphism: KG(G/U,G)gKU(*U,G).

Proof:
Trivial: the functor [G/U,&]| - [*U,Gj is defined

by the functor * - G/U : %*_ - U € G/U,

=&z u

na

(*U,u,*U) » (U,u,U), which is an equivalence of
categories, since any object in g[g is isomorphic

to ¥, = U € G/U and the endo-(=auto=~)morphism group

of *U in *U and in G/U is the same, Thus this functor

defines an equivalence of functor categories:

[gégvsj i L*gvaj-

Now let @ = Ens

it

» Then we get an equivalence bet-
ween the categories G*/G/U and G“: 67*U’ which 1is
defined by asscociating to any G-set S over G/U the
preimage of ¥ = U € G/U, considered as an U~set.
Now let M : G* » %2 be a Green functor, Since the
canonical forget functor V : G*/G/U = G*:{(3+G/U) > S
commites with sums (disjoint unions) and pull backs
(not products!), M induces a Green functor

m\U : U= c*/G/u Yoo 3O Up, Obviousily is G/U with-
out defect w.r.t, M if and only if U € @Cmiu),

i.e, *U is without defect w.r,t. m\U.
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Thus by Prop. 8.1 (b) for the proof of Thm 9.1 (c)

it remains to show, that for M = KG(O,G)

(8§ a category with a construction F as in Prop. 9.5)

we have an isomorphism m1U = KU(',G).

So let ¢ : S » G/U be a G-set over G/U and S' = w-1(*U)
the fiber of @ over *, = U € G/U, considered as a

G-set, We have to find a canonical isomorphism:

KG(S,G) > KU(S',S), such that for any diagram

s § 1
d\/ W of G-maps, i.e. any morphism in G*/G/U,
G/U

we have commutative diagrams

Ko(s,8) 5 Ky(s1,8)

»

s ot
Ky(T,6) 3 Ky (T*,6) and
K, (T,&8) 5 Ky(T',6)

la* la'*

~ . -1
K.(S,8) = KU(S',G) with T' = { (*U)
and a' = als, : St 2 T', a U-map.

But for ¢ = Idg y * G/U » G/U we have already an

- 3 ~ .
isomorphism KG(G/U,G) N KU(*U,G), defined in

Lemma 9.1 by restricting g@-bundles over G/U onto
their fibers over *U = U € G/U, This can of course
be generalized: If § is a G-equivariant Q-bundle
over S, then the restriction of § onto S' = ¢-1(*U)
can be considered as an U-equivariant @-bundle over

St'. Or in other words: We have a functor S' -+ S de-
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fined by imbedding S' into S (li.e. s' » 8!,
(s*yu,us') » (s*,u,us')) which defines contra
variantly a functor: [S,&] - [S',8] by compo-
sition, Obviously this restriction funector
commites with sums and our construction F,
resp, the derived constructions on [§,§] and
on [S',8], and thus defines a (ring-)homomor-
phism: res = res(G - U): K_ (S,§8) ~» KU(S',E)
G
for any G-set over G/U: © : S =» G/U,
One checks easily, that for the homcmorphism
. : s 3 T
res and for any cocmmmtative triangel
AW Y
G/U
the above diagrams commute.
Thus it remains to show, that res : KG(S,S)»KU(S‘,G)
is indeed an isomorphism. This can be done either

by generalizing our proof in case @ = Id_, ; :S:G/UaG/U,

Gs/U

e

i.e. by realizing, that the functor S' = is an

nwn

P
e

[

equivalence of categoriess (any ebject in is 1so-

ft

morphic to one in the image of S5' = and for

116}

8. ,9, € S' € S we have for the set of morphisms

172

in S' and S respectively: Ls1,52js,

H

= {(3198152)\3 € G, €34 Szt = ES1,82]S, because
gs, = s, implies w(gs1) = gm(s1) = g¥,= ¢(52) = %5

i.e. g € U), which implies

Lemma 9,2:

Let ® : S » G/U be a G-map and S' = ¢"1(*U) the
associated U-set., Then the functor S' - 5, defined

by the imbedding S' C S, is an equivalence and thus

= 1(s,yu,5,) luev,us

1

{
=5,
2



the functor res : [S,8] - |s$!',6! is an equivalence

of categories for any @, especially it defines iso-
~ Iy

morphisms KG(S,S) - KU(b ,8) .

Or we can reduce cur statement c<c¢ the case, where

S is simple, thus wele.o.ge S = G/v with V € U and

O G/V - G/U : gV - gU, especially &-° - T/V, in

which case we have a commuiaitive diagram

kY { x : N
zq.c_t GV, 8) ey K\’,T Vs
AN e
ores{t e V) ves(t - V)
”\\\ ¢
. s

with isomorphisms res (G - V) a:d ves {1 = V),
thus res (G - U) is an isaworprjuw,

Altogether we hsve proved Kﬁ(

°:ﬁ)§,f =Ry ,0

which teogether with the Jact, that

defect w.r.t. £ (*,8) if and oruy +f % bew no
\r
defect wer. . K_(~;$)!_» arnd with Pr o, T, (b)

implies Trum 9.1 (<.

Let us finally cvensider relsuive -robhanviieck

rings. We have to study exact snd split ex=zct
sequencges of Q-bundles over S wi'h & an pprepriate
category, i course one couid work with rather gene-=
ral categ:rizs again, but or car oo EX I ¥
sufficient tou consider the zategorv & = gﬁmod

of R-modules for a commutative risgax & wiifl + € R,

in which case we call §~lundlesy 370 H-nundles,
finitely gensrated, rintteiyv .20 Loty ke LOPrSign-

free (for integral domains V' . W opro ecibive B F

and only if all fibers are fi.iiely genaialed,
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resp, finitely presented, R-torsionfree or
R-projective.

We write O for the zero-bundle, all of whose
fibers are 0, and as well for the zero-morphism
€ -+ mM, which is the zero-map on every fiber,
Furthermore for two R-bundles §,m we write

E ® M, respe E ® N = § ® 1 for the direct sum,

R
resp. the tensor product, taken fiberwise,

We want to consider finite complexes
o M, 1 M
C: 8 ——» g 2 g —> e -ll-g of R-bundles
over a G-set S, i.,e., senquences of R-bundles

go,g1.°".€n and R-bundle-maps: P1=§O*€1.'°'.un=§n—1»§n

with W = 0 (i=1,+¢%,n-1). Two such complexes

1+1H

M M v v

C: go—; §1°——§"'—&§n and C': no-—-; 'n1,___>.oo.—£1_-)‘r\‘n
we have the notion of a homomorphism (of degree O)

o : C»>C', i.e, a sequence of bundle-maps:

id . _— i My
c'i H g -p 'ﬂ (1:0,...,1’1) with g ‘“"::‘-'l) g
lai l91+1
. AR
i i+1 i+ 1

o,

commutative (i=0,.,s,n=1), which is called an
isomorphism, if all o, are isomorphisms, and the

notion of the direct sum

0 o H®Vvy

C®cCt: g’ eon” L Jelean's ..o "
For a complex C: go._; §1 e g“ and an arbitrary

R-bundle M we can define the tensorproduct
M, 81 1
C®'ﬂ=C®T“:§ ®n———*g ®n".oo"§ ®'r|p
R
which can be generalized to the notion of the tensor-

product of complexes C ® C' in the usual way:



- 140 -

H M
For C : go __$ §1 _:3 ...-)§n and

V1 1 Vv

Y
c!' : nO —_— TN __35 ﬂ2 see —ji)nk we define

g g g
cect=cect:¢? —h 25 ... R Mk
R
by: (F = © gi ® nJ (r=0,¢+e,n+k) and
i+ j=r
. fr=1 _ ® i J r _ ® i i
o * € = B ®n” + (¢ = B em Yy
i+ j=r=-1 i+j=r
J
”rl 4§ T My, ®Id ;O (-1)° 1d ; ® Viiqe
g en’ n g ’

(Observe: C ® C* is generally not isomorphic to C' ® C).

o M1 1 n
Finally a complex C : & 35 E =,,.2 §

is called elementary, if gl = O for all i except
two eonsecutive ones, say i = r-1,r, with O $# r=1, r ¢ n

and if €°7' = g¥ = € with some R-bundle § for these

two indices and p_ : 8°7' = § » 87 = g is the identity.

A complex C : O = go - §1 P see - gn-1 - gn = 0
is called split, if it is isomorphic to a direct sum

of elementary complexes,

is called

M M
A complex: C : go ~_15 §1 D eee e gn
exact at some i, if the kernel of Mygq equals the
image of yu, at every fiber of EY (4 € {1,e0e,n=1}),

and it is called exact, if it is exact at every i = 1,c¢ee,n~

We state

Lemma 9, 3:

(1) The direct sum of two split, resp. exact complexes
is split, resp. exact,

(2) Any split complex is exact.



- 1h1 =

M M
(3) For a short complex C : O = g1——3 gz._3.§3 -0
the following statements are equivalent:
(1) € is split,
. . 2 1 3
(1i) There exists an isomorphism € = € & €
in such a way, that Mo @ §1 <+ E becomes
the imbedding §1 -+ §1 ® §3 and M becomes
. 1 3 3
the projection § © g~ -» E~,
(iii) C is exact and there exists a map
2 1
v, @ € =+ E with Vb, = Id 1°

g

(iv) C is exact and there exists a map v, §3¢g2

g
(4) For any split complex C and any R-bundle 7 the

complex C ® n is split.
(5) I£ s = 5, O S, then a complex of R-bundles

over S is split, if and only if its restrictions

to S1 and S, are split.

2
Proof:

(1) and (5) are trivial, (2) follows from (1) and

the exactness of elementary complexes, (3) is stan-

dard, (4) follows from (C @ C') ® N=2C ® 1M ® C!' ® N

and from the fact, that for an elementary complex C

the complex C ® N is elementary.

Because of later applications we generalize Lemma 9.39(4)

in the usual way by replacing m by an arbitrary complex:
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Lemma b
If C or C!' is split, then C ® C' is split,
The proof is a purely technical exercise and

left to the reader,
1 w=l 2
(One reduces to C : 0 » € = E " = B » 0
v v
n

elementary and has with C': no ~l n1 . n

an explicite isomorphism between

. . 2 .
C®C!' : 04g14g24...4gn+240 (Ql=§1 ® nt o g ® nl
n
and © C. with
. i
i=0

1 i Id 2 i
Ci P00, .40+ B ® M 35 0 ® N A04...20

elementary given by

i - 2 - i~ 2 j=2

ai . §1 ® n1 1 ®E° ® ni 2 - §1 ® nl 1 ® £ ® n1
1d -1

with o, = ( 0 u1d®vi-1), using an obvious con-

vention concerning matrix notation).

Now let S, T be G-sets and @ : T » S a G-map. The

into complexes and one verifies easily:

Lemma :

P and 2* carry direct sums of complexes into direct
sums and elementary, resp. split, resp. exact com-
plexes into elementary, resp. split, resp. exact
complexes, Furthermore Py commutes with tensorpro-
duots of complexes,

Now let Y be a further G-set. A complex

Cc : g° - g‘ + cee = §n of R-bundles over a G-set S

is called Y-split, if the complex Y, (C) with

2)
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¥ : YX S » S the projection onto S is split.

We claim

Lemma 9,6:

(1) The direct sum of two Y-split complexes is
Y-split,
(2) If C is Y~split and T an arbitrary R-burdle,
then C ® N is Y=~split, More generally the tensor-
product C ® C' of two complexes is Y=-split, if
C or C* is Y-split,
(3) For a given complex C the ciass of G-sets
{Y\C is Y-split| is r-closed, i.e.
(i) Y* < Y and C Y-split = C Yt-split
(ii) € Y-~-split and Y'-split « C Y ¥ Y'-split,
(4) I£ C is Y-split and C' Yi=-split, then C ® C!
is Y O Yt'-split,
(5) If ® : T » S is a G=map, then P, and 2* carry

Y-split complexss into Y~spiit complexes,

Proof:

(1) is trivial, (2) follows from the last part of
Lemma 9,5 and Lemma 9.4, (3),(i) is trivial,
(3),(ii) follows from Lemma 9.3, (5),

() follows from (3),(ii) and {2),

(5) follows from the fact, that Yx T _3% Y=xS
) Ly
T —_— 5
®

* *
is a pull back diagram, thus Y. = § Y, and (anyway)



- 144 <

i*g* = 2*1*, and from Lemma 9.5,

Now consider finitely generated, resp. presenteg
R-bundles and write KG(S,R), resp. K!(S,R) instead
of KG(S,G) with § the category of finitely generated,
resp. presented R-modules, considered as commutative
rings wer.t. ©® and ®., If C : g° -» g1 R s gn is a
complex of finitelyggenerated, resp. presented
R-modules over S, define

% = &° - g + 82 4 = vuu + (-1)%E" € K, (S,R),

resp. € K*'_ (S,R) to be the Euler-characteristic of C,

ol

(We identify an R-bundle 7 with the element, represented
t t g

by it in Ké )(s,R), even if ké )(S,R) - Ké )(S,R) is

not necessarily injective.) We state

Lemma 9,7 :

(1) C split implies %Xg = Oe

(2) Xcact = %c * Xgre
(3) Xgget = %c * %ot %ggn = %¢ * M-
() If ® : T » S is a G-map, then 9,(X;) = *g, (C) and

w*(xc,) = XQ*(C') for oomplexes C, C' over S,

resp. T,

1]
Now for a G-set Y define Jé )(S,R;Y) to be the ideal
]
in Ké )(S,R), generated by the Euler-characteristics
of all Y-split complexes of finitely generated (pre-

4

sented) R-bundles over S and
(*) (*) (*) -
Kg (SyR;Y) = Kg (s,R)/JG (S,R;Y) to be the quotient.

We have:
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Proposition 9,6:

(1) Jé')(S,R;Y) is the additive subgroup of Ké')(s;n),
generated by the Euler-characteristics of all short
Y-split complexes of finitely generated (presented)
R=-bundles:
C : 0= §1 - §2 > gB -+ 0,
(2) For a G-map ¢ : 1 = S we have
m*(Jé')(s,R;Y)) c JE')(T,R;Y),

G
o (a{ N (mriv)) g 9l (s Rim),
iee, Jé')(O,R;Y) : G5 o dp car be considered as a
sub-Mackey~-finctcer of K ' (¢,R) and thus Ké?(‘R;Y)ZG“*Eg

as a Green functor.

