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Let G be a finite group. The theory of N∞ operads was created by Blumberg–
Hill [4] to parametrize homotopy coherent normed multiplicative structures on G-
equivariant ring spectra. The homotopy category of G-N∞ operads is equivalent
to the lattice TrG of G-transfer systems. The combinatorial nature of TrG makes
it amenable to study by elementary means. In this talk, I report on work by the
2023 Electronic Computational Homotopy Theory REU to determine the structure
of TrG when G = Cp × Cp is an elementary Abelian p-group of rank two. This
leads to an application in equivariant algebra: a quick derivation of the number of
compatible pairs of transfer systems underlying bi-incomplete Tambara functors
on Cp × Cp.

Eschewing the standard homotopical conceit of writing Σn, let Sn denote the
symmetric group on n letters.

Definition 1. A G-N∞ operad O is an operad in G-spaces such that (1) O(0) is G-
contractible, (2) the action of Sn = e×Sn on O(n) is free, (3) for all Γ ≤ G×Sn,
O(n)Γ is either contractible or empty, and (4) FO := {Γ ≤ G×Sn | O(n)Γ ' ∗}
is a G×Sn-family1 containing all subgroups of the form H × e.

Let H ≤ G and let T be a finite H-set. Let Γ(T ) denote the graph of a
permutation representation H → S|T | of T . We say that O admits T -norms when

O(n)Γ(T ) ' ∗.

Note that when an O-algebra X admits H/K-norms, we get a “wrong way”
map

XK → XH .

These are what practicitioners typically think of as norms (or transfers in an
additive setting).

We write N∞-OpG for the category of G-N∞ operads and G-equivariant maps
of G-operads. A weak equivalence of G-N∞ operads is map ϕ : O1 → O2 such
that the induced map O1(n)Γ → O2(n)Γ is a weak equivalence for all n ≥ 0 and

Γ ≤ G×Sn. We write Ho(N∞-OpG) for the associated homotopy category. Since
we wish to classify N∞ operads up to homotopy, it is desirable to have a tractable
model for Ho(N∞-OpG), and this is provided by transfer systems.

Definition 2. Let (P,≤) be a partially ordered set (poset). A transfer system R
on P is a partial order on the set P refining ≤ (so x R y =⇒ x ≤ y) such that

(1) x R y, z ≤ y, and w maximal among w′ ≤ x =⇒ w R z.

1A collection of subgroups forms a family when it is closed under conjugation and taking

subgroups.
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If (SubG,≤) denotes the subgroup lattice of a finite group G ordered by inclusion,
then a G-transfer system is a transfer system R on SubG that is further closed
under conjugation: K R H =⇒ gK R gH where gH := gHg−1.

Note that when P is a lattice (like SubG), condition (1) reduces to

(2) x R y and z ≤ y =⇒ x ∧ z R z,

which we refer to as the restriction condition. Categorically speaking, a transfer
system on a lattice P is a wide subcategory of P closed under pullbacks.

Let TrP denote the collection of transfer systems on P , and let TrG denote
the set of G-transfer systems. There is a canonical refinement partial order ≤ on
TrP given by

R ≤ R′ ⇐⇒ (x R y =⇒ x R′ y),

and when P is a finite lattice, TrP is a finite lattice; the same is true of TrG.
Work of many authors [4, 8, 6, 9, 10, 1] establishes that TrG models the ho-

motopy category of G-N∞ operads. Given an N∞ operad O, write RO ∈ TrG for
the transfer system given by

K RO H ⇐⇒ O admits H/K norms.

Theorem 3. The assignment R 7→ RO is a functor N∞-OpG → TrG and de-
scends to an equivalence of categories

Ho(N∞-OpG) ' TrG.

Transfer systems are elementary but subtle, and enumerations of TrG have only
slowly appeared. Prior to our work, the only infinite family of transfer system
lattices completely understood was for G = Cpn , the cyclic group of order pn, p
prime.2 Indeed, Balchin–Barnes–Roitzheim [1] prove that TrCpn is isomorphic to
the Tamari lattice An+1 of planar binary rooted trees with n + 2 leaves partially
ordered by tree rotation. It follows that

|TrCpn | = Catn+1 =
1

2n + 3

(
2n + 3

n + 1

)
,

the (n + 1)-th Catalan number.
In our work [3], we completely determine and enumerate the lattice of transfer

systems for Cp × Cp, p prime. In order to state the theorem, set [n] := {0 < 1 <
· · · < n} and note that [1]k is isomorphic to the lattice of subsets of a k-element
set partially ordered by inclusion.

