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ABSTRACT. We add cosaturated transfer systems to the list of objects cryptomorphically
equivalent to a closure operator on a finite lattice. This leads to a new derivation of the
number of closure systems on a rectangular lattice.
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1. INTRODUCTION

The emerging field of homotopical combinatorics studies combinatorial aspects of two
related structures: (1) N∞ operads and their associated homotopy category of transfer
systems, and (2) model structures on complete lattices (typically finite posets admitting
meets and joins). As discovered in [FOO+22], these are unified through the language of
weak factorization systems on complete lattices. Indeed, a G-transfer system for G an
Abelian group contains the same data as a weak factorization system on the subgroup lattice
Sub(G), and a model structure consists of a compatible pair of weak factorization systems
satisfying certain axioms.

In this work, we focus on cosaturated transfer systems, which correspond to model
structures in which every morphism is a cofibration. These play a special role in G-N∞ theory
for G a cyclic group, where they are those transfer systems induced by Steiner operads.
It turns out (see Dodecatheorem 1.20) that cosaturated transfer systems are naturally in
bijection with closure operators on the underlying poset. Closure operators on Boolean
posets originate in the work of Cantor, Dedekind, Moore, Riesz, and Schröder, and are
closely related to (but more general than) closure in point-set topology. Closure operators are
also well-studied under a number of crypotomorphic guises (Moore families, submonoids,
monads, etc.,) so our work links cosaturated transfer systems with a rich web of ideas in
order and category theory.
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Now for a quick outline of this note: In the remainder of this introduction, we spell
out some preliminaries and definitions in order theory and homotopical combinatorics,
culminating in a precise statement of Dodecatheorem 1.20. In Section 2, we explain the
correspondence between cosaturated transfer systems on P and saturated transfer systems1

on Pop. This sets us up for Section 3 in which we prove Dodecatheorem 1.20. Finally, in
Section 4 we use this new perspective to enumerate closure operators on a rectangular lattice.
This amounts to a new proof of [HMOO22] which counted saturated transfer systems for a
cyclic group of order pmqn, p 6= q prime.

1.1. Preliminaries on order theory. A lattice is a partially ordered set (poset) (P,≤)
admitting finite meets (infima, denoted ∧) and joins (suprema, denoted ∨). If P is complete
(i.e., admits all meets and joins; this is automatic for P finite), we let 0̂ denote the minimal
element of P, and 1̂ its maximal element. Let Pop := (P,≥) denote the opposite poset of P
with all relations reversed. Every poset P induces an associated category that we also denote
P. The objects of P are the elements of the underlying poset, and

P(x,y) =

{
∗ if x≤ y,
∅ otherwise.

Composition is well-defined by transitivity of ≤, and the category associated with Pop is
equal to the opposite of the category associated with P. Posets form a category in which the
morphisms are monotone functions: x≤ y =⇒ f (x)≤ f (y). A monotone map of posets is
the same thing as a functor between associated categories.

Definition 1.1. A closure operator cl on a poset P is a function cl : P→ P that is
(1) extensive: x≤ cl(x),
(2) monotone: x≤ y implies cl(x)≤ cl(y), and
(3) idempotent: cl(cl(x)) = cl(x).

Example 1.2. If X is a topological space, then the Boolean poset (2X ,⊆) of subsets of
X admits topological closure S 7→ S as a closure operator. Note, though, that topological
closure additionally commutes with finite unions (joins in 2X ). If a closure operator presreves
joins, then it is called a Kuratowski closure operator, while if it preserves meets, then it is a
nucleus, a concept appearing in the theory of locales. Note that Kuratowski closure operators
on 2X are in bijection with topologies on X , while nuclei on a frame P are in bijection with
sublocales on P.