Proof':

(1) Because of Lemwa 9.,7.(3) and Lemma 9.6,(2) the
ideal Jéi)(S,R:Y) equals the additive subgroup,
generated by the Fuler-characteristics of Y-split
complexes of arbitrary {finite} length, Now let

C :0 HJ §1 %3 §2 @ ces gn <+ 0 be such a complex
and consider the short complexes

C, : 0= Im(pi} - gi -+ Im(“i+1) 2 0 (i = Tyeeepn)e
Because Xg = .%](_1)ixci and because all Ci are
Y-split, if C is, we are reduced to short Y-split

complexes, G.2.d.,

(2) follows from Lemma 9.6,(5) and Lemma 9.7, (4).

Now let SA(G,R;Y) be the defect basis of
A® KG(',R;Y) : G* » %y, A a commutative ring with
z =

1 € A, and write D_(G,R;Y) instead of D, (G,R;Y),
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if A = Z[%lp € M| c Q. Similarly to Thm 9.1 we

can state:

Theorem 9,2:

(1) D,(G4R) = 2, (GyRi%; )
(i1) 4if there exists a ringhomomorphism R -+ R?',
then @A(G,R';Y) c BA(G,R;Y);
(1i1) if there exists a G-map Y' - Y, then
EA(G,R;Y') c EA(G,R;Y);
(iv) if Y ,Y, are G-sets, then
En(G,R;Y1OY2) = Qﬂ(G,R;YT) U @ﬂ(G,R;Yz);
(v) if & : G » H is a grouphomomorphism and Y
an H-set, then EA(G,R;Y}G) c {U £ Gla(U) € géH,R;Y)i
(vi) 4if G € @n(G,R;Y), U G, then U € En(U,R;Y|U);

(vii) En(G,R;Y) = {U < G|U € sﬂ(U,R;YlU f o

Proof:
(1) is obvious; (ii) and (iii) follow from Cor.(P.8.2)1,
because our assumptions imply the existence of Green-~
func tor-homomorphisms KG(O,R;Y) - KG(~,R';Y)
(tensoring all fibers of R-bundles with R!' over R),
respe. KG(O,R;Y) - KG(w,R;Y') (Lemma 9.6,(3),(1));
(iv): by (iii) we know already
D {G,R;Y,) U o (G,R;Y,) D (G,R; Y, 0Y,).

To prove the opposite direction we use the fact

To(¥aaRiY ) v T (¥oR35Y,) o I (%,R3Y,0Y,)
(Lemma 9,6,(4) and Lemma 9.7,(3)).

‘! -

Let S, be a defect set of z[;lp € mt] ® Ky (¢,R;Y,)
(L = 1,2), i.e. Eﬂ(G,R;Yi) = u(si). By the definition

of a defect set and Lemma 8.6,(a) we have elements
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G,R;Yi) and y, € IKG(-,R)(Si) with
X, vy, =0y and n, a ' -number (i=1,2). Thus
we have n = n.n, = (x1 + y1)(x2 + y2) =

=X, ¢ x,_ + (y1x2 + Y X, 4+ y1y2) for a T'-number n

E“(G,R;Y1UY2) c u(s‘i ) 52) = u(s1) U u(sz) =
= En(G,R;Y1) U @n(G,R;YZ).

(v) is proved completely analogously to Thm 9.1,[(a):
one can restrict everywhere from H to G via o and

gets 1 €

Tagk ,R;YIG)(S\G)’ if 1 ¢ IA®KH(-,R;Y)(S)

cl°
for an H-set S,
(vi) again will be one of the main results of the
second part of these mnotes (Chapter 3 and 4), con-
cerning multiplicative induction maps,
(vii): Using (vi) and (v), one can prove, that

{U € G|U € ﬁn(U,R;YiU)i
is subconjugately closed. Thus it is enough to

prove the weaker and mich more elementary state-

ment (than (vi)), that

®n(G,R;Y) = {U & G|U € mﬂ(U,R;Y]U)},
which follows from Prop. 8.1,(b), once we know,
that "U € mn(U,R;YlU)" is equivalent with

"G/U without defect w.,r.t. KG(-,R;Y)".

But we know already, that for a G-set over G/U,

say ® : S.» G/U, the restriction of a G-equivariant



- 148 -

R-bundle over S to the U-equivariant sub-R-bundle
over the U-set S' = Sl* = $-1(*U) defines an
1)

isomorphism of categories:

e e e —
_—=== —_—_===

especially a G-equivariant R-bundle over G/U is
uniquely determined by its fiber over %, € G/U,
considered as an RU-module (and any RU-module can
be gotten this way) and a complex of such bundles
over G/U is Y-split, if and only if the correspon-

ding complex over * _ is YlU—split. Thus

U
KG(G/U,R;Y) = KU(*U.,R;YlU).
More generally we have - using the same argument -
a canonical isomorphism

KG(S,R;Y) = KU(S',R;YlU)
for any G-set over G/U : P : S > G/U with
S' = 8|, = w-1(*U) (considered as a U-set) or
- even more precisely -: the two Green functors
defined on G*/G/U = U® by
KG(o,R;Y)lU :p 1 S+ G/U KG(S,R;Y) and by
® : S - G/U KU(¢-1(*U),R;Y|U) are canonically
isomorphic,.
is a defect set

U
of KU('aR;YlU) : U* = G*/G/U » Up «- G/U is without

Thus we have: U € Eﬂ(U,R;Y[U) o *

defect we.r.t, KG(c,R;Y), qee.d.

Finally let us relate the functors KG(o,R;Y) tc the
relative Grothendieck ring as defined by I. Reiner
and T.Y. Lam: Using Jjust the last argument one can
see, that a complex C of G-equivariant R-bundles

over @G/U is split, if and only if the complex
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c| of fibers at *_ = U € G/U is split, considered

*
U U

as a complex of RU-modules, especially a complex
of RG-modules (over *G) is G/U-split, if and only
if the complex restricted to U is split. Thus
KG(*G,R;G/U) can as well be oonsidered as the
Grothendieck ring a(G,R;U) of (finitely generated)
RG=modules, relative to U-split exact sequences,
more generally (cf., Lemma 9.6,(3)) KG(*G,R;Y) as
the Grothendieck ring a (G,R;Ul) of RG-modules, re-
lative to U-split exact sequences with
u={u s G‘YU £ |, i.e. complexes, which are split
restricted to any U € U,
Finally we have identified already KG(G/H,R;Y) with
KH(*H,R;YIH) and thus we can identify KG(G/H,R;Y)
with the Grothendieck ring a(H,R;HNU) of all
RH-modules, relative to HNU-split exaci sequences,
with HOU = {HNU|U € u} = {V<H|Y @} = {V<H|V € u}.
Our way of introducing relative KG-functors
has the advantage of getting the Mackey- and Green-
functor=-structure and some of the results concerning
their defect basis as & trivial byprocduct, it also
explains very well, why it is not sufficient to con=-
sider relative Grothendieck rings only we.r.t. one
single subgroup, resp, one transitive G-set (namely:
& transitive G-set restricted to a subgroup generally
does not stay transitive!), but it may have the dis=-
advantage of looking rather unconventional and com=~
plicated. Yet I hope, that the reader slowly might

get used to our a bit complicated, but for many



purposes convenient definitions and notations and

finally even may profit by them.



§ 10 Some relations with classical

representation theory

In this section I want to relate our theory to
classical representation theory, especially I

want to indicate a proof of Brauer's result,

which states, that the Cartan-matrix of a finite
group w.r.t. a field A of characteristic p has a
determinant a power of p, # O. This procof will later

be generalized to arbitrary relative Grothendieck
rings.

We know already, that the theory of complex G-equi-
variant vectorbundles over G-sets and the theory of
complex linear representations of G and its subgroups
are closely related, and we have used this fact, to
motivate our procedure,

As pointed out already in § 6 and in the beginning
of § 7 the general induction lemma for Mackey functors

(Thm 7.1) together with the fact, that the restric-

tion (%) )
K.(*¥.) = X(G) » K,( 8 g/c) = 1 x(c
GG % ceg ceg ()
(8 = {€C € G|C oyclic}) is injective, implies already
|6} +K5 (%) = [6]+X(G) ¢ Image(KG(0 &/C)kKg(*,))= T x(c)™¢
ces . ceg

CoG
(x(c) the image of X(C) in X(G) w.r.t. the induc-
tion map X(C) -+ X(G)), i.e. Artin's Induction-Theorem

for complex representations,
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More generally we get for any field L with

char L = O using the same argument the following
result, which occurs already in the work of
Brauer, Bermann, Witt, Swan and others (cf. for
instance Banaschewski, | 1] &J: his proof is
principally rather close to ocur proof):

Let X{(G,L) be the ring of (generalized) charac-
ters of L-rational representations of G (i.e.
x(G,L) = KG(*G,L)), T a set of primes and

Ry = 98 = ivg GlZ ¢ €V, C cyclic, V/C a p-group
with p € 7| the set of all p-hyperelementary sub-

groups of G, Then

V-G
e\ » x(6,1) g x(v,1)",
VED
1
especially
l6| « x(¢,L) ¢ T x(c,1)°7F,
ceg
x(¢,L) = ¢ x(v,L)"¢
VED
(9 = 9 with 11 the set of all primes, i.e, T' = @).
8

Thus the defect basis ﬁn(KG(-,L)) = Eﬂ(G,L)
of the Green functor Zﬂ, ® KG(O,L) is contrained in
D8+
Equality holds, as one knows, for 11 = @ (@Q(G,L) = 8)
and for arbitrary 1, but L = @, The explicite com-
putation of Eﬂ(G,L) as given by Berman and Witt needs
the consideration not only of ordinary permutation-

representations, but also of monomial permutation

representations,
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Now let A be a field with char A = p £ O, The
ring B(G,\) of modular or Brauer characters
of G Wwer.t. A can be defined as the Grothendieck

ring a(G,A) = K A) of all (finite-dimensional!)

G(*G'
AG-modules modulo the ideal, generated by the
Buler characteristics M_ - M, + M, € a(G,A)
of all exact sequences O = M0 - M1 - M2 -+ 0 of
AG-modules, - thus it is Z-free with a &-basis
the simple (i.e., irreducible) AG-modules (Jordan-
Hélder - Theorem!),
But such a sequence 0 = Mo -+ M1 -> M2 -+ 0 is
exact, if and only if it is sﬁlit as a sequence
of A-modules, resp. AE-modules (E € G the trivial
subgroup), i.e. if and only if it is G/E-split
(cf. the end of § 9). Thus we have a canonical
identification

B(G,\) = KG(*G,A;G/E)
more generally:
B(U,A) = KU(*U,A;U/E) = KU(*U,A;G/E]U) =S KG(G/U,A;G/E)
for any subgroup U £ G,
Moreover the results of § 9 show, that w.r.t. this
identification the usual restriction B(G,A) - B(U,A)
and induction B(U,A) - B(G,A) coincide with the maps
Ko (*goAiG/E) =+ K (G/U,0;G/E), K, (G/U,A3G/E) + K (*,,0;G/E),

associated to nG/U : G/U o *G.

Now let R be a local Dedekind ring with quotient field L,
char L = 0, maximal ideal m and residue class field

R/m = A, (It is known, that for any given A one can



always find such a ring R!). The ringhomomorphism

R->L, R+ A of course induces homomorphisms of

Green functors K (+,R) = KG(-,L),

K.(*,R) = KG(o,A) - KG(o,A;G/E) in the usual way
(tensoring the fibers of R-bundles with L, resp. A

over R)., It is classical (cf. e.g. Serre, (41 j,p;ﬂl'Q),

that (at least at but the argument generalizes

¥
Gt
immediately!) in the triangel of Green functors

KG(.!L)

K.(*,R) d

I

there exists axactly one homomorphism (of Green

K.(*,NA;G/E)

functors) d : KG(o,L) ~> KG(',I\.;G/E)p which makes
the above diagram commutative,
By Cor(P.8.2)1 this implies
@Q(KG(o,A;G/E)) = @Q(G,A;G/E) c QQ(G,L) = 8o
Furthermore for C € 8 cyclic with C = Cpx Cp' = Cpx D
(Cp the p-Sylow=~subgroup of C,Cp, = D the direct pro-
duct of all g-Sylow-subgroups of C with q ¥ p) one
knows that the restriction
B(C,\) = KG(G/C,A;G/E) - B{(D,A) = KG(G/D,A;G/E)
is injective (note for instance, that Cp < C acts
trivial on any simple AC-module). Thus we have for
any C € §:

c € @Q(C,A;G/E|C) = cp = E
and therefore, using the weaker form of Thm 9.2,(vii)

as stated in its proof:



EQ(G,A;G/E) cgn {uscG|u e EQ(U,A;G/E|U)§ c

c {C < GIC cyclic, (IClDP) =1} = Bpl M

One knows, that indeed
EQ(G,A;G/E) = 8,1 o
Since KG(G,A;G/E) = B(G,\) is torsionfree, the in-
clusion above already implies:
D,:(G,A3G/E) € & 48 . = {V|V € g and (|V],p) = 1},
more precisely (using Thm 7.1):

G|+ B(GA) S T B(v,0)"% |
| lp VG@,(\V\,p) = 1

Now observe, that for V & G, ({V\,p) = 1 all

AG-modules, which are induced from AV-modules,

are projective (Maschke - Gaschiitz - D.G.Higman).

Thus the above relation implies, that |Glp o B(G,N)

is contained in the image of the Cartan map

p(G,A) -» B(G,A), which is defined as the restriction

of the canonical epimorphism

KG(*G,A) = a(G,\) ~» KG(*G,A;G/E) = B(G,A)

to the ideal (additive span) p(G,A) of all projective

AG-modules (considered as elements in a(G,A)).

