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Preface
Our motivation for gathering the material for this book over a period of seven years
has been to unify and simplify ideas which appeared in a sizable number of re-
search articles during the past two decades. More specifically, it has been our aim
to provide the categorical foundations for extensive work that was published on
the epimorphism- and cowellpoweredness problem, predominantly for categories of
topological spaces. In doing so we found the categorical notion of closure operators
interesting enough to be studied for its own sake, as it unifies and describes other
significant mathematical notions and since it leads to a never-ending stream of ex-
amples and applications in all areas of mathematics. These are somewhat arbitrarily
restricted to topology, algebra and (a small part of) discrete mathematics in this
book, although other areas, such as functional analysis, would provide an equally
rich and interesting supply of examples. We also had to restrict the themes in our
theoretical exposition. In spite of the fact that closure operators generalize the uni-
versal closure operations of abelian category theory and of topos- and sheaf theory,
we chose to mention these aspects only en passant, in favour of the presentation
of new results more closely related to our original intentions. We also needed to
refrain from studying topological concepts, such as compactness, in the setting of
an arbitrary closure-equipped category, although this topic appears prominently in
the published literature involving closure operators.

Readers of the book are expected to know the basic notions of category theory
(such as functor, natural transformation, limit), although many standard notions
are being recalled in the text or in the exercises. Some of the exercises should be
considered part of the exposition of the general material and should therefore not be
omitted, while others deal with specific applications and can be selected according to
the Reader's background and interest. Each section contains at most one Theorem,
one Proposition, one Lemma, one Corollary, and one set of Remarks and Examples,
with very few exceptions. Hence "Proposition n.m" refers to the Proposition of Sec-
tion n.m; in the exceptional case that Section n.m does contain a second proposition,
this will be labelled as Proposition* of n.m. Readers interested in new results on
(non-)cowellpowered subcategories of topological spaces as presented in Chapter
8 might be able just to browse through Chapters 2,4,6,7 and still understand the
material.

We have, over the past seven years, benefitted from the interest in and advice
on our work from many colleagues, including Jill Adamek, Alessandro Berarducci,
Reinhard Borger, Francesca Cagliari, Gabriele Castellini, Maria Manuel Clementino,
Eraldo Giuli, David Holgate, Jiirgen Koslowski, Hans-Peter Kiinzi, Bob Lowen, San-
dra Mantovani, Jan Pelant, Nico Pumpkin, Jill Rosicky, Alberto Tonolo, Anna Tozzi,
Vladimir Uspenskij and Stephen Watson. We also thank the institutions that made
possible our joint work: the Bulgarian Academy of Sciences, the Natural Sciences and
Engineering Council of Canada, York University, Fernuniversitat Hagen, the Uni-
versities of L'Aquila, Sydney, Trieste and Udine. Finally we thank Xiaomin Dong
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and Sandro Fusco for proof-reading early versions of the text, Angelo Montanari for
his computer support, Luis Molina for his help in providing the typescript of chap-
ters 1-5, Francis Borceux for letting us use his diagram package, and the publishers
for their patience with the authors, who still feel that they have just started their
project but would probably never have finished it without the moral support of their
best friends Giovanna D'Agostino, Alberto Policriti and Helene Massam.

Udine and Toronto, February 1995



Introduction
Closure operators (also closure operations, systems, functions, or relations) have
been used intensively in Algebra (Birkhoff [1937], [1940], Pierce [1972]) and Topology
(Kuratowski [1922], [1933], Cech [1937], [1966]). But their origins seem to go back to
foundational work in Analysis by Moore [1909] and Riesz [1909] who both presented
related notions at the "IV Congresso Internazionale dei Matematici" in Rome in 1908
(as was pointed out recently by Germano and Mazzanti [1991]). Early appearances
of closure operators are also to be found in Logic (see Hertz [1922] and Tarski
[19291) before Birkhoffs book on Lattice Theory 119401 led to more concentrated
investigations on the subject, particularly by Ward [1942], Monteiro and Ribeiro
[1942], Ore [1943a, b], and Everett [1944].

Category Theory provides a variety of notions which expand on the lattice-
theoretic concept of closure operator most notably through the notion of reflective
subcategory (see Reyd (19641, [1972], Kennison [1965], Herrlich [1968]), predeces-
sors of which are present in the works of Samuel [1948], Bourbaki [1957], and Sonner
[1963]. The notions of Grothendieck topology and Lawvere-Tierney topology (see
Johnstone [1977] and Mac Lane and Moerdijk [1992]) provide standard tools in
Sheaf- and Topos Theory and are most conveniently described by particular closure
operators.

Both lattice-theoretic and categorical views of closure operators play an impor-
tant role in Theoretical Computer Science, again in a variety of ways. We men-
tion only Scott's work [1972], [1982] which laid the foundations of domain theory,
and we point to the vast literature on generalized functorial Tarski-type least-fixed-
point constructions (see, in particular, Wand [19791, Koubek-Reiterman [1979], Kelly
[1980]).

The immediate aim of introducing closure operators is to describe conveniently
the closure of a substructure with respect to a certain desirable additional property.
Well-known examples are the (usual Kuratowski) closure of a subspace of a topo-
logical space, or the normal closure of a subgroup of a group, or the Scott closure in
a directed-complete partially ordered set. Lattice theorists usually define a closure
operation c of a lattice L (with bottom element 0 ) to be a function c : L -. L
which is

extensive (m < c(m))

monotone (m < n c(m) < c(n))

idempotent (c(c(m)) = c(m))

and sometimes require c to be also

grounded (c(0) = 0)

additive (c(m V n) = c(m) V c(n))

From the categorical point of view, these systems of axioms turn out to be both
insufficient and too restrictive. They ignore the important fact that, in the examples
mentioned before, the closure operation c is available in each subobject lattice,
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and that every morphism f : X -r Y is continuous with respect to the closure
operation:

f(cx(m)) 5 cy(f(m))
for every subobject m of X . Like Cech [1959] in his Topology book, we do
not assume idempotency of a closure operation a priori. Therefore, when calling a
subobject m with c(m) = m to be c-closed, in general, we do not expect the
closure c(m) of m to be c-closed. However, normally c-closedness may eventually
be achieved by repeated (transfinite) application of c : m < c(m) < c2(m) < . . . <
c°O (m) .

In an arbitrary category X with a suitable axiomatically defined notion of
subobject, a (categorical) closure operator C is defined to be a family (cx)xex
satisfying the properties of extension, monotonicity and continuity (see Dikranjan
and Giuli [1987a], Dikranjan, Giuli and Tholen [1989]). The first five chapters of this
book give a comprehensive introduction to the most important special properties and
constructions involving closure operators. In addition to idempotency and additivity,
these include hereditariness (for subobjects m < y of X with y : Y --* X , the
closure of m in Y is obtained by intersecting its closure in X with y) and
productivity ( c preserves direct product of subobjects). Closure operators may be
ordered like subobjects, and the properties of closure operators that we are interested
in are either stable under taking infima or suprema. This is the reason why each
closure operator has, for instance, an idempoteni hull (which, in most cases, may be
"computed" by an iterative process, as indicated above) and an additive core. Under
the transition from C to its idempotent hull, say, other properties may or may not
be preserved. Here, for instance, additivity survives the passage, but hereditariness
does not in general.

We examine all these properties and constructions carefully, both in terms of
theory and of examples, taken predominantly from topology, algebra, and discrete
mathematics. This enables us not only to detect common features and construction
principles, but also to point to striking dissimilarities. For instance, with respect
to the seemingly harmless condition of groundedness, one shows easily that in the
category of topological spaces each non-trivial closure operator is grounded, whereas
in the category of R -modules only trivial closure operators are grounded. Similarly,
additivity is a common property for closure operators in topology but extremely
restrictive for R-modules.

While Chapters 1-4 keep the needed categorical apparatus limited, in Chapter
5 we give various functorial descriptions and constructions with closure operators
which underline the naturality of the notion. First of all, a closure operator of a
category X is nothing but a pointed endofuncior of the category of all subobjects of
X. Iterations of this endofunctor as used in functorial fixed-point constructions lead
to its idempotent hull (if they 'converge"). Closure operators may also be interpreted
as generalized factorization systems: a morphism f gets factored through the
closure of its image,

X-'c(f(X))-Y.
But only if the closure operator is idempotent and if it satisfies a weak hereditariness
property does one obtain a (dense, closed)-factorization. However, these two special
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classes of morphisms enjoy the important properties of colimit- and limit stability
even in the general case. In the category of R-modules, closure operators (and their
properties) correspond to (the theory of) preradicals. Not only does this correspon-
dence offer a rich supply of examples, but it is also extendable to our general context
and turns out to be useful in non-Abelian structures as well. Hence preradicals offer
a third (but more restrictive) interpretation of closure operators.

Categories which come equipped with a fixed closure operator behave like (large)
"spaces" the interaction of which is described by continuous functors. Similarly to
the weak (=initial) topology, for any functor F : X -> Y and any closure operator
D of Y , one has a coarsest (=largest) closure operator C of X which makes
F continuous; analogously for final structures. Hence closure operators may be
pulled back or pushed along functors. In important cases (if F is a fibration, or if
F is left- or right-adjoint) one obtains concrete construction procedures for closure
operators defined this way. For example, in the category of topological groups we are
able to establish closure operators very effectively by pulling back closure operators of
both the categories of (discrete) groups and of topological spaces along the respective
forgetful functors.

Chapters 6-9 are, generally spoken, devoted to the epimorphism problem, that
is: to the characterization of those morphisms f : A -+ B of a category A which
satisfy the cancellation property (u f = v f at = v) . Closely related to this
is the question whether A is cowellpowered, this is: whether for every object A
in A there is only a small set (not a proper class) of non-isomorphic epimorphisms
with domain A . We shall mostly assume that A is a full subcategory of X ,
and our aim is to find an effectively defined closure operator C of X such that
the epimorphisms of A are characterized as the C-dense morphisms in A.

Two typical examples from topology illustrate this approach. In the category
of Hausdorff spaces (spaces in which distinct points can be separated by disjoint
open neighbourhoods), the epimorphisms are exactly described by the dense maps
with respect.to the usual Kuratowski closure (i.e., maps whose image is closed in
the codomain). Furthermore, since the size of a Hausdorff space Y containing a
dense subspace X is bounded by 2"-d(x) , this category is cowellpowered. In
the category of Urysohn spaces (spaces in which distinct points can be separated by
disjoint closed neighbourhoods), the epimorphism- and cowellpoweredness problem
is much harder. It seems natural to consider the so-called 0-closure of a subspace
M of a topological space X first introduced by Velic"ko [19661, which is given by the
points x E X such that every closed neighbourhood of z meets M . Although
-epimorphisms of the category of Urysohn spaces are not necessarily 9-dense, the
9-closure leads to the right track: they are characterized as the 9°°-dense maps,
with B°° the unbounded transfinite iteration of 0 , that is the idempotent hull of
0 . Schroder [1983) constructed, for every cardinal sc , an Urysohn space Y," of
cardinality ec which contains the space Q of rational numbers as a Q°°-dense
subspace. Consequently, the category of Urysohn spaces is not cowellpowered.

We begin our investigations on epimorphisms in Chapter 6 which deals with
the regular closure operator regA induced by a subcategory A of X . It was
introduced in a topological context by Salbany [1976), but the factorization it induces
in A is exactly Isbell's [1966] dominion factorization which led him to characterize
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the epimorphisms of semigroups and other algebraic categories (see also Cagliari and
Chicchese [1982]). Since within the category A , regA-dense means epimorphism
and regA-closed means regular monomorphism, effective computational methods for
regular closure operators need to be developed. Often this is achieved by providing
a closure operator C of X such that its idempotent hull coincides with regA, at
least when restricted to A ; for instance 0 does this job for A = Ury . In other
instances, one first needs to "modify C along cokernelpairs" before being able to
reach the regular closure via the idempotent hull.

An intensive study of the cokernelpair X +M X in X of the subobject m :
M -* X with X E A is in fact the first step in tackling the epimorphism problem
in any non-trivial situation. For "most" categories X it turns out that for m
to be regular monomorphism of A , it is necessary and sufficient that X +M X
already belongs to A , as explained by the Magic Cube Theorem (6.4) and Frolik's
Lemma (6.5).

There are various ways of reversing the passage A reg-4 which are being
studied in Chapter 7. For example, as Hausdorff spaces are characterized as the
topological spaces X with closed diagonal AX in X x X , one can show in a fairly
general categorical context that the objects of any regular-epireflective subcategory
A of X are those objects X with regd-closed diagonal (cf. Giuli and HuSek
[1986], Giuli, Mantovani and Tholen [1988].) Hence the passage that assigns to
any closure operator C the so-called Delta-subcategory of objects with C-closed
diagonal is of particular interest in the context of the epimorphism problem. It is
used to characterize the additive regular closure operators, which are of particular
interest for the epimorphism problem in subcategories of topological categories. In
general, having a subcategory A of X, it is often advantageous to look for
intermediate categories B such that the inclusion functor A B preserves
epimorphisms. We present two good candidates for B and describe them in terms
of closure operators which are intimately connected with the regular closure operators.

Chapter 8 contains a variety of known or new results on Haus of Hausdorff spaces
These are large families of subcategories either containing Haus or being contained
in Haus for which we present unified criteria and constructions for epimorphisms
and (non-)cowellpoweredness.

While every "reasonable" ranked category in algebra is cowellpowered (see Isbell
[1966], Gabriel and Ulmer [1971], Adamek and Rosicky [1994]), the epimorphism
problem remains highly interesting. We concentrate our investigations on areas
where closure operators are useful in deriving new results. For instance, Theorem
8.9 gives a complete description of subcategories of R-modules with surjective
epimorphisms, and Theorem 8.10 provides a closure-theoretic description of
epimorphisms in the category of fields.