Remark 1.3. Closure operators are notoriously challenging to enumerate. The most classical
case is that of finite Boolean posets, recorded as sequence A102896 in the OEIS. For
n = 0,1, . . . ,7, the number of closure operators on the poset of subsets of an n-element set is

1, 2, 7, 61, 2 480, 1 385 552, 75 973 751 474, 14 087 648 235 707 352 472,

respectively [Hig98, HN05, CIR10]. No additional values of this sequence are known, but
its base-2 logarithm is known to grow at the rate of

( n
bn/2c

)
and more precise asymptotics are

given in [Kle76].

1Saturated transfer systems are a natural subclass of transfer systems related to linear isometries operads; see
Remark ??.
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We may rephrase the closure operator conditions categorically as follows: monotonicity
says that cl : P→ P is a functor, extensivity gives a natural transformation idP→ cl, and
idempotence gives a natural transformation cl◦cl → cl. (For the last claim, note that
extensivity automatically produces cl→ cl◦cl so the content of idempotence is the map in
the natural transformation in the other direction.) This is the data of a monad on the category
P, and the coherence axioms hold trivially since P is a poset. As such, we have the following
well-known result (see for example [LS86, Part 0]).

Proposition 1.4. Closure operators on a poset P are in bijection with monads on the category
associated with P. �

Just as closed sets play a prominent role in topology, closed elements of a poset (relative
to a closure operator) are important in this setting:

Definition 1.5. Fix a poset P and closure operator cl : P→ P. An object x ∈ P is closed
relative to P if and only if x = cl(x).

It is in fact the case that the collection of closed objects in a complete lattice both Could get away with less,
but is it worth it?
Could get away with less,
but is it worth it?

I would just keep it as it
is, keep it short and sweet
I would just keep it as it
is, keep it short and sweet

determines and is determined by the closure operator. These collections cannot be arbitrary,
but instead must satisfy the following:

Definition 1.6. Fix a complete lattice P. A closure system (or Moore family) on P is a subset
S⊆ P containing 1̂ and closed under meets.

Remark 1.7. The algebraically inclined reader will immediately note that a closure system is
the same thing as a submonoid of (P,∧).

Given a closure operator cl on a complete lattice P, its collection of closed subsets forms
a closure system Scl = {x ∈ P | x = cl(x)}. Given a closure system S⊆ P, we may define a
closure operator clS on P by

clS(x) =
∧

y∈[x,1̂]∩S

y,

i.e., clS(x) is the minimal element of S satisfying x ≤ clS(x). The following result is well-
known and follows from the definitions (see for example [Pri02]):

Proposition 1.8. Fix a complete lattice P. The assignments cl 7→ Scl and S 7→ clS are
mutually inverse bijections between closure operators and closure systems. �

Closure operators admit the dual notion of interior operators . These are monotone maps
int : P→ P that are contractive (int(x)≤ x) and idempotent. They are in natural bijection
with interior systems (submonoids of (P,∨)) and comonads on P.

1.2. Preliminaries on transfer systems and model structures. We now briefly recall
transfer systems, weak factorization systems, and model structures on lattices. For additional
details, see [FOO+22, §4].

Definition 1.9. A transfer system on a lattice (P,≤) is a relation R refining ≤ (so x R y =⇒
x ≤ y) that is closed under restriction: x R y and z ≤ y implies (x∧z)R z. Equivalently, a
transfer system is a wide subcategory of P that is closed under pullbacks.
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Transfer systems originated in the study of G-N∞ operads, G a finite group [BH15]. The
above definition is equivalent to the original one in the case G is Abelian (or Dedekind: all
subgroups are normal) and P = Sub(G) is the subgroup lattice of G.

Though not given an explicit name, cosaturated transfer systems arose in J. Rubin’s
groundbreaking analysis of transfer systems induced by Steiner operads [Rub21].

Definition 1.10. A transfer system R on P is cosaturated when it is generated2 by a set of
relations {x≤ 1̂ | x ∈ S} for some subset S⊆ P.