It is easy to see, that this can be considered as

the main step in proving, that the Cartan matrix

(cf. CRyp.593) has a determinant a power of p, ¥ O,
I want to point out, that in our proof

of this fact we have used essentially only our

knowledge of the primeideal structure of the

Burnside ring (G) and scme very elementary facts

on linear representations over fields of characte-

ristic O and p. All other results congerning
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Mackey- and Green functors, which have been used,

can also jimmedistely be verified directly in these

special cases,

It is one of the uvaiwn gsails of the {ollowing two

chapters, to develocp tftecinigues, which allow to

generalize the result concerning the Carlan map

to arbitrary relativs (reihendieck rings KG(*G,A;S).

This will depend heavily on the oroof of Thm 9.2,(vi).
It weuwld be temu"ing, a.z9 1o write down

the results on trarsf=2v -nd cechomoliagy, which

follow by applvicy the ge 1+ ¢ dnductinn lemma

for Mackey funcbtors to Pic and s 2ohomology-

functoxrs ai, to wndasli.e o elidpranging appli-

v

cability of our techniouss, Sui I fear, it may

.
(e

have the opposite offort of ror.- g the readex,
especially because - as Tao o3 e
nothing essentialiiy .aw +:11 occur, So I leave

this as an cxercis= o 3rvone, who might be in-

terested in this special wmatter ' the main point

j¢]

is to observe, that in Lhese specisal cases the
composition oif restriction and induction w.r.t,
Mg ¢ S = *G is just muibiplicatica with (3§,
i.es that these Hincitors are cshomology functors
in the sense oif :vwean, -~ i

Further applications (o moc:icr - resentation
theory, especialiy %c¢ “me thesrs of biocks and
defect groups may alsc be found in the work of

Green, L H‘ j {e= obsey.eu ~iuve, his G-functors

can be identified wilh Mackesa Tuncters G® - k-mod,



k a commutative ring with 1 € k, together with

an arbitrary inner composition),

Finally an application of our theory to the study
of Witt rings, which has been written down already
half a year ago in two separate papers, will be

given in an appendix to the first part of these

notes,
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~ Appendix A -
The Wittring as Mackey-l'unctor

irnst Witt zum 00. Geburtstag

1e In a series of papers W. Scharlau used induction-
techniques to study Wittrings (of [10], L11], [6]), based
on the axiomatic theory of such techniques, developed in
T.Y. Lam's thesis LH]. The main tool of this thcory is an
axiomatic formulation ol the Frobenius-reciprocity-~law,
whiclhh states an important relation between induction-~

(transTer-) and restriction-maps.

Meanwhile it has been noticed, that in the case of
finite groups a uore sophisticated axiomatic theory can
be developed by including an axiomatic Tornmlation ol" {the
"Mackey-subgroup-theorem" (of E1], 4L, p.324) into the
system o Aaxioms (see JeA., Green's thecorv of G-functors Lh]
amdd Lhie closely related theory ol Mackey-f{unctors dovelopoed

in [2] and [7]). An outline of a unified theory will bo

given in §3, a more thorough treatment in L}J.

The main point of this paper is the fact, that cveu
this more sophisticated theory applies te Wittrings,
casting new light on Scharlau's induction-teclhiniques for
Wittrings, on the relation of Burnside-~ and Wittrinss,

studied in [13] and on the theorem of Rosenbers and Ware
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(af. [9] and [6]). Especially this last theorem appears
to be a special case of an axiomatic generalization of
Brauer's characterization of generalized characters

among classfunctions (ef. [1], §40, p.291).

Since this last aspect might be themost interest-
ing part of this paper, it will be déveloped in §2,
even before the general theory of Mackey-functors is

applied to Wittrings in §4.

2. Let us start with a rather general Lemma on
bilinear forms over commutative rings: If R is a
commutative ring with 1 € R, then a bilinear form over
R (or R-bilinear form) is just a pair (M,f) with M

an Re~module and f : M x M2+ R an R-bilinear map.

If & : R =2 A is a ringhomomorphism intoc a commutative
ring A (with 1 € A and a(1) = 1, of course), then
a(M,f) = (A ® M, Id, ® ) defines a bilinear form
over A, Moreover if p : A 2 R is a map back into R,
R-~linear with respect to the R-module~structure on A,

induced by @, and if (N,h) is an A-bilinear form,

then p(N,h) = (N\R,ph) is an R-bilinear form.

Now let o : R =* A, B : R 2 B be two ringhomomorphisms
as above and p : A 2 R an R-linear map back into R,

p induces a B-linear map
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G :BDRA-D:babb.B (p(a)) and we have a
ringhomomorphism y : A - B ﬁ A : abP 1 ® a such that
the diagramm

B

R——2DB

ol To

A«—?aBﬁm
commutes.
For any A-bilinear form (M,f) we get thus two B-bilinear
forms B(p(M,r)) and o(y(M,f)).

The Lemma states:

lLLemmna 2.1.: There exists a natural isomorphism between

B(p(M,f)) and o(y(M,F)).

Proof: Trivial verification:

B(p(M,f)) = B(I'”R!pf) = (B g M, Idp @ o), o(y(M,f)) =
o((B A) @M, Tdg ., @ £f) =o(B M, Td; g f) = (B g M, Td, Bel).
In spite of its triviality the above lLemma can be very
usefull, At Tirst T want to give an interpretation ol

l.emma 2+1. in terms of Wittrings, follewing the definition
of Wittrings of bilinear forms over commutative rings,
given in [5] : An R-bilinear form (M,f) may be called
regular, if M dis a finitely generated projective (f.g.p.)
R~module and if f is symmetric and induces an isomorphism

M = M' = Iomy (M,R) : x ¥ (yw» f (x,v)).

One has the following usefull

Criterion: A symmetric R-bilinear form (M,f) is regular

i{ and only if there exists X0 V4 € M(i = 1,00e,n)
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n
with x = Z)f(x,yi)xi for all x € M,
1

The Wittring W(R) is the Grothendieckring WO(R) of
regular bilinear forms over R modulo the subgroup

(= ideal), generated by metabolic forms, where (M,f)
is called metabolic if it is regular and M = N & N',

N1

such that N equals its own orthogonal complement in M,

Any ringhomomorphiism & : R - A induces a ringhomo-
morphism a,: W(R) - W(A). Moreover if R = R, x R,
with projections T, : R = R, (i = 1,2), then

Tix X Mout W(R) = W(RW) X W(R,) is an isomorphism.

Now let R;%iA be a pair of maps as above. I define
p to be regular, if the R-bilinear form (A,p)

with: t: Ax AR : (a,b) = ab is regular.
p P

Remarks: (1) If A is f.g.p. as Remodule, then there
exists a regular map p A =+ R if and only if A and
HomR (A,R) are isomorphic as A-modules. Moreover the

well-defined tracemap t A+ R is regular if and

A/R °
only if A is a separabel R-algebra (cf. [12]).

(2) If p : A2 R is regular and T : A 2 R linear,
then there exists exactly one a € A with T(x) = p(ax)

for all x € A. Especially any two regular maps differ

only by a unit in A
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The above criterion implies easily:

Lemma 2,2.: If p is regular, then p (M,f) is regular

(metabolic) for any regular (metabolic) A-bilinear form
(M,f).

Thus p induces an additive map back p*: W(A) - W(R),
which is easily seen to be W(R)-linear with respect to

o8 (Frobenius-reciprocity-law, cf.[10]).

*
We now go back to the situation of Lemma 2.1. and
assume p to be regular. Then ¢ is regular as well

and we get

Lemma 2.1Y: With the above notations we have a commutative

diagramm

W(R) ——@-i‘-»w(B

. T)

Ww(A) —Y?W(A.QB).

To state the main result, let ¢ : R -+ A, 8 : R » B

again be two ringhomomorphisms, From § we get the

Amitsurkomplex:

1 g2 B7
G(B/R) : r £2B, 5 -@_—;-;B ® B_=1_:;...
B3

I

with @7 (b1®...®bn_1) = b ®.,..8b, .®18b.8...%b

-1"*
Applying W and taking cohomology-groups, we get the
groups Hi(B/R, W)(i 2 o). It is easy to see, that W(R)
acts naturally on Hi(B/R,W), this action being induced
from

BR @ B ®...@ B:ir » B(r) ®10...81 = ...=1®...8188(1).
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Moreover tensoring with A over R we get
—y 1 5
AQG(B/R) = GE(A?%B/A) : A MAQB%AQBQBE‘;---
Y2
and we have a natural transformation:
%(B/R) t: R——B3 T™——3B ® B="T ...
1 2
o4 la a = u@IdB o = a®IdB®B
)
G(ASB/A) : A

SA®B " 3A ® B ® BT/, ..

thus we have natural maps

1 (a) : W(B/R,W) » I (A ® B/A,W).
For A =B, & = B one verifies easily I (B) = 0.
Thus a general statement, concerning the kernel of Ul(u),

allways implies results on Hi(B/R,W) = Ke(H (B)).

Now let p : A 2% R be a regular R-linear map.,

The main result is:

Theorem 2,74 Hl(a) is W(R)=1linear for the natural

action of W(R) on Hi(B/R,W) and Hi(A ® B/A,W) and

*
its kernel is annihilated by ¢ (W(A)) € W(R).

Remarks: (1) For i = 0 and A = B, a = B this is just
one of the induction-principles of T.Y.Lam, [8].

(2) Because any two regular maps p, p':t A > R differ
by a unit, the image p*(W(A)) %s independent from the

map p, actually taken,
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Before proving Theorcem 2,1. I want to state some

corollaries:

Al ™ *
Corollary:2,1.: If n - 1W(R) € p (W(A)), then

Ke(11*(a)) is an n-torsiongroup, (i » o). If

*

n - € p (W(A)) + Ke(B:W(R) = W(B)), then Ke(ni(u))

"W(R)

is an n-torsiongroup for i =2 1.

Corollary 2.2.: Il p*: W(A) = W(R) is surjective (i.c.

1 € Im p*), thien all Hi(a) are injective (i = 0).
I W(R) = p*(W(A)) + Ke(B,:W(R) =» W(B)), then all

11"(a) are injective for i = 1.

*
Corollary 2.3.: Especially n '1W(R) € o) (W(A)) dmplies
n.I1I (A/R,W) = 0 (i = o),
* R . 3

n '1w(R) € p (W(A)) + Ke(a,: W(R) » W(A)) dimplies

. ¥*
n.1 (A/R,W) = 0 for i3 1, surjectivity of p
implies the triviality of Hi(A/R,W) for all i 2 o,
p*(w(A)) + Ke(o,: W(R) = W(A)) = W(R) dimplies

Nt (A/R,W) = O for i = 1.
Examples of regular maps, which induce epimorphisms,
have been given by W.Scharlau (of [10]). Using his

argument, one can prove:

Lemma 2.,3.: Let R 'pe a commutative ring with 1 & R,

f(x) = X2n+1 + a, x2n + e + aO € R[X] with a

a unit in R and A = R[x]/f(x). Then



2n {

p + AR : %:rv xv | 4 T, is a regular mép, which maps
€ .
1, W(A) onto 1, € W(R)

This Lemma is especially usefull in combination with

Lemma 2.,4,: Let & : R2> A and B : A 2 B be ring-

homomorphisms and p: A ?* R, 0 ¢+ B* A Dbe regular R-,
resp., A-linear maps back. Then po0 : B ® R is a regular
* * % *

R-linear map and (pog) = p 0 . Especially (p 0) is

* * ;
surjective, if p and O are surjective.
Now let R be a field K and A a finite field
extension L. Then any K-~linear nonzero map p : L = K
is regular. Let m be the "Pfisterideal" in W(K), i.e.

the ideal generated by all regular bilinear forms of even

degree. Then one has:

lLenmma 2.,5.,: Let p ¢+ L » K be a nonzero K-~linear map.

Then p : W(L) - W(K) is surjective, resp. has image

in m, if and only if (L : K ) is odd, resp. even.

Proof: Combine Lemma 2,3. and Lemma 2.4,

Thus for (L : K) odd all the Amitsur-cohomology-groups
Hi(L/K,W) (i 2 o) are trivial, For i = o this is a
theorem of T.A. Springer, for i = 1 and L a Galois-
extension it is the theorem of Rosenberg and Ware [9]
and the above proof is in this special case just a

variation of the pgobf, given by Knebusch and Scharlau in

el.
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It is possible to generalize the above result to arbitrary
finite extensions L/K, resp. separable finite extensions

L/K if char K 2 :

Theorem 2.,2,: Let L/K be a finite extension and L1/K

a separabel subextension such that (L : L1) is odd.

Let G be the Galoisgroup of the normal closure of L1/K
and \G\ = 2% m with m odd..Then 2" annihilates

all IIi(L/K,W) (i 2 1),

Remark: If char K % 2, L/K finite and L1 the separabel
closure of K din L, then (L : L1) is odd and Theorewm
2.2, can be applied. If (L : K) is odd, choose L, = K,

to get the above mentioned results.

Proof: Let G1 :t K - L1, o, ¢ L1 -+ . be the embeddings,
Pr ¢ L = L1, Py ¢ L1 - K nonzero L1-, resp. K-linear

maps. By Corocllary 2.3. it is enough to show

n * * * *
2™ € (p,p,) (W(L)) + Ke(o,e,)e But (p,p,) = p,p,
and p; is surjective and (u2a1)* = a1*G2* and QZ*

is injective. Thus it is enough to show
2™ € p1(W(L1)) + Ke(a1*) for L1/K separabel and this

will be one of the main applications of § 3 and § 4.

I come now to the proof of Theorem 2.1. We use Lemma 2.1.,'!
tor all the diagramms of the following form (with B(n)

for B ® ... ® B, n times):



Bn 'Bn+1
B(n-1)~fhmgvﬁ_*h_4 B(n) B SN B(n+1)
/‘\ Vi
n-1‘ I Ne n n n+” [ +1
a ] | el lo"=p ® Idp(n) o | p"
o | | L
A B D(n 1) 3 A® B(n)—* R - A2 B(n+1)
| n+1
J Vi
For any x € W(B(n)), such that ai(x) = 521 (-1)i Y? ()

for some y € W(A ® B(n-1)), and for any z & W(4A) we

have

2y 0T, "z ) =
2y G ((mey)) -
i 07 (2 V() =
Tz e (D) ()

(with v the canonical map W(A) » W(A ® B(n)) and

using Frobenius reciprocity)

= p*(z)- x (using T.emma 2.1.' for R-——%B(n)

e Ie

A ——agp(™) )
Yn

Thus p*(z)+ x = 0 in I (B/R,¥W), q.e.d.