As indicated above, closure operators may be described by (generalized) factor-
ization systems. On the other hand, factorization systems (.6,M) with special
stability properties of the class E characterize reflective subcategories and local-
izations (see Cassidy, Hebert and Kelly [1985], Borceux and Kelly [1987]), the latter
of which are described in Topos Theory by Grothendieck- and by Lawvere-Tierney
topologies. LT-topologies are simply idempotent and weakly hereditary closure op-
erators whose dense subobjects are stable under pullback. We discuss them briefly



Introduction xvii

in Chapter 9, concentrating on the Delta-subcategory which they induce. Under
light assumptions on the category, one can effectively construct the reflector into
the Delta-subcategory, and its epimorphisms are just the dense morphisms.

Closure operators can be used to study topological concepts, such as separated-
ness, regularity, connectedness, and compactness, in abstract categories which are
endowed with a closure operator (see in particular Manes [1974], Herrlich, Salicrup
and Strecker [1987], Giuli [1991], Dikranjan and Giuli [1988b], [1989], [1991], Fay
[1988], Castellini [1992], Clementino [1992], Fay and Walls [1994]). We emphasize
that it is not the aim of this monograph to pursue these concepts to any extent. How-
ever, notions of separatedness and (dis-)connectedness appear throughout Chapters
6-9 to the extent to which they are of interest in conjunction with the epimorphism
problem.





1 Preliminaries on Subobjects, Images,
and Inverse Images

In this chapter we provide the basic categorical framework on subobjects, inverse
images and image factorization as needed throughout the book.

1.1 M-subobjects
A closure operator in the category of sets assigns to every subset M of a set

X an intermediate set cX(M) such that certain properties hold. In the category
of topological spaces, we shall be considering subspaces M of a space X , and in
the category of groups subgroups M of a group X to which a closure operator
can be applied. In an arbitrary category X, we must first provide a suitable notion
of subobject. These subobjects are described by special morphisms M X in
X which, in concrete categories of interest, may be safely thought of as inclusion
maps M ' X .

In order to allow for sufficient flexibility, we define subobjects by introducing an
additional parameter: we consider a category X and a fixed class M of monomor-
phisms in X which will play the role of subobjects. (That every morphism in M
is assumed to be a monomorphism of X is not essential, but it facilitates an easy
presentation of the framework; see Exercise 1.G.)

For every object X of X, let MIX be the class of all M-morphisms with
codomain X ; the relation given by

m<nq(3j)

is reflexive and transitive, hence MIX is a preordered class. Since n is monic,
the morphism j is uniquely determined, and it is an isomorphism of X if and
only if n < m holds; in this case m and n are called isomorphic, and one
writes in - n . Of course, - is an equivalence relation, and MIX modulo
is a partially ordered class for which we can use all lattice-theoretic terminology and
notations, such as A , V , A , \/ , etc. In fact, we shall use these notations for
elements of MIX rather than for their a-equivalence classes both of which we
refer to as M-subobjects of X ; the prefix M is often omitted. This means that,
for m, n E M/X , m A n denotes. a representative in MIX of the meet of the
=-equivalence classes (whenever the meet exists).
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In other words, with m denoting the =-equivalence class of m , we have the
equivalences

m<n
m25n

p
<*

rn<n
m=n
k= An,

and analogously for V, A, V . We will exclusively use the notation given by the
left-hand sides of these equivalences.

It is convenient to assume throughout this book that

M is closed under composition with isomorphisms (so that for every commu-
tative diagram (1.1) with arbitrary morphisms m , n and an isomorphism
j ,one has m E M if and only if n E M )

M contains all identity morphisms (hence all isomorphisms in light of the
previous requirement).

This may seem like a departure from our original intuition. However, in all
concrete examples there will be a natural subclass Mo of M available such that,
for every in E MIX , there is exactly one isomorphic copy of m in Mo/X , i.e.
Mo/X is a (categorical) skeleton of MIX for every X . In this case, Mo/X
is order-isomorphic to MIX modulo = , and we call Mo a skeleton of M.

Note that, in general, MIX is a proper class. X is called M-wellpowered if
there is a skeleton Mo of M such that each class Mo/X is small; equivalently,
if MIX modulo = can be labeled by a small set for every object X . In the
examples which are of interest to us in this chapter, X is always M-wellpowered.
However, we shall encounter many counter-examples in Chapter 8 (in the dual set-
ting).

EXAMPLES

(1) In the category Set of all sets and mappings, let M be the class of all
monomorphisms (i.e., all injective maps). In MIX , every injective map m
M -r X is isomorphic to the inclusion map m(M) c-. X . Hence, the class Mo
of inclusion maps provides a natural skeleton for MIX . In other words, MIX
modulo = is isomorphic to the power set 2X ordered by inclusion.

(2) In the category Top of all topological spaces and (continuous) maps, let M
be the class of embeddings (i.e. injective maps in : M - X such that the set of
open sets in M is {m-'(U) : U open in X} ). A skeleton Mo of M is given
by the inclusion maps of subspaces (since, for m : M -+ X in M, m induces a
homeornorphism of M and the subspace m(M) of X ).

(3) The class Mo of inclusion maps of subgroups is a skeleton of the class M
of all injective homomorphism in the category Grp of all groups and their homo-
morphisms.
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1.2 Inverse images are M-pullbacks
inverse images of M-subobjects are given by pullback. More precisely, for our

fixed class M of monomorphisms in the category X, we say that X has M-
pullbacks if, for every morphism f : X --+ Y and every n E M/Y , a pullback
diagram

M

ml

f' N

In

X f Y
exists in X with m E M/X ; hence n f' =f m , and whenever f g = n h
holds in X, then there is a (necessarily uniquely determined) morphism t with
m t = g (and f' t = h ). Of course, as an M-subobject of X , in is uniquely
determined up to isomorphism; it is called the inverse image of n under f and
denoted by f-1 (n) : f-1 (N) --+ X . The pullback property of (1.2) yields that

f-1(-):M/Y-+M/X
is an order-preserving map so that

k < n , f'1 (k) < f-1(n)

holds.

f-'(N)

f-1(K) K
I /n (1.3)f-i(n)

k

X --- Yf

1.3 Review of pairs of adjoint maps
Images of subobjects are given by (left-) adjoints to the maps f-1 (-) . Hence

we first review the notion of adjointness in the context of preordered classes (i.e.
classes which come equipped with a reflexive and transitive relation < ).

A pair of mappings rp : P -+ Q , 10 : Q -+ P between preordered classes
P, Q is called adjoint if
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(*) m<ib(n)grp(m)<n

holds for all in E P and n E Q . One says that (p is left-adjoint to 0 or t& is
right-adjoint to rp in this case and writes rp -1 ik . Adjoints determine each other
uniquely, up to the equivalence relation given by (x = y . x < y and y:5 x) :

LEMMA The following assertions are equivalent for any pair of mappings io
P -- Q , ty : Q --+ P of preordered classes:

(t) W -1 b ;

(ii) v/i is order-preserving, and rp(m) = min{n E Q : m < tb(n)} holds for all
mEP;

(iii) y is order-preserving, and t/i(n) = max{m E P : rp(rn) < n} holds for all
nEQ;

(iv) (p and i,11 are order-preserving, and

m < tb(ro(m)) and rp({b(n)) < n

holds for all m E P , nEQ .

Proof (i) (ii) & (iii) Putting n := p(m) in (*), one obtains m <_
V,(rp(m)) , hence rp(m) E Q,,, :_ {n E Q : m < tb(n)} . Furthermore, for all
n E Q,,, , (*) yields p(m) < n , hence rp(m) = min Q,,, . This formula implies
immediately that ip is order-preserving. Dually one obtains the formula for tb as
given in (iii), and that tai is order-preserving.

(ii) = (iv) As mentioned before, the given formula for rp implies its mono-
tonicity. Furthermore, since rp(m) E Q,,, , one has m < t/5(rp(m)) , and since
n E one has rp(tP(n)) < n for all rn E P and n E Q . (iii) #, (iv)
follows dually.

(iv) = (i) in < 0(n) implies rp(m) < rp(cb(n)) < n , and V(m) < n
implies in < q(i(rp(m)) < 0(n) . 0

The most important property of adjoint pairs is the preservation of joins and
meets:

PROPOSITION If rp ip , then So preserves all existing joins (=suprema), and
tfi preserves all existing meets (= infima). Hence one has the formulas

rp v mi J V p(mi) and (Ani) A ni) .

iEI ff iEI iEI iEI

Furthermore, b cp = rp and tb rp io = i& , so that rp and 0 give a bijective
correspondence between O(Q) and p(P) .

Proof By monotonicity of cp , rp(m) is an upper bound of {rp(mi) : i E I} ,
with m = V mi . For any other upper bound n , one has mi < thi(n) for all

iEI
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i E I by (*), hence m < i,b(n) . Application of (*) again yields cp(m) < n . This
proves that preserves joins. The assertion for vfi follows dually.

Furthermore, when applying the order-preserving map rp to the first inequality
of (iv) in the Lemma one obtains g(m) < cp(0(gp(m))) , and when exploiting the
second inequality in case n = gp(rn) one obtains go(1(i(cp(m))) < so(m) . Hence

and 0- o- i=0 follows dually.

The converse of the first statement of the Proposition holds if arbitrary meets
(and joins) exist in Q ( and P ):

THEOREM

(1) Lei Q have all meets (regardless of size of the indexing system I). Then a
mapping lJb : Q -- P has left-adjoint <p if and only. if 0 preserves all meets.

(2) Let P have all joins. Then a mapping sp : P -* Q has a right-adjoint 0
if and only if cp preserves all joins.

Proof It suffices to show (1) since (2) follows by dualization. Furthermore,
after the Proposition, we just need to show that preservation of meets by 10 yields
existence of a left-adjoint gp . Indeed, putting

rp(m)(`{nEQ:m< i(n)},

one obtains
06o(m)) n{tfi(n) : in < di(n)} > rn,

hence JO(m) E In E Q : m < di(n)} = Q,,, and So(m) = min Q,,, . As a meet-
preserving map, ik is order-preserving. Hence tp -{0 holds by the Lemma.
0

1.4 Adjointness of image and inverse image
Let X have M-pullbacks, and for every f : X - Y in X, let f-1 (-)

M/Y -* MIX have a left-adjoint

f (-) : M/X -+ M/Y .

For in : M X in MIX , we call f (m) : f (M) -+ Y in M/Y the image of
m under f ; it is uniquely determined (up to isomorphism) by the property.

(*) m<f-'(n)4*f(m)<n

for all n E M/Y . Furthermore, 1.3 yields the following formulas:

(1) m < k , f (m) < f (k) ;

(2) m<f-1(f(m)) and f(f-1(n))<n;
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(3) f (Vmi) Y f (mi);
IEJ

1

f iEl

For more formulas, see Exercises 1.K and 1.L.
Images can be characterized and constructed without reference to inverse images;

this is done in the following two sections.

1.5 The right M-factorization of a morphism
PROPOSITION Let X have M-pullbacks, and for f : X - Y in X, let
f -1 (-) have a left adjoint f(-) . Then there are morphisms e, in in X such
that

(1) f = m e with m : M -r Y in M, and

(2) whenever one has a commutative diagram

M

MI !'Y 'Z

in X with n E M , then there is a uniquely determined morphism w : M -+ N
with and

.11

Proof Consider m := f(lx) : f(X) -, Y . Since 1x :5f-'(m) , one obtains
a commutative diagram

X f-1(M)- M

(m) A.
m

f Y

With e the composite of the two top arrows of (1.5) one obtains (1). Given diagram
(1.4) with n E M , the pullback-property yields a morphism t : X -+ v-1(N) with
v'1(n) t = f . By the same property, one has a morphism s : X - f-1 (v-1(N))
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with f-1 (v-1(n)) s = lx , i.e. lx < f-1 (v-1(n)) . Therefore in = f(lx) <
V-1 (n). by adjointness. Now w is the composite of the two top arrows of (1.6).

M -.v'1(N)-. N

By definition, n to = v in . Since n is monic, to is uniquely determined by this
equation,and followsfrom 0

Properties (1) and (2) determine e and m uniquely up to isomorphism: if
e' and m' satisfy (1) and (2) as well, then there is an isomorphism t with

and (consider n=m', u=e', v=ly ).
Any factorization f = m e such that properties (1) and (2) hold is called the

right M -factorization of f . Property (2) is called the diagonalization property of
the factorization.

These notions may be considered for any class M, not just classes of monomor-
phisms. Dually, for any class £ of morphisms in X, one has the notion of a left
£-factorization of f in X, that is a right E-factorization of f in the oppo-
site category of X; just reverse the arrows in (1.4) and interchange the roles of
e and m.

1.6 Constructing images from right M-factorizations
Let every morphism in X have a right M-factorization. For f : X Y in

X and in : M -+ X in M, one defines f (m) : f (M) - Y to be the M-part of
a right M-factorization of the composite f in .

AM)

AM)

f -Y
Property (2) of 1.5 implies that the map

f(-) : M/X -+M/Y
is order-preserving. In case X has M-pullbacks, f (-) is left-adjoint to

THEOREM The following assertions are equivalent:

(i) X has M-pullbacks, and every morphism has a right M-factorization;
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(ii) X has M-pullbacks, and f-1 (-) has a left-adjoint for every morphism f ;

(iii) every morphism has a right M-factorization, and f (-) has a right-adjoint
for every morphism f .