Theorem 4 (Bao, Hazel, Karkos, Kessler, Nicolas, O., Park, Schleff, Tilton [3,
Theorem 5.4]). For p prime there are exactly

2p+2 + p + 1

transfer systems on Cp × Cp, and the lattice of transfer systems consists of three
disjoint induced subposets: B, T ∼= [1]p+1 and M consisting of p + 1 incomparable

2Balchin–MacBrough–Ormsby [2] have also determined an elaborate set of interleaving recur-

sions which determine the cardinalities of TrDpn and TrCqpn
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points. The only covering relations in Tr(Cp × Cp) not internal to B or T are of
the following forms:

(i) each element of B covered by maxB is also covered by exactly one element
of M ,

(ii) each element of T covering minT also covers exactly one element of M ,
(iii) minT covers maxB.

Proof idea. The subgroup lattice of Cp×Cp consists of the trivial subgroup e, p+1
rank 1 subgroups (isomorphic to Cp), and the full group. As such, Sub(Cp×Cp) ∼=
[2]∗(p+1), the (p + 1)-fold fusion of [2] with itself. Here the fusion of two lattices
is their disjoint union with minimal elements identified and maximal elements
identified. We provide a general recursion for |Tr(P ∗ Q)| in [3, Theorem 4.11],
and leverage this to enumerate Tr(Cp × Cp) ∼= Tr([2]∗(p+1)).

With the enumeration in hand, it is easy to construct all transfer systems and
check the covering relations between them. The subposet B consists of transfer
systems that only have non-identity relations between e and some subset of rank
1 subgroups. The subposet T consists of transfer systems that have all relations
from e to other subgroups and some subset of relations between rank 1 subgroups
and Cp × Cp. The transfer systems in M have all but one of the relations from e
to rank 1 subgroups, along with one relation from the excluded rank 1 subgroup
to Cp × Cp. �

Such an explicit enumeration of transfer systems allows us to study other struc-
tures related to transfer systems on Cp × Cp. By work of Chan [7], we know that
special pairs of transfer systems enumerate compatible choices of transfers and
norms for bi-incomplete Tambara functors in the sense of Blumberg–Hill [5].3

Definition 5. Let G be a finite group. A pair (
a
99K ,

m−→) of G-transfer systems is

called compatible when
m−→ ≤ a

99K and the following condition holds:

(3) K,L ≤ H ≤ G, K
m−→ H, and K ∩ L

a
99K K =⇒ L

a
99K H.

We write CompG for the collection of compatible pairs of G-transfer systems.

We may encode (3) diagramatically as

H

L K

K ∩ L

m

am

a

3Bi-incomplete Tambara functors arise in the context of equivariant ring spectra R defined

over G-universes that might not be complete. In this scenario, π∗R is a bi-incomplete Tambara
functor with additive transfers encoded by the G-universe and multiplicative norms encoded by

an N∞ operad over which R is an algebra.
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where the double arrow indicates logical implication. Note that K ∩ L
m−→ L is

already guaranteed by (2).
Based on Theorem 4, we may enumerate the compatible pairs of transfer systems

for Cp × Cp with relatively little pain.

Theorem 6 (O.). For p prime, there are exactly

2p(2p+2 + p + 3) + 3p+1 + 2p + 2

compatible pairs of (Cp × Cp)-transfer systems.

To give the reader a sense for these numbers, we record the first few values:

p 2 3 5 7 11 13
|Comp(Cp × Cp)| 117 393 5 093 73 393 17 337 353 273 349 525

Proof sketch. Set n = p + 1. For each
m−→ ∈ Tr(Cp × Cp) we determine which

a
99K ≥ m−→ satisfy (3). First focus on the 2n transfer systems in B. Since no
relations in these transfer systems are restrictions of other relations, no conditions

are imposed by (3) and we only need to count the size of the up-set of each
m−→

in B. If
m−→ has rank k, then there are 2n−k elements of B at least as large as

it, along with n − k elements of M and all 2n elements of T . Since there are
(
n
k

)
elements of B of rank k, we find that there are exactly

n∑
k=0

(
n

k

)
(2n−k + n− k + 2n)

compatible pairs (
a
99K ,

m−→) with
m−→ in B. Standard combinatorial identities re-

duce this expression to

3n + 2n−1 · n + 22n.

Now let
m−→ be one of the n transfer systems in M . While there are 1 + 2n−1

transfer systems at least as large as
m−→, only

m−→ and the complete transfer system

≤ pair with
m−→ to satisfy (3). Thus there are 2n compatible pairs (

a
99K ,

m−→) with
m−→ in M .

Finally, if
m−→ is in T , then it can only pair with the complete transfer system

to satisfy (3), so there are 2n compatible pairs (
a
99K ,

m−→) with
m−→ in T . Adding

things up, we see that there are exactly

3n + 2n−1 · n + 22n + 2n + 2n = 2n−1(2n+1 + n + 2) + 3n + 2n

compatible pairs for Cp × Cp. Substituting n = p + 1 gives the expression from
the theorem statement. �
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