Remark: We have not used, that x is a cycle in II'(B/R,W),

- only that &"#(x) 4is a boundary in I (A @ B/B,W).



3. Now I want to give an outline of the theory of
Mackey-functors. This will be applied in § 4 to Witt=-
rings over fields K and finite commutative separable
K-Algebras. The group G, considered in this section,
will then be the Galoisgroup of a finite or infinite
algebraic Galcisextension of K.

So let G be a finite or profinite group. A G-set
is a finite set, on which G acts (continuously) by
permutations from the lelt. G-sets from a category
GA with an initial and a final object (¢ and +*,
the one-point-G-set, respectively), with sums S1 + 52
(disjoint union), products S1.x 82 (cartesian product

with diagonal G-action) and - more generally - pull-

backs

Let Yb be the category of ahelian groups. We consider

pifunctors I : GA -+ Yt , di.e. a pair of functors

A A
W, : G = Up and ¥ : G = ¥Ub, such that M, is contra-
variant, @W* is covariant and %, and MIM* coincide on

the objects in GA. Thus for any G-map p : S =2 T in

G there are two maps:

[ 5 ]

o3
*
——~
©
g

1

op ¢ T(T) + (= T (T) = (1)) > @ (5)

=1
¥
g
he)
p
it
©
*
g
=
16)]
g
i
B
g



will be called the restriction map, p* the

Py

induction map associated with p.

We define I to be a Mackey-functor, if M satisfies

the following two conditions:

(M1) (The "Mackey-subgroup-theorem", of [1], § 4k, p.

For any pull-back-~diagramm

4

®
S, % 5,5,

T
y l ¥
S

3

1—————)
®

thie Tfollowing diagramm commutes:

m
w(S1?? 82)

N
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(M2) (Additivity) PFor any disjoint union S + T with
jmbeddings 4 : S 4 S + T, j : T + S + T any circle in

the triangel

m( s + T)-—————a m(s) x m(T)
1*@3* \\\\ ////
m(s) & :m(T)

equals the identity.

Remark: Assuming (M1) +the condition (M2) is equivalent
with (MO): m(#) =0 and either (M2') i, x j, 1is injective

or (M2") i* @ j* is surjective.

Moreover (M2) states, that a Mackey-functor is uniquely
determined by its restriction to the subcategory of transitive

G-sets G/U (U an open subgroup in G).

Examples: 1) All the various absolute and relative Grothen-
dieck~groups of certain representations of a group G and its
subgroups can be considered as Mackey-functors. For instance
consider a G-set S as a discrete, compact topological
G-space and let KG(S) be the Grothendieck-group (-ring) of
equivariant C€G-vector bundles over §S. For any ¢: S -» T
define (! KG(T) - KG(S) by the pull-back of vectorbundles
and ep*: KG(S) - KG(T) by the direct image (gp: S - T is a

finite covering!).

One has KG(*) = X(G), the characterring of G, more generally

*
K.(G/U) = X(U) and the maps X(G) = KG(*)éfQ—%>KG(G/U) =~ X(U),

©x
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defined by :G/U =+ % are just usual restriction and induc-

tion of characters.

2) For a G-module X consider mX(S), the set of
G-equivariant maps f from S into X. mX(S) is an
abelian group and for any ¢: S - T one has a restriction
T mx(T) - mX(S), defined by composition: f - fp, and an

induction m*:mx(s) - mX(T) : fw(tw §©  f(s)).
w(s)=t

X » mx is a left-exact functor from the category of
G-modules into the category of Mackey~functors (which is a
nice abelian category, if one defines a natural transformation
© : Mo N to be a family of maps ‘o (S). : M(S) » N(S) inmn
just one direction such that © is cowpatibel with ¢
as well as with m*} Its derivations bi can be used to
define the groupcohomology (b;(G/U) = Hi(U,X‘U)) simult-~
aneously with the restriction - and induction-(corestriction-)

maps.

3) For any G-~-set S consider the set of isomorphism
classes of the category GA/S of G-~sets over S. Disjoint
union defines anadditive structure on this set, giving it
the structure of an abelian semigroup. Let ( (S) be the

:
i

associated universal abelian group. The wap S » Q(S) can be

wade to a Mackey~functor: for any ¢ : S » T define ¢*:0(S) -0(T)

by composition: (gp' : S' 5 S) » (pp': S' » T) and
we: 0 (T) » 0 (S) by the pull back:

. . X
(¢:T' » T) a(y|m. T' X S » 5).
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I call ¢ the Burnside~ or the universal Mackey-~functor.

4) see §h4.

For any G-set S one has exactly one map :5 - %

0¥
and therefore a canonical pair of maps : ﬁ(s);“_"; m(s) -

®x

Define ;m(s) = I(S) = Im(ep*), gﬂ(s) = K(S) = Ke(en,)-
' AR]
Then one has the fellowing generalization of Artin's

Induction~Theorem.

Theorem 3.1. : |G : Gsl. (%) ¢ I(S) + K(S) - with |G : GS‘
the index of Gg = {g € G| g8 = s for any s ¢ S} in G.
Sometimes the factor |G : Gg has to be eliminated.

This can be done analogously to the induction-theorems of
Brauver and Swan: For any finite family {1 of open subgroups

of G define Su =) G/U (any G-set can be realized
Ue

this way!) gm(u) = K(u) = K(Su), gm(u) = I(y) = I(Su). For any

set 1 of primes define

O 0 = {V&Gl 3 pemy NaV, g€ G, Ugey with N open in G,
V/N a p~group and gNg'-1 < U}. If G 4is finite, g the set
of cyclic subgroups and 11 = {p}, then &ﬂs is the set of

p~hyperelementary subgroups of G (seef11¢ﬁ§§). Then one has

the following generalization of Theorem 3.1.:

Theorem 3.1': Let 4 be a finite set of open subgroups

of G, N = gUg_1(g € G, Ue u), let 71 be a set of

primes and |G : Nlﬂ, the maximal divisor of |G : N|,
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which contains no primedivisor in 1. Then for any Mackey-

functor M on & we have
G : N I = K .
\ | m() o (e _u)+ K(u)
(cf. 37, chapter 1I, §7, Thwm 7.1 and replace G by ‘G/GS,

which is definitely finite).

For any ma t+ S T one can define a semisimplizial
Y P o

complex &(m):

3
® ® ®
@(p): Te—S g—- sxs 1L g XsXs
2 . e o
@2
with M. S(n) =X gX ,,, X 8§ 4 S(n‘1)
@i T2 T T
defined by (51.....Sn) - (51,..51_1, si+1,...sn).

Thus for any Mackey-functor M (even for any contravariant
functor G - #b) one gets a complex:
2
® 1
(ep,m) : M(T) —>m(S) ———;?m(s ¥ S) «... with cohomology-
)
groups H© (¢m) (i 2 0). If T =% we write also H (s,m)
instead of Hl(m,m).
Moreover for any ¥ : Y 5 T one can take the pull-back of
®(e@) with respect to y:
' 2
8 33

$
.
@(ml?) = @g(cp)h’: Yé&— Y %{ sg—_—z_—y_?,} S ’,} S §~‘_

L P
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and one has a natural transformation

2
@ o®1
@(m) ° T <"—“ s §i-~»~~—--—-—— S ,)]g sg:: e o e 0
A \ \ q:w2
2 \
¥ ¥l e=|¥ v
, 2
& ¢
®lepl,) : Y<Y X SsE=—7YXsX sE=....
h{ T QZ T T §5~
2

Thus one gets maps : Hi(Y) : Hi(m,ﬂ) - Hi(é,m) (i » o),

which are trivial, if S8 =Y, ¢ = VY.

An exawple: If S is a G-set, such that for any g ¢ G
there exists s € S with gs = s, then H1(S,KG) can

be interpreted as the group of classfunctions on G, which
are generalized characters restricted to any subgroup

GS = |{g ¢ Glgs = s} (s € 8), modulo the group of generalized
characters, and for any V¥ : Y -+ % oOne can interpret

Ke (H1(y) : H1(S,KG) -+ H1(Sx Y 2 Y, KG)) as the subgroup

of those classfunctions, which are:generalized characters

on any Gs(s € S) and Gy(y € Y), wodulo the group

generalized characters.

Thus the following theorem is closely related to Brauers

characterisation of characters:

Theorem 3.2: With the notations of Theorem 3.1! let S =S

Y=S_ ., ¥ :Y - %. Then Ke (H'(y)) is annihilated by

Sl

|G = Gsiﬂ, for i » 1. Especially Hl(Su) is annihilated

by |G : GS| for i 1 (7 = @8!').
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Uutil now we have only used an axiomatization of
Mackey's subgroup theorem. But the interesting Mackey-
functors are those with an inner composition, because
(by their detinition) they are the basic objects for an
axiowatic treatment of the consequences of the Mackey-
subgroup-theorew and the Frobenius-reciprocity-law cowbined

in a unificd theory.

To define such functors we define first an outer
composition of Mackey-functors: For three Mackey-f{unctors
™m,m,0 we define an outer composition 69: mx™ o 0 to be

a system of bilincar wmaps:

(~ (8) : w(8)>» a(S) » @(S) such that for any w: S » T

in GA the following diagramms commute:
~ (T)
(ro) w(T) s o(71) voal(T)
| |
f‘ﬁl*(m)xﬁ“*(m) %Qx(('o)
: (~ (5)
m(s) v m(S) v oe(s)
LaXo* () ‘
(r1) m(T) v o(S) ——> w(T) < R(T)
~ (T)
\\\N \
[ cm/;(-(CD)X 1d »75‘3(1‘)
v &~ (s) T a%(e)

SOREIT o s
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m* () x Id
(F2) m(s)x o(T) —— —> m(T)x n(T)
(T)
Id x ¢, (o) ® S a(1)
=
~ (S) *(ep)
a(s) Ym(s) @ o a(s) ¢

If m =8, we say ™ acts on @; if M =9 = @,

then (Wh GD) is a Mackey-functor with an inner composition.

Examples: (1) The G-functors, defined and studied by J.A.
Green (NT, are eguivalent to Mackey-functors with an inner

composition,

(2) The tensor product of G-representations can often
be used, to define an inner cowposition in the associated

Grothendieckgroups.

(3) (i acts on any Mackey-functor I in a natural way:
For any G-set S the map (gp: S' =+ S, Xhap*(m(x))
(x € m(S)) dinduces a bilinear map QQ(S)x m(S) - M(S)

which satisfies (F0), (F1), (F2).

Especially ( acts on M = ). .This action defines an
inner composition, which induces on any (S) the structure
of a commutive ring with 1 € 0 (S), such that the above
action  (S)Xx m(S) -» Mm(S) makes mMm(S) into an (unitary, of

course) Q (S)-module. (cf. 37, §7) .

n(%) is just the Burnsidering of G (cf. F137), more

generally (O (G/U) the Burnsidering of U.
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The action of (} on any Mackey-functor M allows to reduce

the proof of Theorewm 3.1, 3.1', 3.2 to the case of ¢ and

plays thus a key-rSle in the proof of these theorews. (More
generally in a rather formal way one can study Mackey-functors mn,
on which a Mackey-functors M with an inner cowposition acts

in a compatible way, and show, in which way special assumptions

for ®m iwmply special properties of mqm.) (cf. (3], §7).

Finally if o 1is a Mackey-functor with an inner

composition and a unit ]m(S)z 1S € m(S) for any S and
A

m*(1s) = 1T for any ¢ : TS in G, then there exists
a unique natural transforwation 69: 0 - M, which is multiplicat-
ive and maps 1 onto 1 . , .

Q(s) m(S)' - even if no assumptions

oncommutativity and associativity in % are wade., We call

such Mackey-functors also Mackey-algebras.

(4) see §h.
The basic fact for Mackey-functors m with an inner
composition is the following result of Green ([M], &1,

Theorem 1, p.14 or [3], §8 in the case of finite groups).

Theorem 3.3: If Mmik)x M{x) -» M(x) 1is surjective (e.g.

™ 1is a Mackey-algebra), then there exists a unique fawily gﬂ

of closed subgroups of G (the defect base of M) such that:

(i) By is a closed subset of the topological (compact,
totally disconnected) space & (G) of all closed subgroups

of G, described in [13]
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(i1) If U,VvLG, g € G, Uc¢g D, and gve™ ! c U, then
V € Qm.

(iii) For any ¢ : S = % the map eo*: m(8) » M(w) is
surjective if and only if for any U € Qm there
exists s € S with U (£ Gs’ i.e. if and only if

sV $ ¥ for all U ¢ Dyy*

Proof: The generalization from finite to profinite G 1is
rather easy: For any open normal subgroup NZG one may

A of those

restrict W to the subcategory (G/N)A of G
G-sets, on which N acts trivial, and then has a defect

base @m(G/N) at least for this restricted M. Define

Qm = {U < G| U-N/N ¢ Qm(G/N) for all open normal subgroups N 2Gj}.
The properties and the uniqueness of am are easily verified.

One can show, that 9 contains all subgroups of G.

0
Generally for a given M the determination of its defect

base @m is very often one of the most relevant problems
comnected with 9 and allows many corollaries. Already upper
and lower bounds f(or Qm can be ver& usefull.

For instance one can prove the following usefull version of

Theorem 3.1:

Theorem 3.1": Let M be a Mackey-algebra, such that all

groups in the defect base of I are p-groups (q some set
of primes) and let M be a Mackey-functor, on which m acts
unitary (e.g M itsself). Then one has for any G-set S:

G+ Gl - m(%) g Kp(S) + I (S).
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Proof: W.l.o0.g. Gg = E. We know any way |G| -n(x) € Km(S) + I (8),

thus it is enough to show, that also

na(#) g Ky () + T.(S)

m

for some 1-number 1.

Consider the pull back diagramm

U
TxS —> S
J % @ with T = |J G/U.
v 14 UegTz
T — =
b4

Since y¥* (Im(Q* : m(TXS) - m(T)) c Im(S)

and y*(Ke($,: n(T) » n(Txs)) ¢ Km(S) (by(M1))
and y*¥(2(T)) = 2(s) (cf. 37, §8, Prop. 8.2) it is

enough, to show

T | Ul - »(T) € Ke($,) + Im (3*).