Proof ((i) (ii)) & ((i) iii)) For f (-) as defined above, we must show
f(-) -i f'1 (-) . In fact, m < f-1 (f(m)) follows from the pullback property
and f (f -1 (n)) n from the diagonalization property. Hence Lemma 1.3 gives
adjointness since both f(-) and f-1 (-) are order-preserving.

(ii) = (i) follows from Proposition 1.5.
(iii) (i) Denote the existing right-adjoint of f (-) by f-1 (-) . For every

n : N -+ Y in M one has a commutative diagram

We must show that it is a pullback diagram in X. In order to check the universal
property, we consider morphisms g : Z -+ X and h : Z -+ N with f g = n h
and form the right M-factorization g = k e of g with k : K --- X E M

The diagonalization property yields a morphism to rendering

Z h

x f

N

n

Y

commutative, and by the same property one has f (k) < n . Therefore, k <
f-1 (n) by adjointness. Hence, there is a morphism j : K - f-1 (N) with
f-1 (n) j = k . Consequently, for t := j e : Z --+f-'(N) one has f-1 (n) t =

k-e = g . Since n and f-1 (n) are monic, t is uniquely determined and satisfies
also f' t = h with f' the composite of the upper two horizontal arrows of (1.8).
This completes the proof. 0

We call X finitely M-complete if one (and then all) of the assertions of the
Theorem hold.
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EXAMPLES

(1) Every category is finitely M-complete for M the class of isomorphisms.

(2) In each of the Examples 1.1, the category in question is (obviously) finitely
M-complete. In each case, the right M-factorization of a morphism f : X -+ Y
is given by its image f (X) considered as a subobject of Y .

(3) Here is a natural example where M-factorizations are not given by the set-
theoretic image: in Top, let M be the class of closed embeddings. Then Top is
finitely M-complete; the right M-factorization of a map f : X -+ Y is given by
the closure of f (X) C Y .

(4) (Existence of M-pullbacks does not imply existence of right M-factorizations)
Let now M be the class of open embeddings in Top. Obviously, M-pullbacks exist.
On the other hand, it is easy to see that f :R --+ R , x +-+ x2 , does not have a
right M-factorization (see Exercise 1.B).

(5) (Existence of right M-factorizations does not imply existence of M-pullbacks)
In the category CTop of all connected topological spaces, every map has obviously
a right M-factorization, with M the class of embeddings. But M-pullbacks fail
to exist (see Exercise I.B).

1.7 Stability properties of M-subobjects

For M-subobjects m : M -+ X and n : N -+ Y in M , the direct product
M x N -+ X x Y should also be an M-subobject. Here is a much more general
result:

PROPOSITION Let every morphism in X have a right M-factorization. Then,
for any diagram type D, M is closed under D-limits; this means that, for any
natural transformation p : H --+ K with H , K : V -+ X , k = limp : lim H --+

limK belongs to M if every µd , d E D , belongs to M.

Proof (Since we shall prove a more general result in 5.2, we just give a sketch
here.) Consider a right M-factorization k = m e and, for every d E V , apply
the diagonalization property to:
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lim H_- Hd

I
M Ilzd

limK ' Kd

(1.10)

Then the limit property of lim H is used to find an inverse of et' hence k =

Most other stability properties which one usually expects to hold, follow from
closedness under limits:

THEOREM Let M be closed under D-limits for every D. Then one has:

(1) M is closed under arbitrary direct products.

(2) M is stable under pullback, that is for every pullback diagram

M f +N

m n

X f -Y
n E M implies m E M.

(3) If n m E M with n monic, then m E M

(4) M is stable under multiple pullback, that is: for every multiple pullback di-
agram
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mf E M for all i E I implies m E M.

(Multiple pullbacks are considered in more detail in 1.9 below.)

Proof

(1) Consider discrete diagram types D

(2) Given the pullback diagram (1.11), consider

N n

(1.12)

(1.13)

Since both top and bottom face are pullback diagrams, M is the limit of the
diagram H given by f and n , and X is the limit of the diagram K given
by f and ly . The three vertical arrows lx , ly , n constitute a natural
transformation ec : H -- K which belongs pointwise to M . Hence its limit m
belongs also to M.

(3) If n m E M with n monic, then one has a pullback diagram

M 1M M

m
turn

N n X
(1.14)

Hence m E M follows from (2).

(4) Consider the multiple pullback diagram (1.12) with every mi E M . Then
M is the limit of the diagram H given by (mi)iEi . Let K be a diagram of the
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same type with constant value 1x . We have a natural transformation P : H -+ K
given by the rut's, hence pointwise in M. Therefore its limit rn is also in M. 0

REMARK We emphasize that we distinguish between stability under pullback (as
defined in the Theorem) and closedness under D-limits (as defined in the Proposi-
tion), for D = {- - - ) . The proof of (2) of the Theorem shows that the latter
property implies the former. The converse proposition holds under mild additional
hypotheses.

COROLLARY Let X have pullbacks, and let every morphism in X have a right
M-factorization. Then X is finitely M-complete.

Proof By the Proposition and the Theorem, M is stable under pullback. Since
X has pullbacks, M-pullbacks exist in X. 0

1.8 M-subobjects of M-subobjects

For M-subobjects m : M -+ N and n : N -+ X , the composite n m : M ,
X should be an M-subobject. But closedness under composition is suspiciously
absent from the stability properties of M listed in 1.7, for a good reason: finite
M-completeness does not imply that M is closed under composition.

EXAMPLE In the category Grp of groups, let M be the class of those injective
homomorphisms f : G -+ H for which f (G) is normal in H . Obviously, Grp is
M-complete (the right M-factorization of a homomorphism f : G -+ H is given

by the normal closure of f (G) in H ). However, if N is a normal subgroup of
G and M is a normal subgroup of N , M need not be normal in G (consider
the group D4 of symmetries of the square).

Closedness of M under composition makes right M-factorizations "symmetric
in both factors":

THEOREM The following two assertions are equivalent:

(i) every morphism has a right M-factorization, and M is closed under compo-
sition;

(ii) there is a class £ of morphisms in X such that

(1) every morphism f in X has a factorization f = rn e with m E M
and e E £ , and

(2) for every commutative diagram
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X U -M

(1.15)

Y v -- Z
with e E £ and in E M , there is a uniquely determined morphism
w:Y-.M with and

Proof (i) = (ii) We write e 1 m and we say that c is orthogonal to in
if for every commutative diagram (1.15) there is exactly one to with to e = u
and m - w = v . Let £ be the class

M1 :={eEMorX:(bmEM)e.Lm}.

It then suffices to show that, when forming the right M-factorization of f = m e :
X --+ Y , one has e E £ . To this end, we form the right M-factorization of
e = n d : X -+ M and apply the diagonalization property of the first factorization
to

(1.16)

Since m- n E M one obtains a morphism t: M -* N with m- n- t= m. Since
m and n are monic, n is an isomorphism. Now the diagonalization property of
the second factorization easily yields e E M' = £ .

(ii) * (i) We first show that M must coincide with the class

£1:={mEMorX:(VeE£)elm}.
Property (2) gives M C £1 . Vice versa, for in E £1 consider a factorization
m= k- c with k E M and c E£ (which exists by (1)).

M 1M M

(1.17)

k
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Since m E £i there is a morphism w : K - M with to c = 1M and m to = k .
Since k is monic, also to is monic. Hence c is an isomorphism, and we have
m = k E MIX . Now it is a straight exercise to prove that £1 is closed under
composition (see Exercise 1.E).

One says that X has (£, M)-factorizations if condition (1) and (2) of (ii) (and
therefore (i)) of the Theorem holds; property (2) is referred to as the (£ , M) -
diagonalization properly. Note that the proof of the Theorem shows that £ and
M determine each other uniquely (provided also £ is assumed to be closed under
composition with isomorphisms). (£,,M)-factorizations are simultaneous right M-
and left £-factorizations (see Exercise 1.N).

In each of the Examples 1.1, the category has (£ , M) -factorizations, and
£ is given by the surjective maps. In general, however, £ need not be a class of
epimorphisms of the category. For instance, since the class M of closed embeddings
in Top is closed under composition, there is a class E such that Top has (9, M) -
factorizations. £ is the class of all dense maps f : X - Y in Top (that is: the
image f(X) is dense in Y ); these are not necessarily epic in Top.

All results presented so far could have been established without assuming M to
be a class of monomorphisms (see Exercise 1.G). Without that assumption one has
a perfect duality principle: if X has (£ , M) -factorizations, X°P has (M , £) -
factorizations. In particular: whatever property holds for M in general, its dual is
valid for E. Therefore, from the Theorem and from Proposition 1.7 one obtains:

COROLLARY If X has (£,M) -factorizations, then M is closed under 'D-
limits and £ is closed under D-colimits for every V; both classes are closed under
composition.

1.9 When the subobjects form a large-complete lattice
If X has M-pullbacks and if M is closed under composition, the preordered

class MIX has binary meets for every object X : one obtains the meet

mAn:MAN-+X
of two M-subobjects m : M -* X and n : N -* X as the diagonal of the
pullback diagram

MAN- N

In general, for any M, we say that X has M-intersections if for every family
(m=)IEJ in MIX (I may be a proper class, or empty), a multiple pullback
diagram
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(1.19)

exists in X with in E MIX ; hence mi ji = in for all i E I , and whenever one
has g : Z -. X and hi : Z --+ M i with mi hi = g f o r all i E I then there is
uniquely determined morphism t : Z -+ M with in t = g and ji t = hi for all
i E I . One easily verifies that m indeed assumes the role of the meet of (mi)iE7
in MIX . Hence one writes

m=Am,: Ami-x-
ilEl

But we often call in the M-intersection of (mi)iEI in order to emphasize its
categorical characterization as a multiple pullback. Of course, we speak of finite
M-intersections if I is finite.

Whereas the assumption that M be a class of monomorphism was put only for
convenience in the previous sections, every morphism in M is necessarily monic if
X has M-intersections (with no restriction on the size of the indexing system I):
see Exercise 1.F. In other words, assuming M to be a class of monomorphisms is
no longer a restriction of generality if X is assumed to have M-intersections.

PROPOSITION If X has M-intersections, then every preordered class MIX
has the structure of a large-complete lattice, i.e., class-indexed meets and joins exist
in MIX for every object X E X

Proof As usual, one constructs the join of (mi)iEI in MIX as the meet of
all upper bounds of (mi)iE7 in MIX .

If X has also M-pullbacks, it is easy to see that the join in E MIX of
(mi)iE7 has the following categorical property: there are morphisms ji (i E I)
such that

(1) for all iEI;
(2) whenever one has commutative diagrams
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M; Nu;

jil

M

MI

n

(1.20)

X v Z

in X with n E M , then there is a uniquely determined morphism w : M -r N
with and forall iEI.

A subobject m E M/X is called an M-union of (m;)iEI if this categorical
property holds. Letting v = lx in (1.20) one sees that unions are joins in MIX,
hence one writes

m=Vm; : VMi-.X.
iEI iEI

X is said to have (finite) M-unions if for every family (m;)iEI in MIX (with
I finite) an M-union exists.

COROLLARY If X has M-pullbacks and M-intersections, then X has M-
unions. 0

A category may have M-pullbacks and M-unions (hence each MIX is a
large-complete lattice), but fail to have M-intersections (i.e. meets in MIX may
fail to be intersections): Top with M= { open embeddings } (cf. Example (4)
of 1.6) has M-pullbacks and M-unions; but the meet of open sets Ui g X is
just the interior of n (Ji , hence is in general properly smaller than the multiple

iEI
pullback in Top.

1.10 The right .M-factorization of a sink
If X has M-pullbacks and M-intersections, f -; (-) : M/Y -+ MIX pre-

serves all meets for f : X - Y (since the latter are given by limits in X, and limits
commute with limits). Consequently, f has a right M-factorization (by Theorem
1.3 and Proposition 1.5), hence X is finitely M-complete. Next we shall show that
a much stronger result can be obtained: any class-indexed family (fi : Xi - Y)iEI
of morphisms in X with common codomain, commonly called a sink, can be si-
multaneously factorized. A right M-factorization of the sink (fi)iEI consists of
morphisms m E M and ei (i E I) in X such that

(1) forall iEI with m:M-Y;
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(2) whenever one has commutative diagrams

Xi Nui

eit

M n

(1.21)

tni

Y" Z
in X with n E M , then there is a uniquely determined morphism w : M --, N
with and forall iEI.

We refer to (2) as the simultaneous diagonalization property. Note that the sink
(fi : Xi - Y)iE1 may be empty in which case its right M-factorization is given by
the least subobject of Y (see 1.11).

THEOREM The following assertions are equivalent:

(i) X has M-pullbacks and M-intersections;

(ii) X has M-unions, and every morphism in X has a right M-factorization;

(iii) every sink in X has a right M-factorization.

Proof (i) = (ii) follows from the remarks above and from Corollary 1.9.

(ii) (iii) Given the sink (fi : Xi -+ Y)TEI , first form the right M-
factorization of each fi = mi di and then consider the M-union m : M Y
of (mi)iEt . Hence one has ji with m - ji = mi , so that ei := ji di satisfies
m ei = fi for all i E I . The simultaneous diagonalization property follows easily
from the diagonalization property for each fi and the characterization of m as a
union.

(iii) . (i) For f : X --> Y and n : N --+ Y in M we must show the
existence of a pullback diagram

(1.22)
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with m E M : let (gi : Zi --. X)iEi be the family of all morphisms gi such that
there is a morphism hi : Zi --> N with f gi = n hi . Factoring (gi)iEl and
applying the simultaneous diagonalization property gives morphisms in E M and
f' with f m = n f' as well as morphisms ei : Zi -} M with m ei = gi for all
i E I . The latter morphisms guarantee that the universal property holds so that
(1.22) is a pullback diagram.