Given a finite group G, recall from [BH15]that each G-universe U has an associatedcheck refcheck ref

Steiner operad K (U) which is G-N∞. Write RK (U) for the associated G-transfer system.
In [Rub21], Rubin studies the image of the assignment U 7→ RK (U), proving the following
results:

Lemma 1.11 ([Rub21, Lemma 4.1]). For any finite group G and G-universe U , RK (U) is
cosaturated.

Theorem 1.12 ([Rub21, Corollary 4.12]). For any finite cyclic group G, a G-transfer system
R is induced by a Steiner operad if and only if R is cosaturated.

Thus, when P is the subgroup lattice of a finite cyclic group G, enumerating cosaturated
transfer systems on P is equivalent to enumerating the homotopy classes of Steiner operads
on G.

In loc. cit., Rubin also introduces the notion of saturated transfer systems in relation
to linear isometries operads. Although not immediately obvious (or previously observed),
Rubin’s saturated transfer systems are dual to cosaturated transfer systems in a precise sense
as we will see in Dodecatheorem 1.20.

Definition 1.13. A transfer system R on P is saturated when x R y and x ≤ z ≤ y implies
z R y.

Given a G-universe U , let L (U) denote the linear isometries operad associated with U .
This operad is G-N∞ and has an associated transfer system RL (U). Rubin also studies the
image of U 7→ RL (U):

Proposition 1.14 ([Rub21, Proposition 5.2]). For any finite group G and G universe U ,
RL (U) is saturated.

Remark 1.15. Unlike in Theorem 1.12, it is not true that every saturated transfer system
arises in this way, and this can already be seen in the case of C6 (see [Rub21, Example 5.16]).
Nonetheless, in [Rub21, Theorem 5.17], Rubin proves that every saturated transfer system
for cyclic groups of prime power order is realized by some linear isometries operad, and in
[HMOO22, Theorem 1.2], Hafeez–Marcus–Ormsby–Osorno prove that for p,q > 3 distinct
primes, every saturated transfer system for cyclic groups of order pmqn is realized by some
linear isometries operad. Forthcoming work of MacBrough extends these results to other
classes of cyclic groups.

2Given a set of relations A⊆≤, the minimal transfer containing A exists, is denoted 〈A〉, and is called the
transfer system generated by A.
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In Section 2 we prove that there is a natural bijection between saturated transfer systems
on a lattice P and cosaturated transfer systems on Pop. This bijection is most easily conceived
in the language of weak factorizaiton systems.

Weak factorization systems have a different flavor from transfer systems but ultimately
encode the same data when P is a finite lattice. To set up their definition, recall that if R is a
class of morphisms in a category, then we write �R for the set of morphisms in the category
with left lifting property with respect to R. That is, �R consists of those morphisms i such
that for all p ∈ R and all commuting squares

a x

b y

i pλ

there exists a lift λ making the diagram commute. Given a class of morphisms L we can
make a similar definition of L�, the morphisms with the right lifting property with respect to
L.

Definition 1.16. A weak factorization system on a category P consists of a pair (L,R) of
classes of morphisms in P such that

(1) every morphism f is P factors as f = pi with i ∈ L and p ∈ R, and
(2) L = �R and R = L�.

The collection of weak factorization systems on P is denoted WFS(P).

Theorem 1.17 ([HMOO22, Theorem 4.13]). Let P be a finite lattice. Then

TrP−→WFS(P)

R 7−→ (�R,R)

is a bijection.

Weak factorization systems have particular prominence in homotopy theory because they
can be used to define model structures. Here we present an alternative definition that is
equivalent to Quillen’s [Qui67] as given by Joyal and Tierney [JT07].

Definition 1.18. A model structure on a bicomplete category P consists of a pair of weak
factorization systems (C,AF),(AC,F) such that AF ⊆ F (equivalently AC ⊆C)) and W :=
AF ◦AC satisfies the two-out-of-three property: if f and g are composable morphisms and
two of the three maps f , g, f g are in W , then so is the third. The classes of morphisms have
the following names:

· F — fibrations,
· C — cofibrations,
· AF — acyclic fibrations,
· AC — acyclic cofibrations, and
· W — weak equivalences.