Uegm

But this follows easilv from Theorem 3.1 and

Lemma 3.,1: I{ U 1is an open subgroup of G, then one has

A
a canonical equivalence between the category G /(G/U) of
A
G-sets over G/U and U , which associates to any

® : S = G/U the fiber w-1(U) over U & G/U, considered

as a U-set., Especially any Mackey-functor T on GA,

restricted to G-sets over G/U, defines a Mackey-functor
A *
ﬂlU on U, thus :‘U\- MG/U) « Ke(wp,) + Im(op ) for any

map ¢ : S = G/U.
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Proof: cl. ['}], § 9, Lemma 9.4 .
One just has to observe, that the map

é . = i
: TxS = T = U%Em G/U is the sum of maps

-1
by sz\U = & (G/U) » G/U

(U € Em) and that (using (M 2))

Ke(d,) = UG%W Ke(@U*),
¥* x
Im(d ) = Ueggm Im(@U ) e

The proof of Theorem 2.1 can be gemeralized to yield the

following result:

Theorem 3.4: Let & : MXT - @ be an outer composition.

Let 9 : S T, ¥ : Y > T be two waps in c". & induces
a bilinear map:

m(T) X H (9,9) » H' (¢,9)
which vanishes on

y*(m(Y)) xKe (H*(¥)), 1> O.
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Of course there are a lot of corollaries, which I do not want
to state here in detail. A morethoarough treatment of the re-
lations between cohomology, Mackey-functors and Hecke-rings

might be given in another paper.

I just want to remark, that Theorem 3.2. follows from
Theorem 3.4 with T =0Q, " = @, using the natural action of 0
on any  Mackey-functor. . and Theorem 3.1' for m = ). The saue
way Theorem 3.1" can be used, to prove:

Theorem 3.2": With the notations and assumptions of Theorewm3.1"

one has

|G Hi(S,N) =0 (ia2 1).

: Gsln.
This will turn out to be sowe kind of generalization of

Theorem 2.2.

Finally I want to state one rather special case of the
general transfer-theorem for Mackey- or G-functors, proved
by J.A. Green in [4] (§4.2, Thm 2, p.26 together with

Remark 1 at the bottom of p.27):

Theorem 3.5: Let G be a finite group, D = Gp a p-Sylow-

subgroup, H = NG(D) and (| a family of subgroups of D,

which contains the set {Dr\Dg!g € G - H}.
Let m be a Mackey-algebra with all defect-groups being

p-groups. Consider m(G/H,1) = T KG(m(G/U))
Ucu

with K; the canonical map: G/U 5 G/H: gU -» g (U < D < H!).
Then the map Y G G/H » % induces umultiplicative isomworphisms,

which are respectively inverse to each other:
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¥ ¢ m(G/H) / m(G/H,u) ——9>m(*)/1m(u)

v © mOk) / I(n) —> m(G/H)/m(G/H, 1)

Remark: (1) One has similar isomorphiswms for any Mackey-

functor 9, on which " acts unitary.

(2) Green's paper contains much moare sophisticated

results in case D € H €« G are arbitrary subgroups and M

an arbitrary Mackey-functor.

', Now let K be a field and let E be a finite

or infinite algebraic Galoisextension of K with Galois-group G.
Define A(K,E) to be the category of K-algebras R, such
that E ® R 1is a product of a finite number of copies of E,
i.c. R Kis a product of finite number of finite subextensions
L/K of E/K.

A(K,E) is anti-equivalent to GA, this anti-equivalemnce
being given by S » RS the set ( = K—algebra) of G-equivariant

maps f:S5 o E, resp. R » SR the setd K-algebra-homomorphiswms
R » E, (which Lecomes a G-set using the action of G on E),

in the opposite direction and obvious definitions for morphisms

(composition!). Moreover a pull back-diagraumm S, X S, o ¢

1T 72 52
T

nE—

1 —_—

corresponds to a tensorproduct-diagramm:

>
4

B A<— A R

So

n—>

-

RS‘Q—— R T
1

—2®



and the transitive G-sets correspond to field-extensions

(G/U with the fixed field EU)

Finally any ¢ : R 5 A in A(XK,E) makes A to a

separabel R-algebra, thus the trace: t A S5 R is a

A/R®
regular map (cf §2 and (12?. Let @g* be the induced map

t* : W(A) » W(R). If g corresponds ¢g: S, - S

we write
A

R’
also @y for qg,: W(R) - W(A) and o* for g*. Also if

R corresponds to S(S = S we write W(S) for W(R).

1})’
With this definitions the first part of §2 dimplies:

Theorem 4.1: The "Witt-functor" W: 6" & gp : S m W(Rg) = W(S),

w*
(p: S = T) » (p*,0y) : W(S) 2= W(T)
Px

is a Mackey-functor with an inner comwposition (the wultiplica-
tion in the Wittring), such that W(S) becomes a commutative
ring with 14 ¢ W(S) and @*(1T) = 1y for any o : S o5 T

A

in G, i.e. W 1is a commutative and associative Mackey-algebra.

The rest of this paper is just a collection of corollaries
to Theorem 4.1:

At first, W Dbeing a Mackey-algebra, one gets a canonical
ring-homomorphism: (Q(G) » W(K), which turns out to be just

the Scharlau-map, studied in (13].

Leuma 2.5 implies, that the defect-basis @w contains
exactly all pro-2-subgroups of G, thus is "generated" by
the pro-2-8Sylow-subgroup of G. Therefore we can omit to
state corollaries of Theorew 3.1, 3.1°" and 3.2 and rather

apply directly Theorew 3.,1":
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Let E/K be finite and let L1"'Ln be a family
of subextensions of E.
Then one has:

(55 10,0 W) & 0 Ke(W(E) » (L)) + T ot (W(L,))

1
with (E : K)2 the maximal power of 2, dividing (E : K),
and P Li + K the trace (i = 1,...,n).

For n = 1 this is just the result, promised in the proof of

Theorem 2.2.

Of course the applications of Theorem 3.2." are already
contained in Theorem 2.2.

Theorem 3.5 iwplies:
Let E/K be finite, let L/K be a waximal subextension of
odd degree and F/K a miniwal subextension in L/K such
that L/F is normal (i.e. the fixfield of all K-automorphisums
of L). Let Lyseessl be a family of subextensions of E/K
with L ¢ Li’ which contains the composition L +LE® for any

g € G = Gal (E/K) with L% ¢ L.

Let Pyt Li -» F, o; ¢ L.l -+ K, g : F 5 K DbLe the trace respect-
ively (i = 1,...,1). Then the embedding: W(K) - W(F) defines

an isoworphisu:

W(K)/ g o (W(Li)) - W(F)/ g pi(W(Li)), whose inverse is in-
1 1
n 11
duced by g*: W(F)/ § p*(W(L,)) » W(K)/ T o%(W(L,)).
1 1
As pointed out by Green in [h], §5.3, p.37 D.L. Johnson's

transfer theorem for cohomology of finite groups (see.f1h1)

follows the sawe way from Theorem 3.5.
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Finally I want to rewmark, that the result of Leicht-Lorenz,
concerning the priwe ideals of W(K) (see [15]), can be

used to determine the defect base of & D&] ® W (in case this
is nonzero, i.e. K forwally real). If E ?s an algebraic
closure of K and G = Gal (E/K) the full Galoisgroup

of KX, then contains exactly the subgroups of

D
ZPQ%] ® W
order 2 1in G and of course the trivial subgroup.
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A relation between Burnside- and Wittrings.

Ernst Witt zum 60. Geburtstag

1. Introduction
2. The Burnsidering of a profinite group
3. The Wittring as surjective image of the Burnsidering

4, Zz~monomial permutation-representations.

1. The arithmetic structure of the Wittring has been studied in a considerable
number of recent papers (c. [21, [31, (4], (51, (6], 171). It turns out

to be rather simple:

A) The only torsion is Z-forsion

B) The torsiongroup is either the radical and the nilradical
(Wittring of a formally real field) or the whole ring.

C) The factorring with respect to any prime ideal is either Z or a
primefield of finite characteristic.

The proofs have been simplified more and more and the point of this note

is not, to offer still another proof for these facts.

Instead | want to study certain analogies between the Wittring and the
Burnsidering of a finite group G, as sonsidered in (9], [10], [11],
which appeared to me quite surprising, when | first heard about the
results of Leicht~Lorenz concerning primeideals in the Wittring and
compared this with the results in [11]. In this note | want to give an

exp lanation for these analogies and thereby try to offer a new systematic
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viewpoint, to look at some of the results and methods concerning Wittrings

(see also [14], which contains a further development of this aspect)

More precisely let K be a commutative field with char K # 2, Following
Scharlau (cf. [6]) one has for any finite separable extension L over K a nonde-
generate quadratic form L = (L,t) over K, where the underlying K-space

is just L as K-vectorspace and the quadratic form

t : L~ K is given by: x> Trace (xz).

L/K

This note elaborates on the following simple fact: let L L, be two

17 72

finite separable extensions over K; then the tensorproduct L1 Q L2 of

the two quadratic forms L] and L2 can be computed by fiF;+ Sp}iTTing
up the semisimple K—algég:a L1 %722 into a product ("sum" in the
traditional terminology!) of finite separable extensions (the components

) ® ~ N . n
of L1 §>L2)° L1 7 L2 ig1 Ei' and then taking the orthogonal sum ié1El

of the corresponding quadratic forms Ei(i =1, ...,n).

This fact can be expressed easily in terms of Grothendieckring-
constructions: Let Q(K) be the Grothendieckring of finite, commutative,
semisimple and separable K-algebras (with direct product ("sum") as sum
and %’ as product) and W(K) the Wittring of K. Then the construction of

Scharlau defines a ringhomomorphism Q(K)> W(K): Lk L

In § 2 9(K) is determined in ferms of the Galoisgroup G of K and
especially its primeideals are computed.

In § 3 the "Scharlau"-map: Sc: Q(K) »~ W(K) : L~ L is considered.

It is easily seen to be surjective and thus to define an injective

map Spec (W(K)) - Spec (9(K)), which casts new light upon the results

of Leicht-Lorenz on Spec (W(K)).
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§ 4 finally contains an extension of the above method, which is adapted
in an even better way to the special structure of Wittrings and especially

allows a systematic treatment of some ideas of Scharlau.

2. tet G be a profinite group (definition cf.81). A G-set S is a
finite set (with discrete topology!), on which G acts contindously by
permutations from the left. G-sets form a category G™ with finite
projective and injective limits, especially with sum (disjoint union)

”S] + 82” and product (cartesian product with diagonal G-action)

”81 X SZ". Because S x (S1 + SZ) T (S x 81) + (S X SZ) the isomorphism-
classes of G-sets form a commutative "half-ring" ©°(G) with "+" as sum
and "x" as product. Let Q(G) be the corresponding Grothendieckring, the

"Burnsidering" of G.

The additive structure of Q(G) is as easily determined as in the case
of a finite G, We state without proof:
Proposition 2.1: a) If 81, SZ’ S are G-sets with S1 + § ¥ 52 + S, then

S1 = 52, i.e. the canonical map 2'(6) ~ 2(G) s injective.

b) Q(G) is a free 2Z-module with basis the isomorphism—classes of

transitive G-sets.

For any closed subgroup U g G we can define a homomorphism

U|, the number of U~invariant

oy 2(G) - Z , which maps a G-set S onto IS
elements in S.
We have:

Theorem 2.1: Any homomorphism ¢ : @(G) -+ R into some integral domain

R factors through some e

Corrollary 2.1: For any primeideal pg Q(G) there exists some closed

subgroup U < G and some characteristic p (a prime number or 0) with

p=p (U,p) ={x e Q(G)|@U(x)5 o(p)}.
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| posfﬁone the proof to the end of this section and rather state some

more results.

Corollary 2.1 leads to the question for necessary and sufficient
conditions for the equality p(U,p) = p(V,p) (U and V closed subgroups

in G). Let us therefore define:

Definition 2.1: For two closed subgroups U, V ¢ G and a characteristic p

we write ULV, if and only if p (U,p) = p(V,p).
Then we have:
Theorem 2.2: a) U 2V if and only if U and V are conjugate in G,

{p)

b)Y For p # o write U for the intersection of all open normal subgroups

2
&

g
N of U(short: N @ U} with index a power of p. Then U E V. if and only

(p) inG.

if U(p) is conjugate to V

For the next statement let us consider the set S(G) of all closed subgroups
g

of G. for any pair of open subgroups (N,U) with N & G, N € U let us define

Oyu=1ve S(GY| V + N = U}. Then S(G) can be considered as a topological

)
space with the ON y S @s @ subbasis of open sets. One has

’

Lemma 2.1: S8(G) is a compact, totally disconnected Hausdorfspace.
The set of open subgroups is dense in S(G). G acts conTiﬁ%usly on S(G)
by conjugation. Thus the orbitspace G\S(G) = SC(G) of conjugacy-classes

of closed subgroups is as well a compact, ToTalfy disconnected Hausdorf-

space.

Theorem 2.3: a) There is a natural homeomorphism between Spec (§ ® Q(G))
(with the Zariski-topology) and SC(G). Moreover @ & Q(G) s isomorphic

to the ring of continuous(i.e. locally constant) functions from SC(G)

into Q.
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b) Spec Q(G) is naturally homeomorphic to the quotient space of
S(G) x Spec Z with respect to the following equivalence-relation:

(U,p) ~(V,q) <= p = g and uLt v (pyq a primenumber or O; U, V e S(G))

All these results are simple generalizations of the corresponding facts
for finite groups, as will be shown at the end of this section. Right

now | want to give a field-theoretic interpretation in case G is the
Galoisgroup of some (finite or infinite) algebraic, separable, Galois-
fieldextension E/K. In this case the category G? of G-sets is wellknown
to be’anfi-equivalenf to the category A(K,E) of (finite, commutative,
semisimple, separable) K-Algebras A with A % E isomorphic to a direct
product of a finite number of copies of E. This antiequivalence is

given by S k> HomG(S,E), the set of G-equivariant maps from the G-set

S into E with an obvious K-algebra-structure, -respectively: A+ Hom (A,E),

K
the set of K-algebra-homomorphisms from A into E with the G~action induced

from the action of G on E.