The proof that M-intersections exist in X is very similar to the one just given.
We leave it as an exercise to the reader (cf. Borger-Tholen [1990]).. 0

X is called M-complete if one (and then all) of the properties of the Theorem
hold. Trivially, M-completeness implies finite M-completeness; the converse
implication does not hold in general (see Example (2) below). We also note that
M-completeness does not imply closedness under composition for M (Example 1.8
may be re-employed here).

COROLLARY Let the complete category X be M-wellpowered. Then X is
M-complete if and only if M is stable under pullback and multiple pullback.

Proof One has to show that any class-indexed family (mi)iEJ in MIX has an
intersection if X is complete and M-wellpowered. But since X is M-wellpowered
there is a small subfamily (in1))EJ with J C I such that every mi is isomorphic
to some m.J . Therefore, the multiple pullback of (mj)JEj (which exists since X
is assumed to have all small limits) serves also as a multiple pullback of (mi)WET
The rest of the proof is trivial. 0

EXAMPLES

(1) The right M-factorization of a sink (fi : Xi -+Y)iE' in Set with M the
class of injective maps is given by

Xi-M=Ufi(Xi)-Y.

iEl

When considering M as a subspace of Y , one obtains the right M-factorization
in Top with M the class of embeddings. In Grp with M the class of injective
homomorphisms one must exchange M for the subgroup generated by M . In
each case, one has an M-complete category.

(2) A poset (X , <) can be considered a (small) category X: the set of X-
objects is X , and there is a morphism x --> y iff z < y , and then there is only
one such morphism. Hence every morphism in X is monic (and epic), and we can
let M be the set of all X-morphism. X has (E, M) -factorizations, with E
the set of isomorphisms (= identity maps) in X, and X has (M-)pullbacks if
(X, <) has binary meets. However, (M-)completeness of X means completeness
of (X , <) as a lattice. Hence every non-complete semilattice gives an example of
a finitely M-complete but not M-complete category.
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1.11 The last word on least and last subobjects
M/X always has a largest element, lx . It is the intersection of the empty family
of M-subobjects of X . Obviously, f -1(1y) = 1X holds for every f : X - Y .
The union of the empty family in MIX (if it exists) is called the trivial M-
subobject of X ; it is the least element of MIX and therefore denoted by

Ox : OX -* X .

Its characteristic categorical property (cf. Diagram (1.20)) reads as follows: for
every diagram

(1.23)

with n E M there is a uniquely determined morphism to : Ox -+ N with n w =
v ox . If f : X ---. Y has a right M-factorization, its diagonalization property
easily gives f (ox) = oy . For f E M and M closed under composition, this
means f ox = oy , hence Ox = Oy .

PROPOSITION Under each of the following hypotheses, an object X of X has
a trivial M-subobject:

(a) X has finite M-unions ;

(b) X has M-pullbacks, and MIX has a least element;

(c) X has an initial object, and every morphism has a right M-factorization.

Proof (a) By definition. (b) In order to show that the least element ox
in MIX satisfies the categorical property, obtain the desired arrow w in (1.23)
as the composite Ox --+ v-1 (N) - N . (c) For an initial object I of X, obtain
ox as the M-part of the right M-factorization of the only morphism I -* X.

An object X in X is called trivial if MIX has only one element, up to
isomorphisms; if ox : Ox -+ X exists, this means ox = 1x , or ox is an
isomorphism. In this terminology, Ox is a trivial object of X , provided M is
closed under composition.

Note that if there is a morphism f : X -+ Y , one has a morphism O1 : Ox -+
fly (with Oy Oj = f ox ).

In general, if there is no morphism X - Y , there may be no morphism Ox -+
Or either:
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EXAMPLE The category CRng of commutative unital rings and its homomor-
phisms is M-complete for M= { injective homomorphisms ). Every ring R has a
least (unital!) subring which can be obtained as the image of Z -> R . For integral
domains of characteristic p , one has OR = Z . In case p # q , there are no
morphisms Z1, -+ Zq

Exercises

1.A (Images and inverse images of composites) Prove the formulas

(g . f)(m) - g(f(m)) and (g . f)-1(n) = f-1 (g-1 (n)) .

Furthermore, for an isomorphism f , verify that f-1 (n) can be interpreted as
both, the inverse image of n under f or the image of n under f-1 .

1.$ (Independence of existence of M-pullbacks and of right M-factorizations,
cf. 1.6)

(a) Prove that maps in Top may fail to have right M-factorizations for M the
class of open embeddings.

(b) Prove that the category CTop does not have M-pullbacks, for M the class of
embeddings. (Note: it is not enough just to state that a pullback of connected
spaces formed in Top no longer lives in CTop.)

1.C (Stability properties of monomorphisms and retractions)

(a) Prove that, in any category, the class of monomorphisms is closed under com-
position and under D-limits for every D.

(b) Prove that, in any category, the class of retractions (morphisms p such that
there is j with p j = 1) is closed under composition and stable under
pullback and multiple pullback, but fails to be closed under D-limits in general.

1.D (Extremal monomorphisms) A monomorphism m : M - X in a
category is called eziremal if m = f e with an epimorphism a holds only if e
is an isomorphism.

(a) Show that in Top the extremal monomorphisms are exactly the embeddings.

(b) Prove that a morphism in a category is an isomorphism if and only if it is both
epic and extremally monic. Dualize the statement.

(c) Prove that every monomorphism is extremal if and only if every morphism
which is both epic and monic is actually an isomorphism. Dualize the state-
ment.
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(d)

(e)

Prove that extremal monomorphisms are left cancellable, that is: if a composite
n m is extremally monic, then also m is extremally monic.
Construct categories in which extremal monomorphisms are not closed under
composition or stable under pullback or multiple pullback. (It may be hard to
find concrete categories here; see also 1.E below.)

1.E (Strong monomorphisms) A morphism m : M -+ X in a category is
called a strong monomorphism if m u = v e with e epic implies that there is
exactly one morphism to with m - to = v .

(a) Prove that every strong monomorphism is in fact monic, even extremally monic
(cf. I.D), and that every section is strongly monic.

(b) Prove that the classes of strong and of extremal monomorphism coincide in
categories with pushouts.

(c) Show that a morphism m is strongly monic if and only if m is a monomor-
phism belonging to El , with £ the class of all epimorphisms (see 1.8).

(d) For any class £ of morphisms, El is closed under composition and under
D-limits for every D. Conclude that the class of strong monomorphisms has

the same properties.

(e) For arbitrary classes M and £ , show that M f1M.L and Efl£1 contain
only isomorphisms.

1.F (Discussing the blanket assumptions on M again)

(a) Show that any class M of morphisms which is stable under pullback and mul-
tiple pullback must contain all isomorphisms and be closed under composition
with isomorphisms. (Don't forget multiple pullbacks of empty families!)

(b) Let n be a monomorphism in a category. Show that the family (mi)iE j with
mi = n for all i and any non-empty class I has a multiple pullback.

(c) Suppose that, for a morphism n in X, the family (mi)iEj with mi = n
for all i E I and I = MorX has a multiple pullback in X. Prove that m
is a monomorphism. (Hint: Assume n x = n y for x # y and consider the
multiple pullback diagram (1.19). The class K = {h : (bi E I) ji h E {x, y}}
is not empty, and one can find a surjective map o : I --. K . Now apply the
universal property to (zi)IE, with

zi =
I

x
y

if ji y

if ji x

L.G (For the category-minded) Let M be any class of morphisms, not
necessarily a class of monomorphisms. For an object X , let MIX be the category
whose objects are the M-morphisms with codomain X ; a morphism j : m - n
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in M/X is an X-morphism which makes diagram (1.1) commute, and composition
is as in X. Reading "adjoint map" as "adjoint functor", show that all results proved
in 1.5-1.8 remain valid in this more general setting. Prove that the category Cat of
small categories and functors is finitely M-complete but not M-complete for M=
{ full and faithful functors ). Describe the class E for which Cat has (E, M) -
factorizations.

1.H (Factorization of small sinks) Let X have right M-factorizations of
morphisms and (small) coproducts. Show that every sink (fi : Xi --+ Y)iEl with
I small (a set, not a proper class) has a right M-factorization. (Don't forget the
case I = 0 .)

11 (Factorization of sinks when M is closed under composition) Prove
a sink-version of Theorem 1.8, that is: replace in Theorem 1.8 the morphisms
f, e, and u by sinks with the same indexing set, and the class E by a con-
glomerate E of sinks.

1.J (Change of universe) Let k : X -+ Y and mi : Mi -+ X (iEI) be
M-morphisms. Prove for M closed under composition:

(a) For I # 0 , the M-intersection A k k mi exists if and only if m = A mi
iEI iEI

exists, and then one has k m A k k mi . (What happens for I = 0 ?)
iEI

(b) If the M-union m = V mi exists, then V k mi exists, and k m
iEI iEI

V k mi holds. The converse proposition holds for M stable under push out
iEI
(= dual to stable under pullback).

1.K (More formulas on image and preimage) Let X have (S , M) -
factorizations and M-pullbacks. Prove for f : X -+ Y :

(a) If f E M , then f-1 (oy) ox (provided the trivial subobjects exist).
(b) f E E if and only if f (lx) ly .
(c) If f E M , then f-' (f(m)) = m for all m E MIX. -

(d) If f E E and if E is stable under pullback, then f (f -1 (n)) = n for all
nEM/Y .

1.L (More on preservation of unions and intersections) An object P in
X is said to be projective w.r.t. a morphism f : X --+ Y if for every If : P -+ Y
there is an x : P - X with f x = y . Let X be M-complete so that X has
(E, M) -factorizations, and assume the existence of an object P such that

e E E,* P is projective w.r.t. e
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holds for every morphism e in X. Prove for a morphism
non-erripty families (mi)iEI in MIX and (ni)iEj in M/Y

f : X -+ Y and

(a) If f is a monomorphism, then f (A mi) - A f (mi)
iEl iEI

(b) If the sink (ji : Ni --+ N)iEI belonging to a union n = Vic1 ni as in (1.20)
has the property that, for every y : P -+ N , there is an
morphism v : P -+ Ni with ji x = y , then f `'(ViE, ni)

i E I and a
Viet f -r (ni) .

1.M (Subobjects need not be closed under colimits)

(a) Show that monomorphisms in Set are not closed under the formation of co-
equalizers.

(b) Show that monomorphisms in Grp are not stable under pushout.

1.N (£ is closed under composition) (1) Let X have right M-factorizations,
and let £ be the class of morphisms in X for which the M-part of their right
M-factorization is an isomorphism. Show £ = Ml and conclude that £ is closed
under composition (cf. Theorem 1.8 and Exercise 1.E).
(2) Show that X has (£, M)-factorizations if and only if every morphism has a fac-
torization which is simultaneously a right M-factorization and a left £-factorization.

1.0 (Trivial objects) Consider the only morphism t : X -+ T of an object
X in X into a terminal object T , and assume t-r(oT) - ox . Show that X
is trivial if and only if there is a morphism X -+ OT in X.

Notes

Finding an adequate notion of factorization system in a category has been a theme in
category theory almost from the very beginnings. Early references include Mac Lane
[1948) and Isbell [1957), but it was not before the late sixties to early seventies that a
generally accepted definition emerged, most comprehensively presented by Freyd and
Kelly [1972), but see also Kennison [1968], Herrlich [1968], R.ingel [1970], Pumplun
[1972), Dyckhoff [1972] and Bousfield [1977]; it is the self-dual notion of (£,M)-
factorization system as presented here in 1.8. We have chosen to take a "one-sided"
approach to it via right M- factorizations (going back to Ehrbar and Wyler [1968],
[1987], Tholen [1979], [1983] and MacDonald and Tholen [1982]) since idempotent
closure operators "are" exactly such factorization systems, as will be made precise
in 5.3. The notion of finite M-completeness and its characterization by Theorem
1.6 does not seem to have appeared previously in the literature. Theorem 1.7 goes
back to Im and Kelly [1986].



2 Basic Properties of Closure Operators

Categorical closure operators as defined in this chapter. for any category with
a suitable subobject structure provide simultaneously a coherent closure operation
for the subobjects of each object of the category. The notions of closedness and
denseness associated with a closure operator are discussed from a factorization point
of view. This leads to a symmetric presentation of the fundamental properties of
idempotency vis-a-vis weak hereditariness and of hereditariness vis-a-vis minimality.
Further important properties are given by additivity and productivity which are
briefly discussed at the end of the chapter.

2.1 The categorical setting
Throughout this chapter, we consider a category X and a fixed class M of

monomorphisms in X which contains all isomorphisms of X. Furthermore, it is
assumed that

M is closed under composition, and that

X is finitely M-complete (see 1.6).

Consequently,

(1) X has M-pullbacks (i.e., inverse images of M-subobjects along X-
morphisms exist, see 1.2);

(2) every morphism in X has a right M-factorization (in particular, images
of M-subobjects under X-morphisms exist, see 1.4/1.5);

(3) there is a class £ of X-morphisms, such that X has (6, M) -factorizations
(see 1.8);

(4) X has finite M-intersections (see 1.9);

(5) M is closed under D-limits in X for every diagram type D (see 1.6).

Often we shall assume that X is even M-complete. One then has'in addition
that

(2') every sink in X has a right M-factorization (see 1.10), and that

(4') X has M-intersections and M-unions (in particular, class-indexed meets
and joins exist in every preordered class MIX ; see 1.9).