Remark 1.19. Given Theorem 1.17, we may further streamline the data of a model structure
when P is a finite lattice. In this case, each model structure determines and is determined
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by a pair of transfer systems AF ≤ F such that W = AF ◦�F satisfies the two-out-of-three
property. We will frequently take this perspective headed forward.

We now have enough terminology to state our main theorem:

Dodecatheorem 1.20. Given an arbitrary finite lattice P, the following twelve structures
are in bijective correspondence:

(1) cosaturated transfer systems on P,
(2) model structures on P in which every morphism is a fibration,
(3) closure operators on P,
(4) closure systems / Moore families on P,
(5) submonoids of (P,∧),
(6) monads on the category associated with P.
(7) saturated transfer systems on Pop,
(8) model structures on Pop in which every morphism is a cofibration,
(9) interior operators on Pop,

(10) interior systems on Pop,
(11) submonoids of (Pop,∨),
(12) comonads on the category associated with Pop.

When P is self-dual, all instances of Pop may be replaced with P.

The primary content of the Dodecatheorem lies in the bijections between (1)–(6). These
structures are each dual to the corresponding structures (7)–(12) on Pop. Nonetheless, our
primary case of interest from N∞-theory — P = Sub(G) for G a finite Abelian group —
exhibits self-duality, so it is extremely useful to know, e.g., that cosaturated and saturated
transfer systems are bijectively interchanged by the duality exhibited in [FOO+22].

Corollary 1.21. The number of cosaturated transfer systems on the Boolean lattice [1]n is

1, 2, 7, 61, 2 480, 1 385 552, 75 973 751 474, 14 087 648 235 707 352 472,

for n = 0,1, . . . ,7. This sequence also counts the number of saturated transfer systems on
[1]n.

Proof. This follows directly from the Dodecatheorem and Remark 1.3. �

We can also relate the Dodecatheorem to Steiner and linear isometries operads:

Corollary 1.22. The number of homotopy classes of Steiner operads for a cyclic group of
order n is the same as the number closure operators on the divisor lattice of n.

Proof. This follows directly from Theorem 1.12 and Dodecatheorem 1.20. �

Corollary 1.23. Suppose G is an Abelian group for which every saturated transfer system is
realized by a linear isometries operad (e.g., G =Cpn for any prime p or G =Cpqn for primes
p,q > 3; see Remark 1.15). Then the number of homotopy classes of linear isometries
operads for G is the same as the number of closure operators on Sub(G).

Proof. This follows from Proposition 1.14, Dodecatheorem 1.20, and the fact that Sub(G) is
self-dual when G is Abelian. �

Maybe one also adds to
the above corollary that
there is a bijection be-
tween linear isometries
and Steiner operads in
this setting.

Maybe one also adds to
the above corollary that
there is a bijection be-
tween linear isometries
and Steiner operads in
this setting.
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2. SATURATED AND COSATURATED TRANSFER SYSTEMS

In this section, we describe the basic properties of saturated and cosaturated transfer
systems on a finite lattice. To warm up, we prove two lemmata on general transfer systems
that will be useful in our analysis.

Lemma 2.1. Given a finite lattice (P,≤), suppose that R′ is an arbitrary relation on P refining
≤. Let R = 〈R′〉 and define L := �R, L′ := �R′. Then

L = L′.

Proof. Clearly L⊆ L′, and we now prove the opposite inclusion. We can construct 〈R′〉 by
iteratively taking pullback closure and then transitive closure. Thus it suffices to show (1) if
Rp is the pullback closure of R′, then Lp := �Rp ⊇ L′, and (2) if Rt is the transitive closure
of R′, then Lt := �Rt ⊇ R′.