Moreover transitive G-sets and simple algebras (i.e. fields) correspond
to each other with respect to this anti-equivalence.

= All these facts are just simple Galoistheory.

Thus Q(G) can as well be interpreted as the Grothendieckring Q(K,E)

of A(K,E) with the sum given by the direct product and the product given

by ﬁ} For any extension L with K &£ L &E there exists a ring-
homomorphism I Q(K,E) » 2, which maps A onto the number of components,
isomorphic to L, in L % A. Theorem 2.1 reads now: "Any homomorphism

Q(K,E) into an integral domain factors through some ¢L” and Theorem 2.2:
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" a) if and only if L and M are isomorphic K-extensions

LT O
b) 9. = 9y (p) if and only if the maximal normal p-extensions of
L and M in E are isomorphic K-extensions". If E s a
separabje closure of K, we wrifte simply Q(K) instead of Q(K,E).

By Proposition 2.1 and the above remarks the isomorphismclasses of finite

separable field extensions of K represent a free Z-basis of Q(K).

Now to the proofs: For finite G everything is wellknown (cf. [9] and [111).
For the extension to profinite G one just has to check, that everything
behaves well with respect to projective (resp. injective) l|imits.
Introducing notations does not take much less time then recalling

definitions as well: So let us recall:

Limits: A filftered indexset I is a partially ordered set with the property:
for any a, B €I thereexist y eI with vy € a,y < 8. For any category
K a projectively (resp. injectively) filtered system of K-objects

(e.g. sets, groups, rings) is a covariant (resp. contravariant) functor
F:I—K: froma filtered indexset I into K, where I is made into a
category in the obvious way: the objects are the elements in I and one

has exactly one map froma to R , if a g B, otherwise none (composition

of maps is uniquely determined in this case and obvious).

A projective |imit of a projectively filtered system F of K-objects
is an object X € K together with maps My X - Fa(a € I}, such that the

F

o)

friangel X

l QG,B commutes for all a, B €I with o < B(chL’8

=
N

the map from Fa to F8 defined by the functor F) and such that for any

Fg
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other system (Y, va)a c with the same properties there exists exactly

1
Y\<:
o
onemap § : Y > X with al ™y Fa commutative for any o€l .
A
X’ma
The system (X,uu) = Lﬁn F is then welidefined up to isomorphism by F.

One has analogous definitions for the injective limit Lﬂg F of an

injectively filtered system F.

Of course all this could have been defined for arbitrary categories
instead of I. But we need filtered indexsets anyway for most of the
following results. E.g. we need the following fundamental lemma, which is
an easy consequence of the fact, that arbitrary products of compact spaces

are compact:

Lemma 2.2: Let F be a projectively filtered system of compact spaces.

Then Jim F exists in any full category of topological spaces, containing

i
the compact spaces, Is compact itsself and is nonempty if and only if

Fu + g for all a e I.

We have further:
Lemma 2.3: a) In the category of profinite groups (or any larger category
of fopological groups)There exists the projective limit for any filtered

system of profinite groups and is itsself a profinite group.

b) Any profinite group can be represented as the projective limit of a

projectively filtered system F of finite groups. This can be done even in
g

a canonical way: take 1 = {N|N a G}, FN = G/N, NIVEE G/N = G/M  +the

canonical map for N & M,
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Closed subgroups: Now let F be a projectively filtered system of profinite

groups with indexset I, with G = le F and maps My ¢ G~ Fa . For any
closed subgroup U of G consider the system F|U Paw ua(U) = Ua,
de|Ua Uy ™ UB (ayB € I, a < B). The maps ua|U U U define a map
U=~ Aim FIU’ which is easily seen to be an isomorphism (using again the
filtration of I). On the other hand any subsystem F' of F with

\ 1 - ! i
F o S Fa (o € I) and wu,B(F a) = F 8 (o, € I, a < B) defines a subgroup

U= |im F' of G. Thus we have:

(1) S(G) = lim S(F), where S(F) s considered as a projectively filtered

system of sets S(Fa) (o € I) with maps

] : S(Fa) - S(FB) : U ¢« F — g9

o o} (UO.) <F

o,8 o,B B’

These maps are easily seen 1o be continuous in the topology of S(Fa)’
resp. S(FB) considered in Lemma 1, thus the above equality defines a
continuouys 1-1-map from  S(G) onto [im S(F). This can be used at first
to topologize S(G) by representing G in the canonical way as a projective
[imit of finite groups. This gives exactly the topology, considered in
Lemma 1. But S(Fa) is for finite Fa a finite (dicrete, compact)
Hausdorfspace. Thus S(G) 1is - as a limit of discret compact Hausdorf-
spaces - a compact, totally disconnected Hausdorfspace. But now (1) even
gives a homeomorphism of topological spaces, because a continous 1-1 map
from one compact space to another one necessarily is a homeomorphism. The
rest of Lemma 2.1 ist trivial. But we need

(2) SC(G) = Lim SC(F)

as topological spaces, whenever G = Aim F. Of course there is a natural
continuousmap from SC(G) info lim SC(F), induced from the maps

My ° G~ Fa . So we have to prove, that this map is 1-1 and onto.

So |let U,V £ G be closed subgroups, such that Ua ' (U) is conjugate
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to Va = ua(V) in Fa for all o € I. Consider the projectively
filtered system (U,V)a = {x € Fa|x Ua ><_1 = Va} of closed subsets of
Fa. We have (U,V)a + P for any a € I by our assumption. Thus by

Lemma 2.2 there exists g e |im (U,V) € G and obviously g U 9_1 =V,
— o

This proves, that the natural map $ (G) -+ |im S (F) is 1-1.
C — C

Now consider an element u € |im S (F) with images u_ in S (F ) (a e I).
«— C ] C a
Consider Uy @S closed subset (orbit) in S(Fa). Thus am Uy € S(Fa)
defines a projectively filtered subsystem of nonmepty compact subsets of
S(F ). By Lemma 2.2 there exists U € |im u_ < S(G) and obviously U
o & o}
represents an element in Sc(G)’ which maps onto wu e lim Sc(Fa)

(cf. [8), p. 1-4, proof of Proposition 3).

Homomorphisms into finite groups: Again let G be the projective limit

of a projectively filtered system F of profinite groups with indexset I
and let H be a finite group. The maps LI G - Fa(a € 1) induce maps
Hom(Fa,H) -+ Hom(G,H) between the sets of continuoushomomorphisms into H,

which are compatibel with the maps: Hom(FB,H) - Hom(Fa,H) (a,B € I,a < B),

induced by the ?y 8! FOl - FB’ and thus define a map Lig Hom(F ,H) =+ Hom(G,H).

Lemma 2.4: The natural map Llﬂ Hom(F,H) - Hom(G,H) is an isomorphism.

Proof: a) Surjectivity: Let ¢ : G > H be a contim®us homomorphism.
Then N = Ke ¢ S G. Because I is filtered, the set

{u -

. (NG)I ael, N ] F,} 15 a basis of neighbourhoods of 1 € G, thus

there exists o € I and N $F with u _1(N ) € N. Consider H = F /N_.
a a a a a a’ o

For any B e€ I with B < a there exists a natural map FB - Ha {(composition

of QBG and the natural map Fa - FG/NG) with image HB and there exists
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as well a natural map G ~» H,, with image, say H_. Using Lemma 2.2 one

H = 7 N H.. But because H, s finite and I is filtered, this

gets o 6 <alg

implies the exlstence of B e I, B < a with Ho = HB' Because
-1

o (Na) = Ke(G » Ha) €N themap ¢ : G+ H factors into the map G ~» Ho

and some map Hd—a H. Thus we have a commutative diagramm:
> H
% 1

)
B B

LY
7

nme—o
T &«— T

and get ¢ € Im(Hom(F_,H) » Hom(G,H)).

B

b) Injectivity: We have to show, that for two indices a,B € I and maps

o, FOl + H, TB : F8 + H with O My = TB”B

yeI, y<a, Bwith 9y wY, 0 - TB wY’B : FY + H. Because 1 is filtered

we may assume o = B, |f Wy o G » FOl is surjective (as in the case of

:G > H there exists

the canonical representation of G as timit of finite groups), we get

9, = Ty immediately. In general consider the system

YB ={x € FB' ¢8, uoa(x) 3 ¢8, ot (x)}(B e I, B< a). We have to show
Y8 = @ for some g. But because H is finite, the complement of YB in
F8 is an open subgroup of FB’ thus Y8 is compact. I|f Y8 + @ for all

B < a, Lemma 2.1 would imply : @ # Jimyc G = limF, the limit faken for
the cofinal indexset {B € I| B < a}, and for any g e Jim ¥ one would

have I, “a(g) $ T, “a(g)’ contradiction !

Now we come back to the rings Q(G). If ¢ : G+ H 1is a continuous
homomorphism of profinite groups, restriction of the action of H on an
A

H-set S to G via ¢ defines a functor ¢A : HY > G" which commutes with

sums and products and thus defines a ringhomomorphism Q(H) — Q(G).
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Now assume G = JlﬂL F as above. The maps H, G~ Fa define maps:
Q(FG) + Q(G), which are compatible with the maps Q(FB) - Q(Fa) induced

by the maps ¢ FOl > FB’ and thus define a map: |im Q(F) - Q(G).

a’g :

We have a corollary to Lemma Z2.4:

Lemma 2.5: The natural map lim} Q(F) » Q(G) is an isomorphism.

Proof: a) Surjectivity: A G-set S <can be described as a finite set

S together with a homomorphism ¢ :G I the full group of permutations

S’

of S. By Lemma 2.4 there exists a € I and 9, FOl > HS with ¢ = 0y Moo
thus there is a F -set S with S |. =5, g.e.d.

o o a'G
b) Injectivity: Because of Proposition 2.1 it is enough to show, that for
any two indices a and B, an Fa-seT SOl and an FB—seT TB with Sale TB
there exists vy € I with vy € o, B and SOL|FY z TB | FY. Using the
jsomorphism SOl | g 2 TB I g We may identify the sets Sa and TB in
such a way, that S_ l s = g | 5. Thus we get maps o : F_ > HSu = HTB
and TB : FB - HS = HS with o wu = TB uB.

The existence of vy now follows from Lemma 2.4,

Remark: Using the fact, that any continuoushomomorphism of a profinite
group into a topological group without small subgroups factors through a
finite group, and that GL(n,R) or GL(n,C) has no small subgroups, one
gets the same way for the rings X(G,R) or X(G,C) of reell or complex

characters: G = Jim F=3X(G,R) = lim X(F,R), X(G,C) = lim X(F,0).

After all these (essentially wellknown and mostly trivial) preparations

I come now to the proof of Theorem 2.1:

G
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Represent G as |imit of finite groups: G = lim F. Then we have

QB) = Lﬂg Q(F) and thus Hom(Q(G),R) = lim Hom(Q(F),R) for any ring R.

Now assume R to be an integral domain and take some ¢ : Q(G) -~ R.

Because Hom(Q(G),R) = éig Hom(Q(F),R) +the map ¢ is determined by

its components Oy ° Q(Fa) + R. Because Theorem 1 is true for finite
groups, the set xa ={U < FOl [ 9 factors through ¢U} is nonempty.

Moreover the Xa(a € I) form in a natural way a projectively filtered
system of subsets of S(Fa) and are finite, thus compact. Lemma 2.1

implies @ % lim X < lim S(F) = S(G). Take a closed subgroup U e Lim Xa.

«— Q €

Because any ¢ factors through —Q(F ) + Q(G) %, 27, so does 9 , g.e.d.

Proof of Theorem 2.2: Again we represent G as |limit of finite

groups: G = lim F.

a) Obviously conjugate subgroups define the same ringhomomorphism:
Q(G) -~ Z. On the other hand assume @(U,0) = ¢(V,0) for two closed subgroups

U,v ¢ G. Write U for u (U)y < F , V for uw_ (V) ¢ F .
a o o a o a

The assumption implies w(Ua,O) = w(Va,O) and thus "Ua conjugate to

Va in Fa"’ because everything is true for Fa' But by formula (2)

above this implies: U conjugate to V in G; g.e.d.

b) At first I want to show: For U a closed subgroup of G and

)

U =u (W) <F onehas U P = WPy and thus 0P = fim U
o o a a o

On the one hand Ua(p)

Thus ua_1 <ua(p)

is a normal subgroup of UOl with p-power-index.
) A U is a normal subgroup of U with p-power index and

contains therefore U(p), which implies ua<éP))g_Ua(p). On the other

hand pa(U(p)) = ua(U(p) Ke(u#)) and U(p) - Ke ual is an open subgroup
U U

of U containing U(p) and thus one of p-power-index. Thus (U(p))

a
s normal and has p-power-index in Ua and therefore contains U (pF.
o
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Now assume p(U,p) = p(V,p) for ftwo closed subgroups U and V in G
and some p. With Ua = ua(U) and Va = “a(V) this implies

_ . (p) . (p) .
p(Ua,p) = p(Va,p) in Q(Fa) and thus Ua conjugate to VOl in
Fa (see [10] § 5, Thm 5.1 (b) for finite Fa)‘ Again this implies the

(p) (p)

conjugacy of U(p) = Jim Ua(p) and V a

[im V inG.

On the other hand it is easy to see, that the conjugacy of U(p) and V(p)

in G implies pU,p) = p(V,p), because for any G-set S there exists
an N 9G, which acts trivial on S, and thus we have

wU(S) = QU_N(S) z ¢U(p),N(S) = CPV(pZN(S)E @V_N(S) = (S) mod p.