Whenever M-completeness (rather than finite M-completeness) is needed, we
shall say so explicitly. £ will always denote the class determined by M and
property (3).
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2.2 The local definition of closure operator
A closure operator C of the category X with respect to the class M of

subobjects is given by a family C = (CX)XEX of maps cX : M/X -+ MIX such
that for every X E X :

(1)

(2)

(3)

(Extension) m < cx(m) for all in E MIX ;

(Monotonicity) if m < m' in MIX , then cX(m) < cX(m')

(Continuity) f (cx(m)) < cy (f (m)) for all f : X - Y in X and mEM/X
By the monotonicity condition, m = m' implies cX(m) = cx(m') . Therefore,

it suffices to define the maps cX on a skeleton of MIX .
In the presence of (2), the continuity condition can equivalently be expressed as

(3') cx(f-1(n)) < f-1 (cy(n)) for all f : X -> Y and n E M/Y .
In fact, (3) gives that, for n E M/Y and in = f -1 (n) ,

f(cx(f-1 (n))) < cy(f(f-1 (n))) < cy(n)
by (2), hence (3') follows with (*) of 1.4. The proof that, in the presence of (2), (3')
implies (3) is completely analogous.

The conjunction (2) & (3) is equivalent to:

(4) f (m) < n implies f (cx (m)) < cy (n) for all f : X - Y , in E MIX
and n E M/Y .

In fact, if f (m) < n , (2) & (3) give f (cX (m)) < cy (f (m)) < cy (n) . Vice versa,
(4) implies (2) (consider f = lX ) and (3) (consider n = f (m) ). Similarly, (2) &
(3') (q (2)&(3)) is also equivalent to:

(4') m< f-1 (n) implies cx(m) < f-1 (cy(n)) for all f : X -+ Y , in E
MIX and n E M/Y .

In the particular case that f : X -+ Y belongs to M, note that one has
f (m) = f in since M is assumed to be closed under composition. Hence in this
case, implication (4) simply reads as:

(4") f m < n implies f . cX (m) < cy (n)

We fix some standard notations. For an M-subobject in : M -- X , the domain
of its C-closure ex (m) is denoted by cx(M) .

If there is no danger of confusion, we may write c instead of cX . Because of
(1), one has a commutative diagram

i.M . cX(M)

X
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with a uniquely determined morphism j,,, which, by Theorem 1.7(3), belongs again
to M.

We shall discuss examples of closure operators more systematically in Chapter
3. Here we just mention the most fundamental example which gives guidance for
the general terminology:

EXAMPLE (Kuratowski closure operator) For a subset M of a topological space
X , the (Kuratowski) closure of M in X is defined as usual by

kX(M)={xEX:UfM#Olforevery open setU9x}=M.

This way one obtains a closure operator K = (kX)XETop of Top with respect
to the class M of embeddings. (It suffices to define K on the skeleton Mo
of M consisting of the inclusion maps of all subspaces; for an arbitrary embedding
m : M --+ X one may then put kX(m) := kx(m(M)) .)

2.3 Closed and dense subobjects
An M-subobject m : M -+ X is called C-closed (in X) if it is isomorphic to

its C-closure, that is: if j,,, : M -+ cX(M) is an isomorphism. in is called C-
dense in X if its C-closure is isomorphic to 1X , that is: if cx(m) : cX(M) -+ X
is an isomorphism. The prefix C may be omitted.

It is easy to verify that for the Kuratowski closure operator K of Top, K-
closed and K-dense for a subspace inclusion M -+ X means closed and dense in
the usual topological sense, respectively.

We are interested in stability properties of C-closed and of C-dense morphisms.
The continuity condition (3) (f* (3')) implies that C-closedness is preserved by
inverse images, and that C-denseness is preserved by images:

PROPOSITION Let f : X -+ Y be a morphism.

(1) If n is C-closed in Y , then f-1 (n) is C-closed in X

(2) If in is C-dense in X and f E £ , then f (m) is C-dense in Y

Proof (1) If n - cy(n) , then cx(f-1(n)) < f'1 (cy(n)) = f-1 (n) .

(2) If 1x - cx(m) and f E £ , then ly - f(1X) - f(cx(m)) < cy(f(m))
0

Let Mc be the class of C-closed M-subobjects. The Proposition asserts that
Mc is stable under pullback. In fact, a more general property holds:

THEOREM Mc is closed under D-limits, for any diagram type D. In particular,
direct products and intersections of C-closed subobjects are C-closed (cf. 1.7).
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We leave the proof as an exercise to the reader, since a more general result will
be proved in 5.2. Stability under pullback gives in particular:

COROLLARY If, for monomorphisms m and n , n m is a C-closed M-
subobject, then m is a C-closed M-subobject. o

One is tempted to assume that the class of all C-dense subobjects enjoys the
dual properties. But this is not true in general: for C = T the trivial operator (see
Exercise 2.A), every M-subobject is C-dense; however, the class M need not be
closed under colimits, not even be stable under pushout (see Exercise 1.M). Despite
its triviality, this example shows everything that may go wrong: the obstacle is the
subobject property, not C-denseness - if defined for arbitrary morphisms, and not
just for subobjects.

One calls a morphism f : X -+ Y C-dense if f (lx) is C-dense in Y , that
is: if cy(f(lx)) - ly . The class of C-dense morphisms in X is denoted by £c.
Note that £ is a subclass of £C . Now one can prove:

THEOREM* £c is closed under D-colimits, for any diagram type D.

Again, we postpone the proof of the Theorem* and of the following Corollary
(see 5.2 and Exercise 2.F).

COROLLARY* If, for arbitrary morphisms e and d , d e is C-dense, then
d is C-dense.

2.4 Idempotent and weakly hereditary closure operators
A closure operator C may or may not have further important stability proper-

ties which were not discussed in 2.3, for instance:

(ID) The C-closure of an M-subobject of X is C-closed, i.e.
cx(cx(m)) = cx(m) for all in : M -+ X in M.

(WH) An M-subobject of X is C-dense in its C-closure, i.e. cy(j,,,) - ly
for all m:M -+X in M, with Y=cx(M).

(CC) Composites of C-closed M-subobjects are C-closed, i.e. if m : M --+ N
and n : N -+ X in M are C-closed, then n m is C-closed.

(CD) Composites of C-dense M-subobjects are C-dense, i.e. if m : M -+ N
and n : N -+ X in M are C-dense, then n . m is C-dense.

One easily shows that the Kuratowski closure operator of Top enjoys each of
these properties. However, none of these properties holds in general (see, for in-
stance, the 0-closure operator of Top, described in 3.3 below). If properties (ID) or
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(WH) hold for every X E X , then C is called idempotent or weakly hereditary,
respectively; in case the conditions are restricted to a specific X , we shall add for
X . (The reason for choosing the name "weakly hereditary" will become clear in
2.5.) The logical connections between the two properties will become clear once we
have proved:

LEMMA ( Diagonalization Lemma ) For every commutative diagram

M U - N

with m , n E .M , there is a uniquely determined morphism w rendering the
diagram

U

w

- N

X v Y

commutative.

Proof By the diagonalization property of (right) M-factorizations (cf. 1.5) one
has v(m) < n in M/Y , hence v(cx(m)) < cy(n) by continuity. Hence to is
the composite (cx(M) -+ v(cx(M)) , cy(N)) . 0

COROLLARY

(1) If m in (2.2) is C-dense, then there is a uniquely determined morphism
t:X-rcy(N) with and

(2) If n in (2.2) is C-closed, then there is a uniquely determined morphism
s:cx(M)-+N with and

(3) In (2.2), if m is C-dense and n is C-closed, then there is a uniquely
determined morphism d : X - N with d m = u and n d = v .
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(4) £c tl Mc is the class of isomorphisms in X.

PROPOSITION For an idempotent closure operator C , every morphism has a
right Mc-factorization, and £c is closed under composition.

proof Every morphism f : X -+ Y has an (£, M)-factorization f = m e . If
C is idempotent, then cy (m) E Mc . With the Corollary it is easy to show that
f = cy(m) (j,,, e) is a right Mc -factorization of f .

cy(M)

cy (m)

X Y

From Exercise 1.N we obtain that £c = (Mc)'- is closed under composition.
13

It is easy to show that the factorization (2.4) is a left £c-factorization of f if
C is weakly hereditary; in fact, d := j,,, e is C-dense since d(lx) 25 jr, . Now
the dual of Exercise 1.N gives:

PROPOSITION` For a weakly hereditary closure operator C , every morphism
has a left £c-factorization, and Mc is closed under composition.

THEOREM The following statements are equivalent for a closure operator C

(i) C is idempotent and weakly hereditary;

(ii) C is idempotent and (CC) holds for every X E X

(iii) C is weakly hereditary and (CD) holds for every X E X

(iv) X has (£c , Mc) -factorizations.

Proof (i) = (ii) =: (iv) and (i) (iii) = (iv) follow from the Proposition,
Proposition* and Theorem 1.8.

(iv) (i) One considers an (£c , Mc) - factorization

M , N - n- X
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of m = n d E M . Then m < n implies cx (m) < n since n E Mc . From the
Diagonalization Lemma, one obtains a commutative diagram

M

N

1M

w

n X

Since cN(d) is an isomorphism, one has n < cx(m) , hence n = cx(m) . There-
fore w is an isomorphism, and cX(m) E MC , im E £c follows from n E Mc ,

dE£c . O

REMARKS

(1) The Proposition (and the Theorem), together with 1.7 (and 1.8), yield the
stability properties of Mc (and £c ) as described in 2.3 in case C is idempotent
(and weakly hereditary).

(2) Although, in general, £c need not be closed under composition, it is always
closed under composition with £-morphisms: see Exercise 2.F.

(3) From the Proposition and Proposition* we obtain the implications

(WH) (CC) and (ID) . (CD) .

In 4.6 below we shall exhibit a non-trivial example which simultaneously shows
that, in general, the converse implications are not true (see Exercise 4.11). A trivial
example of this type is provided in Exercise 2.E(c)

2.5 Minimal and hereditary closure operators

Suppose that the M-subobject m : M -. X factors through a larger M-
subobject y : Y -+ X as
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M my Y

X

Is it then possible to compute cy(my) with the help of cx(m) ? For the Kura-
towski closure operator K of Top this is easily done: for subsets M C Y C X
one has ky(M) = Y (1 kx(M) . In the general context, since my = y-' (m) in
MfY , one has

cy(my) :5 Y-' (cx (m))
by continuity. But in general, these two subobjects of Y are not isomorphic, even
when C is idempotent and weakly hereditary (see Example (2) in 3.4 below). C
is called hereditary for X if

(HE) cy(my) = y-1(cx(m)) for all m < y in MIX

and hereditary if it is hereditary for all X E X .
First 'we want to show that weak hereditariness can be described by a weakened

version of (HE):

LEMMA A closure operator C is weakly hereditary if and only if (HE) holds
under the restriction that y = cx(z) for some z > m in M/X .

Proof When considering z = m , hence my = in , the stated condition gives
cy(im) = cy(my) = y-1(y) ; but y-1(y) is an isomorphism since y is monic.
Thus (WH) follows.

Vice versa, let C be weakly hereditary and consider m , z , y as in the
Proposition. m < z implies cx(m) < y . It follows immediately from the pullback
property that the morphism k : cx (M) -> Y = cx (Z) with y k = cx (m) satisfies
k = y1(cx(m)) . The Diagonalization Lemma gives a commutative diagram

M 1M

fcy (M)

y X
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Since k j,,, = my , we have (with N = cx (M))

by continuity, hence cN(j,,,) < P . Since by hypothesis cN(jm) is an isomorphism,
also a is one. Therefore, cy (my) = k - y-, (cx (m)) .

PROPOSITION

(1) An idempotent closure operator C is weakly hereditary if and only if (HE)
holds under the restriction that y is C-closed.

(2) A closure operator C is hereditary if and only if C is weakly hereditary and
(HE) holds under the restriction that y is C-dense.

Proof (1) Wows immediately from the Lemma. The Lemma also gives that the
two stated conditions of (2) are necessary for hereditariness. We must show that
they are also sufficient and consider m < y in MIX as in (HE). Consider the
following pullback diagram:

y 1(cx(M)) - ,w_1(cx(M)) cx(M)

(cx(m))jwl(cx(m)) jcx(m) (2.8)

W := cx(Y) ) X

Let mw : M -> W be defined by w mw = m . By the Proposition, one has

cW(mW) - w-1(cx(m)) .

Since jy my = mW , and jy is C-dense, one also has

cy(my) _ jy 1(cw(mw))

Consequently,
cy(my) = jy1(w 1(cx(m))) = y-1(cx(m)) .

Next we wish to characterize hereditary closure operators in terms of the following
left-cancellation property of C-dense subobjects w. r. t. M:

(LD) For all m : M - N and n: N -> X in M, if n m is C-dense, then m
is C-dense.

THEOREM A closure operator C is hereditary if and only if C is weakly
hereditary and (LD) holds for all X E X .
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proof (LD) is certainly a necessary condition for hereditariness. To wit, let
k:= be C-dense, so that cx(k) is an isomorphism. But then, also cN(m)
n-1(cx(k)) is an isomorphism, hence m is C-dense.