We first prove (1). Suppose z Rp w. Then by definition there exists x R′ y with w≤ y such
that z = x∧w. Then if we have a diagram

a x∧w x

b w y

R′RpL′

(where x→ y means x ≤ y and labeled arrows are in the corresponding classes) then by
definition of L′ we must have b ≤ x, and hence b ≤ x∧w as well, providing the desired
lifting and showing L′ ⊆ Lp.

We now prove (2). Suppose x R′ x′ R′ y and we have a square

a x

x′

b y.

R′

R′

L′

Then lifting with respect to x′ R′ y gives b≤ x′, which in turn allows us to lift against x R′ x′,
giving b≤ x. This implies that Lt ⊆ L′, as desired. �

Lemma 2.2. Suppose that R is a transfer system on a finite lattice P and let L = �R. Then
x L y if and only if (x≤ y) satisfies the left-lifting property with respect to all relations of the
form z R y.

Proof. Given any square

0̂ y

x z
R
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we can form the pullback x∧ y of x→ z← y to get another square

0̂ x∧ y

x x.
R

We have a lift x→ x∧y of this square if and only if we have a lift x→ y of the first square. �

Recall from [FOO+22, Remark 4.7] that R⊥ := (�R)op is a transfer system on Pop and
the assignment R 7→ R⊥ is an involution TrP→ TrPop.This leads naturally to the followingEmphasize this more? Put

in preliminaries subsec-
tion?

Emphasize this more? Put
in preliminaries subsec-
tion? definition:

Definition 2.3. A cotransfer system on a complete lattice P is a transitive relation L refining
≤ such that x L y and x≤ z implies that z L (z∨y). The cotransfer system generated by a set
of relations on P is the smallest cotransfer system containing those relations.

Remark 2.4. The cotransfer systems are exactly those sets of maps that arise as sets of left
morphisms for a weak factorization system on P.

We can now state and prove our main theorem linking saturated and cosaturated transfer
systems.

Theorem 2.5. A transfer system R on a finite lattice P is saturated if and only if R⊥ is
cosaturated.

Proof. Suppose first that R is cosaturated and let L = �R. To show that R⊥ is saturated, it
suffices by duality to show that if x L y then for all z ∈ [x,y], we have x L z. By Lemma 2.1
and the definition of cosaturation, there is a set S⊆ P such that

L = �{w→ 1̂ | w ∈ S}.
Thus x L y is equivalent to [x, 1̂]∩S = [y, 1̂]∩S. But if x≤ z, then clearly [x, 1̂]∩S⊇ [z, 1̂]∩S,
so if x L y and z ∈ [x,y], then we have

[x, 1̂]∩S⊇ [z, 1̂]∩S⊇ [y, 1̂]∩S⊇ [x, 1̂]∩S

and hence x L z, as desired. This proves the backwards implication.
Now suppose R is saturated, let L = �R, and let

S = {x ∈ P | 0̂ L x}.
To show that R⊥ is cosaturated, is suffices by duality to show that the cotransfer system L′

generated by S is equal to L. We check this by proving that (L′,R) is a weak factorization
system.

By Lemma 2.2, note that x ∈ S if and only if there is no y < z with y R x. Suppose x≤ y
and let z ∈ [x,y] be a minimal element for which z R y. Suppose w R z for some w ∈ P. Since
R is saturated, w′ R z for all w′ ∈ [w,z], so by transitivity w′ R y. Thus by minimality of z, we
have [w,z]∩ [x,z] = {z}, i.e., x∨w = z.

Now let w ∈ P be a minimal element for which w R z. Then there is no w′ < w with w′R w
since transitivity of R this would violate minimality of w. Thus we have w ∈ S. But then
0̂ L′ w and 0̂ ≤ x implies x L′ (x∨w) = z, so x L′ z R y gives a factorization of x ≤ y. Thus
(L′,R) forms a weak factorization system, whence L′ = L, concluding our proof. �This proof probably needs

to be revisited and edited
for clarity. Make it more
diagrammatic?