Py

Proof of Theorem 2.3: a) With G = |im F and finite F (o € I)
e a
we have Spec 0 @ Q(G) = Spec |im © QF) = Aimr(Spec QR a(fF)) =

lim S (F) = S (G) with natura! homeomorphisms and we have as well:
¢~ C C

0 ® Q6 = 1im Q@ @ 2(F) = [im, [Spec @ ® Q(F),0]

= lim [S(F),0] = [lim S_(F), o] - [S_(®, €],
where the second-last equality can be proved analogously to Lemma 2.4.

b) Of course (U,p) == p(U,p) defines a continuous map

S(G) x Spec Z — Spec Q(G), which is surjective by Corollary 2.1 and
factors into a surjective and injective map through the quotientspace
described in Theorem 2.3, b) by Theorem 2.2, Thus we get a continuous

1-1map from this quoTienTséace onto the space Spec Q{(G)., To show, that

this map is a homeomorphism, one has to prove, that

t : S(G) x Spec Z +~ Spec Q(G) : (U,p)—= p(U,p) is identifying, i.e.

that for P, € O < Spec Q(G) and T_1(0) = {(U,p) e S(G) x Spec Z|p(U,p) e O}
open one can find an element x e Q(G) with x & Py and

{q € Spec Q(G) | x ¢ g} £ @. This is a little bit tiring and may wery well

be skipped. At first one may observe, that for any (U,p) ¢ T_1(0) one has
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pJ,p) $ Po (otherwise - since definitely p(U,p) # Po =P = 0 and

. ~ -1 . -1
pU,p) = P with p, = char Q(G)/po, thus (U,p) et (0  (U,0) e t (O,
a contradiction). Thus one can find an element Xy 0)

X(U,p) e pU,p), X(U,p) ¢ Py Moreover one can find an open normal

e Q(G) with

subgroup N G with Xy o) e Q(G/N) € Q(G). Thus for any fixed p the

set {V e S(G)]| oy () p)) = 0 (p)} is open in S(G). Since moreover

{U e S(G) | ptU,p) ¢ O is compact, we can find finitely many U ,...,U

1 n
O(p)}.

i

n
with  {U e S(G) | pU,p) ¢ 8} \J{V e S| 9y (X )
=1 i,P)

’

n
fhus with ><p ) ig1 ><(Ui,p) we have at least an element in Q(G) with

xo € P, bUT x_ & pU,p) for all (U,p) ¢ e,

Now assume Py = p(V,q) for some (V,q) e S(G) x Spec Z and take an open

and closed subset X €S(G) with Ve X ={UeS® | (U0 et (@]

Since Xo is open, one may even assume Xs € pU,o0) for all U e S(G), U ¢ XO

Since Xo is closed, thus compact and totally disconnected, we may

¥ 0 AX the ring of all continuous
o o}

maps XO—~+ Z, Thus the open set (Xo x Spec #) n T_1(9) is given by an

ideal a S.AX in the form a & p&=p ¢ (Xo x Spec Z) n T_1(©). Since

o

Xo X 0% T_1(0) we have finite residue-class-characteristic for any

identify Xo x Spez Z with Spec A

p=a. But this implies n e a for some n e€iN, i.e. there are only a

finite number of primes, say PiseeesP, with (U,pi) ¢ T_1(0) for some

r
UeX_. Nowwith x = x_ - I

o o) i=1

(There should be a more simpie proof, but unfortunately I couldn't find

Xp. one may verify the above statements.
i

any better proof during a 6 hours faculty meeting).
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To close this section, let us state some more corollaries:

AT first one has as in [11] for the case of finite groups:

Corollary 2.2: Spec Q(G) is connected, if and only if G is prosolvable.

Proof: For any N 36 the epimorphism G—-G/N defines a monomorphism

Q(G/N) » Q(G), which we use to identify Q(G/N) with a subring of  Q(G).

Vv

Because G = Jim G/N (N open normal in G) we have: Q(G) = N3

cH(G/N).
Thus: Spec Q(G) connected ¢=3 the oniy idempotents in Q(G) are o and
g

1¢---»>the only idempotents in Q(G/N) are O and 1 for all N @ G&=>G/N

is solvable for all N 3 G&= G is prosolvable.

Corrollary 2.3: For a prime p we have: a) G is p-free (i.e.

(p, (G:N)) = 1 for all N & G&= Spec %,(6) - S_(G) x Spec Z, & =30, (6)

is the ring of continuous (i.e. locally constant) maps from SC(G) into Zp.
. _ (N ) )

With 2, = {5 e@| (mp)=13}0a(6) =2 ®a®).

b) G is a pro-p-group«—=n{G) contains exactly one primeideal with residue

class characteristic p.

Proof: Again take the canonical representation of G as |imit of its finite

quotients and use the validity of Corollary 2.3 for finite groups.

Corollary 2.4: Let G be a pro-p-group and R be a factorring of Q(G).

Then the following statements are equivalent:
(1) Any torsion in R is p-torsion
(i) The residueclassfield-characteristic for a minimal prime ideal

is either p or O.
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Under these conditions we have further the following alternatives for R:
I|f there exists a minimal prime ideal p with residuecliass-characteristic
p, then p is the only primeideal in R (and of course R itsself is a
p-torsion group). |f there exists a minimal primeideal p with residue-
class characteristic o, then all minimal primeideals have residueclass
characteristic O and their intersection (the nilradical) is as well

the radical and the torsionsubgroup of R.

Proof: Again we may assume G to be a finite p-group. Let g be a prime # p
and Zq = f% € 0 | (myg) = 1}. Then we have: There is no g-torsion
in Ré—>there is no g-torsion in Rq = Zq ® R@aa[?q is (as a factorring

of Zq ® QG) = Zqisomorphic to a product of a finite rnumber of

I
S (6)
copies of ngﬁq No primeideal in R (or Rq) with residueclass characteristic

q Is minimal.

Moreover Q(G) has exactly one primeideal p with char Q(G)/p = p,

which contains all primeideals p(U,0) (U ¢ G) with residuectlass
characteristic O. Thus R has at most one primeideal p with char R/p = p
and if this exists and is minimal, R cannot contain any

primeideal with residueclass-characteristic 0, and because of (ii) no
other primeideal at all. The rest follows easily from the next

Corollary, which of course is true for factorrings of any inductive limit of

rings @, which are finite over 272 and with O & 0 semisimple:

Corol lary 2.5: For any factorring R of Q(G) (G arbitrary profinite)

we have:
Radical R = Nilradical R< Tor R with equality if and only if any

minimal primeideal in R has residue-classcharacteristic O.
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I omit the purely ringtheoretic and easy proof.

Finally let U be an open subgroup of G. Then one has a canonical

additive map iﬁ c = % Q(U) > Q(G), defined on the Z2Z-basis of transitive
U-sets by i*(U/V) = G/V. If G is the Galoisgroup of an algebraic

Galoisextension E/K and L = EU the fixfield of U, then

i%:Q(U) = Q(L,E) » Q(G) = Q(K,E) can be defined by considering

L-algebras as K-algebras.

i%(Q(U)) is easily seen to be an ideal in Q(G). We want to give
necessary and sufficient conditions for a primeideal p(W,p) < Q(G) +to
contain i*(Q(U)). For this purpose consider once more W(p) =MNN,

where N runs through all N W with WN a p-group, and
(p) (p)

NgHPTy 2 W I N y/WP) take a p-Sylowsubgroup (which may

contain W/w(p), if one likes) and let W(p) be its preimage in
(p)

NG(W ).

Then we have:

Corollary 2.6: iU C p(W,p)¢:r?w(p) is not conjugate to a sub-

group of U inG L £ U). In other words:
(1) iMUNC pW,0)e== W & U,

(1) 1% + pW,p) = Gl esW, . s U (p+0).

(p)

Proof: ¢— : W(p) £ U implies (G/UV) =0 andas well g, (G/V) =0

(p) (p)

. (p)
for V gU, thus i*(Q(U)) ¢ Py 0 € pH ) p) = pii P’ o) = pw,p).

Py

=>: At first represent G as limit of finite groups: G =<_Un F

with surjective maps g, G > FOl . With arguments based on Lemma 2.2

(as above) one can show, that in any F one can choose W ,
a a’(p),
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related to wa = pa(W) € F in the same way as W(p) to W ¢ G (preimage

in No (W P)) of a p-Sylowsubgroup in N (i ‘PVysm Py,
Fa o Fa o o

such that Oy g ° F > F_ maps W in W ) W

8o~y o, (p) g, (p), e Mp o, (p)

and W = lim W
“— a

) e Wy =L oy

,(p), p) a a,(p))' Now assume W 5 <\,

thus w.l.0.g. y € U.

w(p
Because U is open in G, i.e. G-U is compact, and G-U& G—W(p)

cUg - v ! ) there exists o with pu_ (W
o] a o

C
2. (p) S U,

a,(p)

But (see [10], p.35 - 41)

=1
cpw(G/uOl (W (

- . . %
o, p)>> = wwa <Fa/wa,(p)) £0 (p), i.e. i*QWU)) ¢ pWW,p).

3. Now let K be a field with char K % 2 and let W(K) be the
Wittring of K (for definition see [31). Any finite separable extension L
over K defines an element L e W(K) as described in the introduction.
Because the isomorphism classes of finite separable extentions form a free

2-basis of Q(K) this gives an additive map Sc: Q(K) » W(K).

Theorem 3.1: a) Sc is a ringhomomorphism
b) Sc is surjective. More precisely: Let K2 = K(vala e K) be the minimal

fieldextension of K, which contains square roots of all elements a e K.

Then Q(K,K.) € Q(K) and Sc, restricted to 9(K,K

s )y, is al$§ready surjective.

2

For the proof let us first recall some properties of the trace-map:

Lemma 3.1: lLet R be a commutative ring with 1 € R and let P be a

finitely generated, projective (f.g.p.) R-module. Then the inverse of

the natural isomorphism: HomR(P,R) ® P > EndR(P):
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s ® x> (yw s(yfx) (s € HomR(P,R) = P', x, vy e P) composed with the
evaluation map: ev: P'@P > R: s@®xw s(x) (s eP', xeP), defines

R = .
the trace map TP = TP : EndR(P) -+ R.

This map has the following properties:
() TP(dB) = TP(BG) (a,,B € EndR(P))

(i) (a ® B) = Tp(a) t.(8) with P and Q f.g.p.

.t.
P®Q Q
R-modules, o € EndR(P), B e EndR(Q).

(rimIf p : R>A is a ringhomomorphism into a ring A and P,

T _ R
a as above, then TT 8 P(IdT ®a) = p TP(G).

Lemma 3.2: Let R be a commutative ring with 1 € R "and A
a commutative R-algebra, which is f.g.p. as R-module, then the
imbedding A > EndR(A), defined by multiplication ar (x+> ax) (a,x € A),

composed with T, : EndR(A) -+ R defines the trace A -+ R, which

A A/R ¢

has the following properties (see e.g. [13]):

(1) A is a separabel R-algebra if and only if t' : A » A' = HomR(A,R)

defined by x> (yw— % (xy)) (x,y ¢ A), s an isomorphism, i.e.

A/R
(x,y) v TA/R(xy) defines a nondegenerate R-bilinear form on A with
discriminant a unit in R.

(ii) Let M be f.g.p. A-module and o € EndA(M), then M can be
considered as f.g.p. R-Module and a € EndR(M) and we have

TS(a) = TA/R(TQ(a)), especially if B is a commutative A-algebra, f.g.p.
as A-Module, then t

- 1 : B>R.

8/R =~ Ta/R

(iii) If A and B are two commutative R-algebras, f.g.p. as R-modules,

then TA ® B/R(a & b) = ‘I‘A/R(a) TB/R(b)‘
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Lemma 3.2, (iil) of course immediately implies Theorem 3.1, a.
To proof the second part, it is enough to show:

<a> e SC(Q(K,KZ)) for any a e K* with <a> the bilinear form
Kx KK : (X,y)—a * x + vy.

But (1> = K = 5¢c(1) ¢ SC(Q(K,KZ)) and for a e K* not a square we have
K(¥a) = <2> 1 <(2a> (orthogonal sum). Now either 2 is a square and
thus  K(/a) = <1> 1L {a) and <a) = K(/a) - K e Sca(K,K,)) or
2 is not a square and then K(/2) = <2) L 4> = (2> 1 (1),

(2) = KU/2) - Ke ScK,K)) —3(2) @K - K= (a) e Sc(a(K,K))).

As a corollary we could get the results on the torsion in W(K), using
the fact, that the Galoisgroup GaI(KZ/K) is a pro-2z2-group (more precisely
an "pro-elementary-abelian-2-group"), the results of Leicht-Lorenz on

primeideals in W(K) and Corollary 2.4.

On the other hand, the Theorem implies immediately property «c¢) from the
introduction for Wittrings and thus explains the analogy between the

arithmetic structure of Wittrings and Burnsiderings.

One gets also, that Spec(Q R W(K)) < Spec(® @ Q(K)) is a totally

disconnected compact Hausdorfspace and @ ® W(K) +the ring of continuous

i.e. tocally constant functions of Spec(® x W(K)) into @, if K is formally
real, i.e. Q ® WK) # 0, (see [ 2 1), using the analogous result for Q(K)
(Theorem 2.3). As another application we get a canonical, filtered system

of subrings {W(K,E) = Sc(Q(K,E)) | E a finite Galoisextension of K} of W(K),
which are finite over 7 andever all of W(K). It may be interesting

to look for a description of this filtration more in terms of quadratic

forms, and also to characterize those E, for which W(K,E) s torsionfree.
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Finally, considering Theorem 2.1 and 2.2, one may ask for a representation
of the preimage Sc_](P)li Q(K) of any primeideal p & W(K) in the form
plU,p). Using the explicit description of primeideals in W(K), given

in C 3 J, one gets:

[f m is the unique primeideal (The "Pfisterideal™) in W(K) with
W(K)/m = F2, then Sc_1(m) = p(U,2) with U an arbitrary pro-2-subgroup

of the full Galoisgroup G of K.

If p +m and p is defined as the kernel of the Sylivester—inertia-
index-map modulo p(p = char W(K)/p % 2) with respect fo some ordering
"¢" of K, then Sc—l(p) = p(U,p) with U the Galoisgroup of a real

closure of K with respect to "g".