Conversely, let us assume that (LD) holds with C weakly hereditary. With
m < y as in (2.6), we consider the following commutative diagram (with k such
that y 1(cx(m)) k = cy(my) ):

cy(M) k (cx(M)} y1(cx(m)) _yI Y

M
jm

cx(M)
cx(m) X

Since C is weakly hereditary, j,,, is C-dense, hence also k j,,,,, is C-dense, due
to (LD). Now the Diagonalization Lemma (see Corollary 2.4 (1)) gives immediately
an inverse of k , as desired. 0

Together with Theorem 2.4, the Theorem implies:

COROLLARY A closure operator C is hereditary and idempotent if and only if
C is weakly hereditary and (CD) and (LD) hold for every X E X . 0

Finally; we briefly examine the "dual" of (LD), that is the right cancellation
property of C-closed subobjects w.r.t. M:

(RC) For all in: M - N and n : N -+ X in M, if n m is C-closed, then n
is C-closed.

Clearly this property fails already for the Kuratowski closure operator K of
Top (consider, for example, a point of a non-closed subspace of a Tl-space). While
topologically meaningless, (RC) becomes interesting in algebraic examples, as we
shall see in 3.4/3.5. The Theorem suggests to consider this property in conjunction
with idempotency (the "dual" of weak hereditariness).

For an idempotent closure operator C cx(ox) is C-closed. Hence (RC) gives
that y E MIX' is C-closed if (and only if) cx(ox) < y . Hence it is clear that
C will be determined by the subobjects cx(ox) , X E X ; in fact, we obtain
immediately that (RC) and (ID) imply

cx(y) y V cx(ox)

for all y E MIX . We may express this equivalently without referring to the trivial
subobject, as follows:

(MI) cx(y) = y V cx(m) for all m < y in M/X .
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A closure operator C satisfying (MI) is called minimal for X ; C is minimal
if it is minimal for all X E X .

It is an easy exercise that, in turn, a minimal closure operator C is idempotent
and satisfies (RC). Hence we have:

THEOREM` A closure operator C is minimal if and only if C is idempotent
and (RC) holds for every X E X .

COROLLARY' A closure operator C is minimal and weakly hereditary if and
only if C is idempotent and (CC) and (RC) hold for every X E X .

In summary we may state: hereditary and idempotent closure operators are
the weakly hereditary operators with perfect behaviour of dense subobjects, while
minimal and weakly hereditary closure operators are the idempotent operators with
perfect behaviour of closed subobjects.

2.6 Grounded and additive closure operators
For a closure operator C , intersections of C-closed subobjects are C-closed

(see 2.3). Hence, if X is M-complete, MCIX has, like MIX , all meets and
joins. But whereas meets are formed by multiple pullback in both cases, joins in
M°IX and in MIX differ in general (consider the Kuratowski closure operator
of Top), even finite (see Example (2) of Section 4.3 below) or just empty joins
(consider the trivial closure operator; see Exercise 2.A).

Let X have finite M-unions. A closure operator C is called grounded ( for
XEX)if

(GR) cx(ox) = ox

and additive ( for X ) if

(AD) cx(m V n) 25cx(m) V cx(n) for r n, n E MIX .

Note that the Kuratowski closure operator of Top is both grounded and addi-
tive. In Section 3 we shall give examples showing that both properties are logically
independent of the properties discussed previously. Here we just mention a trivial
fact:

PROPOSITION Let X have finite M-unions. Then an idempotent closure op-
erator C is grounded and additive if and only if finite M-unions of C-closed
subobjects are C-closed. 0

How do arbitrary joins in M°IX look like? For C idempotent, this is easy,
provided joins exist in MIX : the join of (mi)iEj in M°IX is cx(V mi)

iEl
with V denoting the join in MIX (see Exercise 2.F). For arbitrary C , one can
reduce this problem to the idempotent case, as we shall see in 4.6.

For X with M-unions, one calls C fully additive ( for X ) if
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(FA) cX (V mi) - V CX(mi)

holds for all mi E MIX , i E I $ 0 . (Empty unions are not permitted here,
hence a fully additive closure operator is not a priori required to be grounded!)
C is called directedly additive (for X ) if (FA) holds for every directed family
(mi)iEl in MIX (so that for all i, j E I# 0 there is k E I with mi < Mk
and mJ < mk ).

Clearly, there are obvious non-finite versions of the Proposition above character-
izing full and directed additivity in terms of C-closed subobjects, for an idempotent
closure operator C . The following easy Theorem clarifies the interrelationships
between the notions just introduced.

THEOREM A closure operator of a category with M-unions is fully additive if
and only if it is additive and directedly additive.

Proof For mi E MIX , i E I $ 0 , and for every F C I finite and non-empty,
let mF be the join of (mi)iEF . Then

m=vmigm=vmF.
iEr F

Since (mF : 0 F C I finite) is a directed family in MIX , the "if" part of the
Theorem follows readily. The "only if" part is trivial.

We want to stress that full additivity, like minimality, but unlike the other prop-
erties discussed previously, is usually not expected to hold. For instance, the Ku-
ratowski closure operator K = (kx)XETOP is not fully additive (see Exercise 2.1):
a Ti-space X for which kX satisfies (FA) must be discrete. More precisely, the
following statements are equivalent for a topological space X :

(i) K is fully additive for X ;

(ii) each point of X has a least neighbourhood;

(iii) the intersection of an arbitrary family of open sets in X is open.

Spaces X with these properties are called Alexandrof. We denote by Alex the
corresponding full subcategory of Top.

An example of a directedly additive but not additive closure operator will be
given in 3.4 below (see Example (1)).

REMARK Trivially, every minimal closure operator is fully additive, but it is
grounded only if it is (isomorphic to) the discrete operator (see Exercise 2.A). In
3.4 below we will encounter important examples of (non-discrete) minimal closure
operators; it is for this reason that we excluded groundedness from the requirements
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for full additivity. For the same reason, we did not define additivity in the sense of
"finite additivity", so that it would include groundedness.

Full additivity, however, does not imply minimality, even in the presence of
idempotency, hereditariness and groundedness, as is shown by the following easy
example.

EXAMPLE Define the point-closure P of a subset M of a topological space
by

px(M) = U kx({x})
ZEM

(with K the Kuratowski closure). One easily checks that P is indeed a closure
operator of Top (w.r.t. embeddings) which is obviously fully additive and grounded
and which inherits idempotency and hereditariness from K . Every space X
which is not Ti shows that P is not discrete, hence not minimal.

2.7 Productive closure operators
Hereditary closure operators are well-behaved with respect to M-subobjects,

that is: for an M-subobject y : Y -+ X , cy is completely determined by the
restriction of ex to Y . Similarly, we now want to investigate closure operators
which are well-behaved with respect to direct products. To make this precise, we let
X have direct products and consider M-subobjects mi : Mi -+ Xi , i E I . Their
direct product

m-llmi:M=[JMi--rX=lxi
iEI iEI iEI

is again an M-subobject (see 1.7). By the Diagonalization Lemma, for every i E I
there is a commutative diagram

M

X Pi

Miqi

ti

Xi

(2.10)

(with product projections pi , qi ). There is an induced morphism

t cx (M) --+ II cx; (Mi )
iEI
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with ri t = ti ( ri a projection, i E I ). One easily checks that s t = cx (m)
holds with

s = 11 cx;(mi) : [Icx,(Mi) -b X ,
iEI iEI

hence cx(m) < s . C is called (finitely) productive ( for X ) if, for every
(finite) family (mi)iEt of M-subobjects (of X ), s < cx(m) , that is: t is
an isomorphism. Equivalently, cx(M) is a direct product of (cx,(Mi)),e, with
product projections ti (as in (2.10)), i.e.

(11) cx(M) - flcx;(Mi) and cx(m) - llcx;(mi) .
iEI iEI

Thus for a productive closure operator, the closure of a "box-shaped" subobject is
given by the product of the closure of each edge. The Kuratowski closure operator
K of Top has this property (see Exercise 2.B).

PROPOSITION C is ( finitely ) productive if for every (finite) family (mi)iEI
the induced morphism t belongs to £; if C is idempotent, it even suffices that
t belongs to Cc .

Proof Since s E M we have t E M (see 1.7). Hence t is an isomorphism if
t belongs to E (see Exercise 1.E). For C idempotent one has s E Mc , hence
t E Mc (see 2.3). Therefore it suffices to have t E CC in order to conclude that
t is an isomorphism (see Corollary 2.4).

THEOREM If C is (finitely) productive, then the (finite) direct product of C-
dense M-subobjects is C-dense, i.e., Cc fl M is closed under (finite) direct
products. Conversely, if Cc fl M is closed under (finite) direct products for a
weakly hereditary closure operator C , then C is (finitely) productive.

Proof If each mi is C-dense, one has cx(mi) iso and therefore cx(m)
JJcxi(mi) iso under condition (II), so that in is C-dense. Conversely, for C
iEI
weakly hereditary, each is C-dense, hence

k:=1M Z:=Hcx,(Mi)
iEI iEI

is C-dense by hypothesis. Since, in the notation used previously, one has s k = m ,
the Diagonalization Lemma 2.4 yields a morphism v : cz(M) cx(M) with
cx(m) v = s , hence s < cx(m) .

COROLLARY For C (finitely) productive and £ closed under (finite) direct
products, also £c is closed under (finite) direct products.

Proof Every C-dense morphism is the composite of an £-morphism followed
by a morphism in £c fl M .
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2.8 Restriction of closure operators to full subcategories
For a full subcategory Y of a category X , it is natural to ask whether it is
possible to restrict a closure operator C of X w.r.t. M to the category Y ,
by considering cx(m) as the closure of the subobject in : M -. X belonging to
Y . Obviously, we are implying here that our notion of subobject in the category
Y is given by the class

My:=Mfl MorY.
But we must make sure that this gives indeed a satisfactory notion of subobject in
Y, for instance: does each morphism in y have a right My-factorization (so that
the continuity condition in Y makes sense)? Furthermore: does cx (m) belong
to My for in in My ? Obviously, the latter question has a positive answer if
the full subcategory Y is closed under M-subobjects in X, that is: if for every
m: M -+ X in M with X E Y one has also M E Y. Since M contains
all isomorphisms of X, this property implies that Y is replete in X , i.e., closed
under isomorphisms. Obviously, the class My is a class of monomorphisms in Y,
contains all isomorphisms of Y, and is closed under composition when M has the
respective properties. Furthermore:

LEMMA If Y is closed under M-subobjects in X, then it is closed under
the formation of images, inverse images, intersections and unions, that is: when
applying these constructions in X to data in My , one obtains data in My ; in
particular, ( finite ) M-completeness of X implies ( finite ) My -completeness
of Y.

The easy proof can be left as an exercise. (A more general result will be proved
in 5.8.) The following Proposition is now evident:

PROPOSITION Let C be a closure operator of X w.r.t. M. For a full
subcategory Y of X closed under M-subobjects and for every Y E Y , the
function cy : M/Y - M/Y can be restricted to

cy-Y : My/Y - + My/y,

and Cjy = (C?)yEy is a closure operator of Y w.r.t. My. Each of the properties
discussed in 2.4 - 2.6 is inherited by C)y from C ; (finite) productivity is inherited
if Y is closed under ( finite) products in X. Furthermore, in E My is Cly-
closed (Cly-dense) if and only if in is C-closed (C-dense).

We call Cly the restriction of C to y , and C is an extension of Cly to
X.

Recall that a full subcategory Y of X is reflective in X if for every X there
is an object RX E Y and a morphism px : X -+ RX (the reflexion of X into
Y) such that every morphism f : X -+ Y with Y E Y factors as f = g px , with
a uniquely determined g : RX -+ Y . Y is .6-reflective if all reflexion morphisms
px (X E X) belong to the class E.
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COROLLARY A closure operator C of X w.r.t. M can be restricted to every
replete E-reflective subcategory.

proof It suffices to show that a replete E- reflective subcategory of X is closed
under M-subobjects. Indeed, factoring m: M - Y in M with Y E Y
as m = g pM gives, by the (£ , M )-diagonalization property, a morphism
w : RM M with w pM = 1M . With the uniqueness property of reflexions, one
also has pM w = 1RM since (pM w) pM = pM . Hence M e5 RM E Y 0

For a replete reflective subcategory, closedness under M-subobjects in fact char-
acterizes E-reflectivity. We also note that a replete reflective subcategory is closed
under all limits, particularly under direct products. For X with products and E-
cowellpowered (= dual to M-wellpowered) and any full replete subcategory, closed-
ness under products and M-subobjects characterizes E-reflectivity (see Exercise
2.K).

Instances of the Corollary will be discussed in Section 3.

REMARK Closedness under M-morphisms is not a necessary condition for being
able to restrict a closure operator C of X to a full subcategory Y. Obviously
it suffices that for in : M -. X in My , also cx (m) belongs to My . We
shall give an important example of a subcategory Y with this property which is
not closed under M-morphisms at the end of Section 3.5.

Exercises

2.A (Discrete and trivial closure operators)

(a) Show the existence of the following closure operators in a finitely M-complete
category X:

S = (sx)xex with sx(m) = m for all m E M/X ,

T = (tx)xex with tx(m) = lx for all m E M/X ;

S is called the discrete closure operator and T the trivial closure operator.
(b) For the closure operators of (a), characterize the closed and the dense mor-

phisms. Decide which of the properties idempotent, weakly hereditary, heredi-
tary, grounded, minimal, (fully) additive and (finitely) productive are enjoyed
by each of the two operators. Prove that these are the only minimal closure
operators of Top.

2.B (Properties of the Kuratowski closure operator) Verify that K of Top
satisfies all properties discussed in 2.4-2.7, except full additivity, directed additivity,
and minimality.
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2.C (Characterization of idempotency and weak he reditariness) Prove for a
closure operator C of X with respect to M:

(a) C is idempotent if and only if for all in E MIX , X E X
cX(m) = n{n E M/X : n > m and n is C-closed).

(b) C is weakly hereditary if and only if for all in E MIX , X E X
cX(m)25
(Note that it is not necessary here to assume X to be M-complete).