This proof probably needs
to be revisited and edited
for clarity. Make it more
diagrammatic?
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Corollary 2.6. A transfer system on a finite lattice (P,≤) is cosaturated if and only if it is
the set of fibrations in a model structure in which the set of cofibrations F =≤.

Proof. The argument in [BOOR22, Remark 4.17] shows that saturated transfer systems are
the same thing as acyclic fibrations in model structures in which all maps are fibrations. By
Theorem 2.5, cosaturated transfer systems form the fibrations in model structures for which
every map is a cofibration. �

3. CRYPTOMORPHIC STRUCTURES: MORE THAN MOORE FAMILIES

In this section, we connect cosaturated transfer systems to the classical web of structures
related to closure operators, ultimately proving Dodecatheorem 1.20. We begin by relating
cosaturated transfer systems and closure systems.

Let 2P denote the lattice of subsets of P, ordered by inclusion, and let TrP denote the
lattice of transfer systems on P. We define the maps

F : 2P −→ TrP

S 7−→ 〈x≤ 1̂ | x ∈ S〉
and

G : TrP−→ 2P

R 7−→ {x ∈ P | x R 1̂}
which are evidently monotone.

Lemma 3.1. The pair (F,G) forms a monotone Galois connection which is a Galois corre-
spondence between cosaturated transfer systems and closure systems (i.e., Moore families).

Proof. If S ⊆ P and R is a transfer system on P, then F(S) ≤ R if and only if x R 1̂ for all
x ∈ S if and only if S≤ G(R). This proves that (F,G) is a Galois connection.

Since every Galois connection induces a Galois correspondence between images, it only
remains to identify F(2P) and G(TrP). Clearly if S ⊆ P, then F(S) is cosaturated and all
cosaturated transfer systems arise in this way. Suppose R is a transfer system on P. Then
G(R) contains 1̂ and is closed under ∧ since R is closed under pullbacks, whence G(R) is a
closure system. Given a closure system S, we have G(F(S)) = S, so G(TrP) is the collection
of closure systems on P. �

We are now ready to prove the Dodecatheorem. Fix a finite lattice P. For the reader’s
convenience, we reproduce the twelve equivalent structures from the theorem statement here:

(1) cosaturated transfer systems on P,
(2) model structures on P in which every morphism is a fibration,
(3) closure operators on P,
(4) closure systems / Moore families on P,
(5) submonoids of (P,∧),
(6) monads on the category associated with P,
(7) saturated transfer systems on Pop,
(8) model structures on Pop in which every morphism is a cofibration,
(9) interior operators on Pop,



10 SCOTT BALCHIN, ETHAN MACBROUGH, AND KYLE ORMSBY

(10) interior systems on Pop,
(11) submonoids of (Pop,∨),
(12) comonads on the category associated with Pop.

Proof of Dodecatheorem 1.20. Bijections between (3), (4), (5), and (6) are well-known (see
Section 1.1), and the bijections with (9), (10), (11), and (12) are dual. Lemma 3.1 gives
an order-preserving bijection between (1) and (4), while Corollary 2.6 gives the bijection
between (1) and (2). Finally, Theorem 2.5 provides the bijection between (1) and (7). �

4. CLOSURE OPERATORS ON RECTANGULAR LATTICES

In [HMOO22], U. Hafeez, P. Marcus, K. Ormsby, and A. Osorno compute the number of
saturated transfer systems on the rectangular lattice [m]× [n]. Since this is a self-dual lattice,
Dodecatheorem 1.20 implies that their count also gives the number of closure operators on
[m]× [n], along with the ten other structures enumerated therein. The proof in [HMOO22] is
inductive, depending on a recurrence

In this section, we give a new, direct (non-inductive) count of closure operators on [m]× [n],
phrased in the language of submonoids and subsemigroups. We hope that our methods might
inspire enumerations of closure operators over other lattices.

Need to complete the argument from Ethan’s note. I think the first term in the
inclusion-exclusion is spelled out, but the higher terms in the inclusion-exclusion
are not proven yet.
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