All these U are conjugate and of order 2. On the other hand, any
subgroup U £ G of G of order 2 has a really closed field as fixed
field and thus defines an ordering of K. Thus Spec @ ® W(K) s
naturally isomorphic to the subspace of conjugate classes of subgroups

of order 2 in SC(G). 1)

1y Conjugate classes of subgroups of fixed finite order do not

necessarily form a closed subset of SC(G), G an arbitrary profinite

group. This is a special property of full Galois-groups.
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Moreover if E is a finite Galoisextension of K with Galoisgroup

H = Gal(E/K) and o an ordering of K, +the map §(H) = Q(K,E) ~» W(K,E)-EE;Z
with the last arrow defined by the inertia index IOl with respect to «o
equals the map 9 ¢ Q(H)— 2, where U < H is the fixgroup of a maximal
subfield F of E, to which a extends. This gives a possibility to compute

I (L) for any finite separable extension L of K: imbed L info a

finite Galoisextension E and choose a maximal subfield F in E, to

which a extends. Let H = Gal(E/K), U = Gal(E/F), V = Gal(E/L).

Then I (L) = o (H/V)=| { hveH/V | URV = hV }|.

Especially if L is ifsself a Galoisextension, the inertiaindex of L

with respect to o |Is DimKL or 0, dependina on whether a extends to

L or not.

Of course, these last statements can alsc be verified directly in a rather

simple way.

One can also describe Q@ ® W(K,E) as the subspace of those functions

on Spec(Q & W(K)), the set of orderings of K, which are constant on
E-equivalent orderings, where two orderings o and B of K are called
E-equivalent if the maximal subfields La and LB of E, to which a,

resp. B extends, are conjugate. (By the way, the topology on Spec(Q® & W(K))
can be described as the coarsest topology, for which all E-equivalence-
classes are open, where E runs through all finite Galoisextensions of K).
Finally I want to apply Cor.2.6. Let L/K be a finite separable extension.
As noticed by Scharlau [ 61, any nonzero K~-linear map s:L » K defines

an additive map:  s*: W(L) » W(K).
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lt is easy to see, that if s is choosen to be the tfrace

t : L— K, one gets a commutative diagramm:

i?

QL) - ———— > Q(K)
Sc Sc
WCL) oo e S WCK)
where i* is the map defined in § 2 by considering L-algebras
as K-algebras. The image t*(W(L)) = W(L)K is an ideal in

Df
W(K) as well as  1*(Q(L)) = DfQ(L)K in QK.
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We want to use Cor. 2.6. to prove:

Theorem 3.2: |f L]""’Ln is a family of finite separable extensions of K,

then the following three statements are equivalent:

(i) 251 e 2wl s K e N;
Wik S i or some e N;

(ii) The only primeideal in W(K), which may contain L W(Li)K is the
"Pfisterideal" m;

’

(iii) Any ordering of K can be extended to at least one of the L,

Corollary 3.1: (Scharlau [6], [71):

(a) Ifa, bek' and L, = K&A), L,

k K
2.1W(K) € % W(Li) for some k e IN.

= K(vb)s Ly = K(vaB), then

(b) 1f (L : K =1 (2), then W(K) = wLk,

Proof: (a) Any ordering of K can be extended to at least one of the Li(i =1,2,3),
because a,b and ab cannot be all together negative.
(b) Because any ordering is extendable to L, one has W(L)K € mor W(L)K =

W(K) .
But dim L = 1(2), thus L ém and WL

K = W(K).

Proof of Theorem 3.2: Because m is the only primeideal in W(K) with
char(W(K)/ m ) = 2 one has easily (i) &= (ii), using only the theory of commut-

ative rings (if Zk ¢ z W(Li)K for al] k €N, then there exists a prime-

Kk

‘1w<K)

. . K .
ideal p with T W) ¢p, 2 '1W(k) ¢ p for all k and vice versa).

(11) = (iii) follows from

Lemma 3.3: Let L/K be a finite extension and a an ordering of K. Then a

is extendable to L or w(L)X g Ke(I_ : W(K) +Z).
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Proof:
Assume o not to be extendable to L. W(L)K is generated by elements of the

form F with F a finite extension of L and thus o not extendable to F.

Let U be a subgroup of order 2 in the full Galoisgroup G of K, corresponding"
to o and let H be the fixgroup of F. Because a Iis not extendable to F, we’
have U ¢ H and thus:

I (F) =0 j(6/H) =0, g.e.d.

?y

(iil) == (i1) Here we need:

Lemma 3.4: Let G be the full Galoisgroup of K and U a subgroup of order 2.

Then NG(U) = U.

Proof (cf. [1], Proof of Hilfssatz 2.3): Let R be the really closed fixfield
of U and F be the fixfield of NG(U). We have to show that any automorphism
of R/F is trivial. But on the one hand any automorphism of R is compatible
with the ordering of R (squares go on squares...), on the other hand any r ¢ R
has only finitely many conjugates over F, which are permutated by any auto-

morphism of R/F, thus have to stay fixed, g.e.d.

Now assume L W(Li)K is contained in some primeideal, different from m. Thus

(cf. [3]) there exists an ordering a and a prime p % 2 with IG(Z W(Li)K) = 0(p),
i.e. there exists a subgroup U of order 2 in the full Galoisgroup G of K with

L Q(Li)K < p(U,p). But by Cor. 2.6. this implies U £ H, (with H  the fixgroup
of Ly in 6 forall i=1,...,n. But U ) =U for pt2 by Lemma 3.4 and

U *’Hi of course implies that a cannot be extended to Li’ i=1,..., n, g.e.d.

Remark: On the other hand one can use Cor. 2.6 and Scharlau's results stated in

Cor. 3.1, to give another proof of Lemma 3.4. This observation was the starting

point of Theorem 3.2.
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4. For a finite group G and a finite abelian group A one can define the
Grothendieckring Q(G, A) of A-monomial permutation representations of G.

(see [12]1). Of course, also this definition can easily be generalized to profi-
nite G: a (G,A)-set S 1is a finite set, on which the direct product G x A

acts continuously from the left by permutations, such that A € G x A acts freely.
For S a (G, A)-set let S be the G-set of A-orbits in S. If seS5,5=A"-s
and G_ = {geG | gs = s}, then one has a homomorphism bz : G > A, defined by
g's = y_(@)-s. If S Isatransitive G x A-set (&= S is a transitive G-set),

then S =G x A/H with H = {(g, y_(g)) € G x A | g € G<} for any 5 e S.

Any (G,A)-set is in a unique way the disjoint union of transitive (G, A)-sets.

For S, T two (G, A)-sets define S + T to be the disjoint union (with an
obvious (G, A)-set-structure) and S @ T the set of A-orbits in S x T with
A
respect to the following A-action: a-(s,t) = (ax,o 1T) (a e A, s €5, T el

and with the following welldefined G x A-action

(g,a) (s@®1) =gas®gt =gs@ga t.

Again isomorphismclasses of (G, A)-sets form a commutative semiring with respect
to + and ® . Let Q(G, A) be the associated Grothendieckring.

A
Now assume A to be a subgroup of € (thus to be cyclic). For any closed sub-

group U &G and any element u e U one can define a homomorphism

TR QG,A) — Z [A] €€ : S» U ws(u). Again one can prove that any homo-
’ 5eS

morphism Q(G,A) - R into an integral domain R factors through some oy |

and also give necessary and sufficient conditions for equality of and

®u,u
oy mod p, p some primeideal in ZI[A].
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| want to give a fieldtheoretic interpretation of Q(G,A) in case G is the

Galoisgroup of a Galoisextension E/K, char K # 2 and A = {+ 1} % ZZ'

For this purpose | consider (finite, commutative, separable) K-algebras A, such

that A®E is a direct product of a finite number of copies of E (E-split),
K

together with an involutory K-automorphism i , such thus DimKA+ = DimKA- with

A= {aeh | ia=a}, A ={aeh | ia=-al.

Char K # 2 implies A=A @ A . Generally one has DimKA+ > Dim A~ for in-

volutory automorphisms .

For any (G,Zz)-seT S the set A = AS = HomG(S,E) of G-equivariant maps

f +: S+ E can be considered as such an algebra: Sum, product and K-action are
defined, using the structure of E, and i s definded by (if)(s) = f(-s),

thus A" = HomG(g,E), A = HomG w7 (S,E) (where Z2 acts on E by multi-
2

plication with = 1). Moreover, Z2 acting free on S implies

. + ka3 . . -
Dim A" = 151 = F 1) = 3 Dim A, thus Dim A" = Dim A

On the other hand for suct a K-algebra A (let them be called E-split (K,ZZ)-

algebras) the set 5 =5 = HomK(A,E) of K-algebra-homomorphisms f : A -+ E

A

defines a (G,Z,)-set, where the G-action on S is defined using the G-action

on E and (-f)(x) = 0+ f(ix). Using DimKA+ = DimKA_ one can prove f # - f

for all f e S, thus Z2 acts freely on S.

This establishes a (contravariant) 1-1 correspondance between (G,ZZ)—seTs and

Z
= 2
s+7 - g X Ap and Ag g g = Ag 8% Ap,

L3
Z - -
where A ﬁZ B for two (K,ZZ)—aIgebras is defined by (A" % B") @ (A ? B,

1

E-split (K,ZZ)—algebras. Moreover, A

. . 22 + . ZZ -
the first summand being (A i B) , the second being (A % B) .

Thus the Grothendieckring Q(G,Zz) of (G,ZZ)-seTS can as well be interpreted
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as Grothendieckring Q(K,E;ZZ) of E-split (K,ZZ)-aIgebras. Again for E

a separable closure of K we write Q(K,ZZ) instead of Q(K,E;ZZ).

I want to construct a canonical (surjective) ringhomomorphism:

SCZ: Q(K,ZZ) + W(K).

For this let A be a separable (K,Z,)-algebra and let t,, . : A" > K be

/K

the trace.

Define A to be the K-vectorspace A together with the bilinear map

(a,b) ~ t,,, (ab) (a,b e A >abeA 1).

AY/K
Again using Lemma 3.2 one can prove that A =+ A defines a ringhomomorphism

Sczz Q(K,ZZ) + W(K). In several ways this map is more convenient than Sc.

E.g. the surjectivity of Sc2 is even more obvious then in the case of Sc:

For a e K° one defines K(va) K[x]/(xz—a) with ix = -x, - whether a

f

i

is a square or not. Then K(va) = <a>, the bilinear form K x K+ K : (b,c)~ abc.

More precisely the (G,Zz)—seTs S with [ISI = 2 (or the separable (K,ZZ)—
algebras A with DimKA = 2) form a multiplicative group with respect to

%2, isomorphic to the group G' = Hom(G,ZZ) = KX/K><2 of homomorphisms G - 22,
thus the grouping Z[G'l can be embedded into Q(G,ZZ) and the above argument
just repeats the fundamental fact that the canonical map ZIG'] ?'Z[KX/KXZ] + W(K)

is surjective.

Now let o be an ordering of K and U g G the fixgroup of a maximal subextension
of £, fto which o extends. Then either U s the trivial subgroup of G or U

is of order 2, in any way U = <u> for some unique u e G. One can prove:

I (AL) =

o Ps @U’U(S) for any (G,Zz>seT S.

Especially, if L is some finite separable extension of K and a ¢ L* , Then
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the inertia index of the bilinear form L(¥a) : L x L » K : (b,c) - ¢

L/K(abC)
with respect to o <can be computed by mapping L(/3) into a Galoisextension
E/K with Galoisgroup G, such that L - EH, L(Va) » EF(F @ Hg G and
(H: F) =1 or 2 , whether a ¢ LX2 or not), forming

S =G x 22/{(g,w(g)) | g € H} with y: H=> Z the map with kernel F and then

2

Taking oy u(S) with U = <u> the fixgroup of a maximal subextfension of E ,

to which o extends.
In other words:

Iam@)) - 1 {gHeG/MH | uegFg 1l - I {gH € G/H | u e g(H - F)é]} |

The fact, proved by Scharlau [6]1, that there exists always an element a e L*

with L(¥3) = if (L : K) odd has thus a curious grouptheoretic inter-

]W(K)

pretation: If G is the full Galoisgroup of a formally real field, then in any
open subgroup H < G of odd index there exists a subgroup F of index 2 with

]G/HUI + 1 = IG/FUI for all subgroups U < G of order two.

More precisely one can show: if the fixfield L of H is generated by x

and if f(x) s the irreducible polynomial of x over K, then one can choose
NL:K(X)

F to be the fixgroup of L(Ya) with a = TRANIE

Finally | want to give some kind of permutation group theoretic interpretation

of a remark of Scharlau on induction theorems (cf [71, §4).

At first for any open subgroup U of a profinite group G one has (as in § 2)
an additive map

iﬁ,G : Q(U,A) > Q(G,A)

defined on the Z-basis of transitive (U,A)~-sets by

L%

'u,6
The image Q(U,A)G is again an ideal in Q(G,A).

(U x Zn/W) = G x zn/w.
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Now to avoid technical difficulties assume A to be cyclic: A = Zn €C
and also G to be finite. Let Y be an ideal in Q(G,Zn) , such that for
any pair U sV < G with V/U abelian of exponent djn there exists a unift

in Q(G,Zn)/Y with

% = . x Z /v mod Y
(%) G xZ/Ux 1= ey @T67UQ:“Z;n o

and V@ = {(v,9(v)) € G x Z_ | v eV}

Let N eV with V/N nilpotent and U = {Usg V | Ng U, UN cyclic}.

Then one can show, using Scharlau's fechnique:

k

n ~Q(V,Zn)G Y + Q(U,Zn)G for some power nk of n.

b}
Uell
1t n=2,abeK G =0allK/a,/5)/K) of order 4 and
Y = Ke(Q(G,ZZ) ¢ Q(K,Zz) -+ W(K)), Scharlau uses this result fo prove

Corollary 3.1, (a).

If G is nilpotent, n = IGl and Y the kernel of the canonical map
Q(G,Zn) » X(G,C),

the characterring of G defined by

S = XS € X(G,L) with Xs(g) = @(9)) 9(S),
then - as pointed out by Scharlau -~ the resultf can be used to prove ArTip's
and Brauer's inductiontheorem in this special case. |t would be rather desirable
to state formulas similar to (®*), which give special refations between the
characters XS of various (G,Zn)—seTS S and can be used to prove Brauer's
inductiontheorem in the general case or at least (and this should be possible)
for hyperelementary groups, - desirable not so much, to give still another

proof for Brauer's Theorem, but because such formulas must contain rather valuable

information on the relations between the characters of monomial representations

and irreducible characters of a finite group.
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