2.D (Defining closure operators from given closed su6objects)

(a) In an M-complete category X, let C C M be a subclass containing all
isomorphisms, closed under composition with isomorphisms, and stable under
pullback. Prove that one can define an idempotent closure operator C of X
w.r.t. M by

cX(m)=!`{kEC/X : k>m}.

(b) Under the assumptions of (a), show that C = Mc if and only if C is stable
under multiple pullback. In this case, C is weakly hereditary if and only if
C is closed under composition.

(c) Show that C is hereditary if and only if for every m : M - X in M and
every k : K - M in C there is I : L -+ X in C with k S5m-1(l) .

(d) Guided by 2.C(b), under which conditions can you define a closure operator
with dense subobjects in a given class V C M ?

2.E (Closure operations of a poset) For a partially ordered set (X , _<)

we call a function c : X -+ X with m < c(m) and (m < m' . c(m) < c(m'))
for all m , m' E X a closure operation of X . (Most authors require further
properties). (X , <) is considered as a (small) category X in the usual way (see
Example (2) of 1.10). Note that every morphism in X is monic. Let therefore M
be the class of all morphisms in X.

(a) Verify that X is finitely M-complete if and only if (X, <) has finite meets.
(b) If (X, <) has finite meets, then every closure operation c of X induces a

closure operator C = (c:)zeX of the category X w.r.t. M with

c., (m) := c(m) A x

for all in < x in X . Note that c is uniquely determined by C , as c = cl
for 1 the top element in X .

(c) Let X = [0, 1) be the closed unit interval with its natural order. With

m+x
cc (m) = 2

one obtains a closure operator C of the category X . Show that C is not
induced by a closure operation of the poset [0, 1] in the sense of (b).



Basic Properties of Closure Operators 41

(d)

(e)

In the setting of (b), find conditions on c which equivalently describe each of
the .properties introduced in 2.4-2.7 for the induced operator C .
Find an example of an M-complete category X and a closure operator C
which is not finitely productive.

2.F (More on closed and dense subobjects) Prove-for a closure operator C
of an M-complete category X:

(a)

(b)

(c)

(d)

If C is idempotent, then the formula

cx(V mi) = ex (V ex(mi))
iEI iEI

holds; describe arbitrary joins in MCIX (see 2.6).
For arbitrary morphisms d, e in X such that the composite d. e exists,
one has
1.

2. eEE,

d e E £C d E £C (cf. Corollary* 2.3)
5. d- e EEC , d E M, C hereditary = *-e EEC .
For k < m and k < n in M/X , let K -. N be C-dense. Then also
M - M V N is C-dense.
For M-subobjects di : Mi -+ Y; , y; : Y, -+ X , the induced M-subobject
d : V iE'I Mi -+ Vie, Yi is C-dense if all di 's are C-dense.

2.G (Grounded closure operators of R-modules) For a unital ring R ,
show that the only grounded closure operator (up to isomorphism) of the cate-
gory ModR of (left) R -modules with respect to the class of all monomorphisms
is the discrete closure operator (cf. Exercise 2.A). Hint: For a submodule N of an
R-module M , consider the quotient module MIN .

2.H (Non-grounded closure operators of Top) Prove that the only non-
grounded closure operator of Top is the trivial closure operator (cf. Exercise 2.A).
Hint: For every closure operator C of Top, there is a functor F : Top --+ Top ,

X.-* cx(0).; depending on whether ci(0) = 0 or cl(0) - 1 (for 1 a single-
ton space), show that either FX = 0 for all X E Top or FX - X for'all
X E Top.

2.1 (Fully additive closure operators in the presence of points")

(a) Recall that an object P in a category X with coproducts is an E-generator
if the canonical morphism

II P 'X
x(P, x)
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belongs to £ for every X E X . Show that then every in : M -+ X in M
has a presentation as "join of its points":

Y
xEX(P, M)

(b) Under the hypothesis of (a), show that two fully additive closure operators C
and D on X coincide if

cx(z(lp)) a dx(z(lp))

for all z E X(P, X) , X E X . Conclude that, if "points" z(1p) are C-
closed, then a fully additive closure operator C is the discrete closure operator
(up to isomorphism, see Exercise 2.A).

(c) Show that the Kuratowski closure operator K of Top is not fully additive.
However, if the subspace inclusion maps mi : Mi -. X satisfy the property:
for every x E X , there is a neighbourhood U of x which meets only finitely
many Mi 's, then (FA) holds with C = K .

2.J (Finite productivity in additive categories) Prove that in the category
Modg, every closure operator is finitely productive. (Hint: For Mi < Xi and
ci(Mi) = cx,(Mj), prove ci(Mi) x 0 < c(Mj x M2) and then conclude cl(Mi) x
c2(M2) = (ci(MI) x 0) + (0 x c2(M2)) < c(Ml x M2).) Extend this result to every
additive category with finite products (and coproducts).

2.K (Characterization of £-reflective subcategories) Let Y be a full and
replete subcategory of X. Prove:

(a) For Y reflective in X one has that Y is 9-reflective if and only if Y is
closed under M-subobjects in X.

(b) If Y is reflective in X, then it is closed under all existing limits in X (i.e.,
whenever lim H exists in X for H : D --. X with Hd E Y for all d E V ,
then limH E Y ).

(c) If X has direct products and is £-cowellpowered (so that for every X E X
there is only a set of isomorphism classes of £-morphisms with domain X),
then Y is £-reflective in X if and only if Y is closed under direct products
and M-subobjects in X. Hint: Study the Adjoint Functor Theorem in any
book on Category Theory.

2.L (Hereditariness for free) Prove that (HE) holds for every closure opera-
tor C , provided that y is a section (so that there exists a morphism p : Y -* X
with p y = ly ). Hint: First show that for every k E MIX with k < y (so
that k = y ky one has p(k) = ky . Then exploit C-continuity of p to show
p(cx(m)) < cy(my)
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2.M ((rc, A)-additiviiy) Let oo denote a symbol greater than any element of
the ordered class Card of all (small) cardinals numbers. For A < rc E Card U {oo},
define a closure operator C of an M-complete category X (as in 2.1) to be (ec, A)-
additive, if for all X E X and m; E MIX, i E I, with card I < rc, the formula

cX(V mi) = V cX(V rni)
i£I JCI,cardJ<x iEJ

holds true. Confirm for every C:

I.

2.

3.

4.

5.

C is additive 4* C is (l o, 2)-additive,

C is fully additive q C is (oo, 2)-additive,

C is grounded . C is (1, 0)-additive,

for every ec E Card U {oo}, C is (K, ec)-additive,

C is (n, A)-additive & A' < A < is < ,' = C is (W, A`)-additive.

Notes

The categorical notion of closure operator as introduced in 2.2 (with the key ingre-
dient given by the continuity condition) goes back to Dikranjan and Giuli [1987a]
and includes both, the lattice-theoretic closure operations (see Exercise 2.E) and
the Lawvere-Tierney topologies or universal closure operations of Topos- and Sheaf
Theory (see Chapter 9), as special instances. Principal properties like idempotency,
(weak) hereditariness, and additivity are already discussed in the Dikranjan-Giuli
paper, although the "symmetric" approach to idempotency / weak hereditariness
and to hereditariness / minimality as given in 2.4 and 2.5 is not yet apparent in that
paper. Earlier papers in Categorical Topology are mostly concerned with particular
instances of closure operators, predominantly in the category of topological spaces
(see Chapters 6-8). To be mentioned particularly is the paper by Cagliari and Ci-
cchese (1983] which introduces for epirefiective subcategories of Top a stronger
notion of closure operator, with the continuity condition stated explicitly as one of
the axioms.



3 Examples of Closure Operators

Most of the examples presented in this chapter will be used throughout the
book, especially the closure operators for topological spaces, R-modules and for
groups presented in sections 3.3, 3.4, and 3.5, respectively. Nevertheless, we begin
with structures which generalize topological spaces, namely pretopological spaces
and filter convergence spaces, for two reasons. First, additive and grounded closure
operators of concrete categories may be interpreted as concrete functors with values
in the category of pretopological spaces, as we shall see in Chapter 5 and apply in
Chapter 8. Second, the natural closure operators of these generalized topological
structures are closely linked to the natural closure operators occurring in the cate-
gories of graphs and partially ordered sets presented in 3.6. Hence they provide a
unifying view of topological and "discrete" structures.

3.1 Kuratowski closure operator, Cech closure operator
The Kuratowski closure operator K = (kX)XETOP of the category Top as

described in Example 2.2 determines completely the structure of each space X :

M C X closed t--* kx(M) = M

N C X is a neighbourhood of x E X* x V kx(X \ N).

In what follows, we shall describe extensions of the Kuratowski closure operator
to supercategories of Top. This approach will allow for common descriptions of
fundamental closure operators in some familiar categories.

In this section, we consider the category PrTop of preiopological spaces: a pre-
topology kX on a set X is a map kX : 2X -> 2X with

kx(0) = 0, M C kX(M) and kx(M U N) = kx(M) U kx(N);

note that then kX is monotone, but idempotency is not required. A continuous
map f : (X , kX) -+ (Y , ky) must satisfy f(kx(M)) C ky(f(M)) for all
MCX.

Every subset Y of a pretopological space (X, kX) carries the subspace struc-
ture given by ky (M) = Y tl kX (M) .

Let M be the class of embeddings, i.e. of injective maps f : (X, kX) -+ (Y, ky)
such that (X, kX) is isomorphic to the subspace f (X) of (Y, ky) ; equivalently,

kx(M) = f-'(ky(f(M))) for all M C X .

The existence of M-pullbacks and M-intersections is easily verified. Hence PrTop
is M-complete.

Now, by the very definition of PrTop and of the class M , the Cech closure
operator K = (kx)XEprTop of PrTop is grounded, additive and hereditary but
neither idempotent nor fully additive. It is less obvious that it is also productive,
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since the explicit description of direct products in PrTop is a bit cumbersome: see
Exercise 3.B. (We shall provide another proof for the productivity of K in 3.2
below.)

Finally we point out that, by means of its Kuratowski closure operator, Top
is fully embedded into PrTop; a pretopological space (X, kx) is topological if
kxkx = kX . Hence, by definition of this embedding,.the Cech closure operator
of PrTop restricted to Top gives the Kuratowski closure operator of Top. It is
important to note here that subspaces of X E Top formed in PrTop are in fact
subspaces in Top, so that Top is closed under subobjects in PrTop, and Proposition
2.8 applies here.

Furthermore, one easily sees from the description of direct products as given in
Exercise 3.B that Top is closed under direct products in PrTop, hence productivity
of the Kuratowski closure operator in Top can be formally concluded from the
corresponding result in PrTop.

Closedness of Top in PrTop under subobjects and direct products follows also
from the fact that Top is a bireffective subcategory of PrTop (so that the reflexions
are bimorphisms in PrTop, i.e., bijective continuous maps): the reflector R takes
(X, kx) E PrTop to (X, kX) E Top ; here kX = kx for the least ordinal
number a with W1 = kX . (The ordinal powers of kx are defined by k°
id , kJe 1 = kxkx , and kX(M) = U k' (M) for a limit ordinal 83 ). The

'Y <P
verification of these claims is left to the reader as Exercise 3.A.

3.2 Filter convergence spaces and Katetov closure operator
In a pretopological space (X, kx) one has, as in Top, a notion of convergence:

a filter F converges to a point x E X if and only if every neighbourhood of x
belongs to .F, i.e., if and only if

Vs:=(NCX

Often it turns out to be useful to replace (and in fact generalize) pretopologies by
convergence structures, as follows. A filter convergence space (X, qx) is a set X
equipped with a map qx which assigns to each x E X a set qx(x) of filters on
X such that, when writing .F --t x instead of F E qx(x) , one has

i-+x, with i=.{NCX :xEN},

if.F -+ x and CJ D F , then g - x
f o r every x E X and all filters .F, G on X . A continuous map f : (X, qx) -+
(Y, qy) must preserve convergence, i.e.

.F 2--+ x implies f.F - q - - + f (x)

for all x E X and filters .F on X ; here f.F denotes the filter on Y with
filter-base If (F) : F E F} . This defines the category FC.
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For a family fi : X --i Xi with (Xi, qi) E FC , i E I , we can define an initial
(or weak) convergence structure qx on X , as follows:

x-, .:H (Vi E I) M' '` fi(x)

In particular, subspace and direct product structures are easily described. For a
subset Y of (X, qx) , the subspace structure qy on Y is given by

.x'MY+y4-*(3C9)Q y and .PD{GnYJGECc}.

The direct product (X, qx) of (Xi, qi) , i E 1 , is given by the cartesian product
X = II Xi with the convergence structure

iEI

Y x t (Vi E I) piY 1':4 xi ,

for x = (xi)iE, and pi the i-th projection.

One easily shows that for M the class of (subspace) embeddings, FC is M-
complete. Hence we are ready to define the KatUtov closure operator K = (kx )xErc
by

kx(M) := {x E X : (3.T) .F4 + x and M E .F}

PROPOSITION K is a hereditary, grounded, additive and productive closure
operator of FC w.r.t. the class of embeddings.

Proof That K is a hereditary and grounded closure operator of FC is easily
checked. In order to prove its additivity, let x E kx (M U N) so that Jr -F x for a
filter F on X with M U N E .F . Choose an ultrafilter U J Y; then M E U
or N E U, and U - x. Hence x E kx(M) U kx(N) .

Finally, consider a subset M = II Mi of X =11 Xi , and let x = (xi )iEJ E
iEI iEI

[[ki(Mi) . Hence there are filters Y'i on Xi with Y'i -* xi and Mi E ri
iEI
i E I . By the definition of the convergence structure on X , for the filter F on
X with filterbase

{llFi: (ViEI)Fi E.Fi}LEI

one has F -+ x , and l Mi E F . Hence x E kx(M) .
iEI

We wish to show that the Katetov closure operator K of FC is an extension
of the Cech closure operator of PrTop and of Top. First of all, each pretopological
space becomes a filter convergence space, by

y-'z V, CF
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(see the beginning of this section). This gives a full embedding

PrTop -. FC ,

in fact, a bireflective embedding. The reflector provides (X,qx) E FC with its
pretopology kX , as described above. Hence, if (X, qx) originates from a pretopo-
logical space, the induced pretopology kX coincides with the original pretopology.

A continuous map in PrTop is an embedding if and only if it is an embedding in
FC. This can easily be shown directly or, as we shall point out in 5.8, derived from
general categorical facts. They also imply that PrTop is closed under subobjects
and products in FC: see Exercise 2.K. The latter fact shows that the productivity
of K in FC gives in particular:

COROLLARY The Cech closure operator of PrTop and the Kuratowski closure
operator of Top are productive. O

On the other hand, one concludes that K in FC is neither idempotent nor fully
additive since its restriction to PrTop does not have these properties.

We shall resume the discussion of extensions and restrictions of the Kuratowski
closure operator in 3.6.

3.3 Sequential closure, b-closure, 0-closure, t-closure
In this section we discuss four particular closure operators of the category Top of

topological spaces w.r.t. the class M of embeddings. Each of them is of interest to
topologists and is therefore discussed here in some detail, although they are instances
of more general constructions to be discussed later.

For a topological space X and a subspace M , we denote by kX the usual
,(Kuratowski) closure and then consider:

(a) the sequential closure ax(M) of M in X , containing all points z E X
such that there exists a sequence (xR) in M converging to x in X ;

(b) the b-closure (or fr-ant closure) bx(M) of M in X , containing all points
x E X with

kx({x})nMnU 0

for every neighbourhood U of z ;

(c) the 0-closure Ox(M) of M in X , containing all points x E X with

Mnkx(U)¢0

for every neighbourhood U of x

(d) the t-closure eX(M) of M in X , containing all points x E X such that
there is a compact subspace B of X with

x E kX(M n B).
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It is not difficult to check that each of the four operators gives in fact a closure
operator of Top w.r.t. M; in order to check continuity of the 8-closure, it is useful
to observe that

91(M) = n{kx(U) : U 3 M, U open}.

First we relate these closure operators to the usual closure:

PROPOSITION Let X be a topological space and M C X . Then:

(1) bx(M) C kx(M) and o-x(M) C tx(M) C kx(M) C Ox(M)

(2) (a) ox = kx iff X is Frechet-Urysohn;
(b) bx = kx iff X is a topological sum of indiscrete spaces;
(c) Ox = kx iff X is a regular space;
(d) tx = kx iff X is a k-space.

(3) Each of the inclusions in (1) may be proper.

Proof

(1) ax(M) C kx(M) holds since {x} U {x : n E Id} is compact whenever
x -> x in X . The other inclusions follow immediately from the definitions.

(2) (a) By definition, a space X is Frechet-Urysohn if a subset M C X is
closed whenever x x with z E M for all n implies x E M . For (b), see
Exercise 3.E. (c) Let X be regular, i.e., for every neighbourhood V of x there
is a neighbourhood U of z with kx(U) C V . To show Ox (M) = kx(M) , let
x E 8x(M) and let V be a neighbourhood of x . With U as above, one has
Mflkx(U) $ 0 by definition of the 0-closure, hence MnV j4 0 . Vice versa, given
Ox = kx , in order to show regularity of X , one shows that for every z E X and
A C X closed with x ¢ A , there are disjoint open sets U, V with z E U and
A C V . In fact, by assumption one has Ox(A) = A , hence x 8x(A) . Therefore
there is an open set U E) x with An kx(U) = 0 , i.e., A C V := X \ kx(U) . (d)
By definition, X is a k-space if a subset M C X is closed whenever M fl B is
closed in B for every compact subspace B of X . The k-space property means
that t-closed sets in X are closed, and the latter property translates into

kx(M) C kx(tx(M)) = tx(M)

for all MCX.

(3) For any non-discrete Hausdorff space X , bx # kx , by (2)(b). By (2)(c), for
a non-regular space, 8-closure and Kuratowski-closure are different. Similarly, for
any space which is not a k-space, t-closure and Kuratowski closure differ. (Consider,
for example, the subspace NU {x} of 61 with any z E,611\11 .) To see that the
sequential closure may be properly smaller than the k-closure, consider any compact
space which is not Frechet-Urysohn. (For example, X = fiN is compact, so that
tx = kx , while M is a o-closed subspace of X which is dense.)
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THEOREM The closure operators o-, b, 8 , and t of Top have the following
properties:

(1) b is idempotent while o-, 9 and t are not.

(2) b and or are hereditary, while t is weakly hereditary but not hereditary. 9

is not even weakly hereditary.

(3) All b, a , 9 and t are grounded, additive and productive. None of the four
operators is fully additive, but they are all fully additive for Alexandroff spaces.

proof

(1) To check idempotency of bx , consider x E X \bx (M) . Then for some open
neighbourhood U of x , kx({x})nMnU = 0 . Hence, for each y E kx({x})nU ,
kx({y}) C kx({x}) , and U is an open neighbourhood of y , thus y ¢ bx(M)
This proves

(kx({x}) n u) n bx (M) = 0,

hence x i bx(bx(M)) .
For non-idempotency of 9 , we refer to Exercise 3.F. Non-idempotency of a- and t
is witnessed by the following space X introduced by Arhangel'skii and Franklin
[1968]. In R2 , consider the set

X={(0,0)}UUXn
n=1

with Xn = 1(1/n, 1/m) : m E N} for all n E N , and provide it with the following
topology: each point (x, y) with xy > 0 is isolated; the basic neighbourhoods
of xn = (1/n, 0) are {xn } U Xn \ {(1/n,1/m) : m < k} with k E N ; the basic
neighbourhoods of (0, 0) are {(0, 0)} U U (Xn \ Fn) with k E N and each

n>k
Fn C Xn finite. (Note that this topology r' is obtained by adding to the usual
Euclidean topology r of X new neighbourhoods of (0, 0) in order to make all
"diagonal" sequences converging to (0, 0) in (X, r) closed sets in r' .) Then, for

M={(x,y)EX: xy>0},

one has rrx(M) - X\{(0, 0)} , whereas ax(crx(M)) = X . Since always vx(N) C
tx(N) , for N C X , one also has tx(tx(M)) = X . On the other hand, (0,0)
tx(M) . In fact, by definition of the topology of X , any subset {(1/nk , 1/mk) :
k E N} with n1 <n2< ... < nk < ... is closed and discrete in X , hence cannot
be contained in a compact subset B of X. Hence B meets M in only finitely
many "columns" Xn . This shows (0, 0) tx(M n B) .

(2) For hereditariness of b , see Exercise 3E. Hereditariness of a is trivial. To
show that 9 is not weakly hereditary is left to the reader: see Exercise 3.F and
Example 4.4 below. To check weak hereditariness of tx for a Hausdorff space
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X (or, more generally, for any space X in which compact subspaces are closed),
consider M C X and z E tx(M) hence x E Y = kx(M n B) for a compact
subspace B C X . Since Y C tx(M) , it suffices to show z E ty(M n Y) .
Indeed, C := B n Y is a compact subset of Y containing M n B , since Y is
closed in X . Hence

Y=kx(MnB)=ky(MnBnY)=ky((MnY)nC)

is contained in ty (M n Y)
To see that k is not hereditary, consider X = PH and any point x in the remainder
X \N . By (2)(d), tx = kx , hence z E tx(N) . On the other hand, x ¢ ky(N)
for Y = N U {x} since N contains no infinite compact subsets. (In fact, for every
infinite subset A C N consider a partition A = Ai UA2 into infinite subsets; then
at least one of the two subsets Ai does not meet all neighbourhoods of x , hence
Ai has an accumulation point in X .)

(3) Groundedness holds trivially. o and 9 are additive since the intersection of
two closed neighbourhoods is a closed neighbourhood. Additivity of t follows from
additivity of k and the fact that the union of two compact subsets is compact.
Additivity of b is a direct consequence of the definition of b-closure. For the
assertions on full additivity, see Exercise 3.G. Finally we turn to productivity and
consider a family of spaces Xi and Mi C Xi , i E I . With X = 11 Xi and

iEI
M = IJ Mi we must show ]J cxi(Mi) C M for each of the four closure operators.

iEI iEI

In case of the sequential closure operator, one just observes that if
every i E I , then (xE`})iEI - (xi)iEr
For the t-closure, let xi E txi(Mi) for all i E I , hence

xni) --' xi for

xi E kxi(Mi n Bi)

for compact sets Bi C Xi , i E I . Since K is productive (see Corollary 3.2),

(xi)IEI E A= kx (fl(Mi n Bi))
LEI

By Tychonoff's Theorem, B = JJBi is compact, hence A = kx(M n B) C
iEI

tx(M) in view of the obvious equality M n B = rli57(Mi n Bi) . Hence x E A C
tx(M) .
Let now xi E 9xi(Mi) for every i E I . Since K is productive, the (ordinary)
closure of a basic neighbourhood of z = (xi)iEI in X is of the form

W = ll kxi(Ui) x 11 Xi
iEF iEI\F
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with F C I finite and each Ui a neighbourhood of xi . Since kxi(Ui) meets
Mi for all iEF,onehas Wf1M#o,hence xEBx(M).
The argumentation in case of the b-closure is similar and can be left as an exercise
(see Exercise 3.E).

3.4 Preradicals in R-modules and Abelian groups
Preradicals give a rich supply of closure operators in the category ModR of

left R -modules and R -linear maps, for a unital ring R . Here M is the class of
monomorphisms, a skeleton of which is given by inclusion maps of submodules.

A preradical r in ModR is a subfunctor of the identity functor of ModR
hence for every R -module M one has a submodule r(M) such that every R
linear map f : M -* N can be restricted as r(f) : r(M) -+ r(N) . We are
interested in closure operators C of ModR with the property that cm(O) =
r(M) for every R -module. When writing C < D iff cm(N) 9 dm(N) for all
submodules N < M , M E ModR , we easily obtain:

PROPOSITION For every preradical r of ModR , there is a least closure op-
erator Cr of ModR with (cr)M(0) = r(M) for all R-modules M , and a
last closure operator Cr of- ModR with crM(0) = r(M) for all M . For all
N < M , the formulas

(Cr)M(N) = N + r(M)

cL(N) = '(r(MIN))

hold; here u : M --- M/N is the canonical projection. One calls Cr and Cr the
minimal and the maximal closure operator induced by r, respectively.
N is Cr-closed (Cr-dense) in M iff r(M) C N (r(M)+N = M, respectively)
N is Cr-closed (Cr-dense) in M if r(M/N) = 0 (r(M/N) M/N, respective-
ly).

Proof Every closure operator C with cm(O) = r(M) for all M must satisfy
r(M) < cm(N) for all N < M , by monotonicity, hence N + r(M) < cm(N)
Also, by continuity, one has

cm (N) = cm (7r-'(0)) < 7r-1(r(M/N)) .

Checking that the given formulas define closure operators Cr and Cr with the
desired properties is routine work now.

Below we list some properties of Cr and Cr which, of course, depend on
properties of the preradical r . The definitions of these properties are given in the
proof below.

THEOREM Let r be a preradical of ModR . Then:
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(1) Cr is idempotent, minimal and fully additive, but not grounded, unless r(M) _
0 for every R-module M .

(2) C' is idempotent if r is a radical.

(3) Equivalent are: Cr is weakly hereditary; Cr is weakly hereditary; r is
idempotent.

(4) Equivalent are: Cr is hereditary; Cr is hereditary; r is hereditary.

(5) Cr and Cr are finitely productive. Equivalent are: Cr is productive; Cr
is productive; r is Jansenian.

(6) Equivalent are: Cr = Cr ; r is cohereditary; Cr is additive. In this case
r is necessarily a radical.

Proof

(1) is trivial.

(2) For all N < M , one has crM(c"M(N)) = crM(N) if and only if r(M/c"M(N)) _
0 . Since always r(M) < a '(r(M/N)) = CM (N) , with equality to hold for
N = 0 , the latter condition is equivalent to

r(M/r(M)) = 0

which, by definition, means that r is a radical.

(3) r(r(M)) is the Cr-closure of 0 in r(M) . This shows that Cr is weakly
hereditary if and only if

r(r(M)) = r(M)
for all M , i.e. iff r is idempotent. Any N < M is Cr-dense in crM(N)
iff r(crrm(N)/N) = crrm(N)/N . Since the latter module is isomorphic to r(M/N)
according to the definition of c'M(N) , one concludes that Cr is weakly hereditary
if r(r(M/N)) = r(M/N) holds for all N < M . This is clearly equivalent to the
idempotency of r.

(4) Hereditariness of r means, by definition,

r(L) = r(M) fl L

for all L < M . Hence, for N < L , this implies

(cr)M (N) fl L = (r(M) + N) fl L = (r(M) fl L) + N

= r(L) + N = (cr)L(N) ,

that is: Cr is hereditary. For the converse proposition, consider N = 0 . To
derive hereditariness of Cr , observe that

r(ir(L)) = r(M/N) fl 7r(L)
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holds when r is hereditary. Taking inverse images w.r.t. rr yields

cLr (N) = crm (N) C L ,

i.e. hereditariness of Cr . Again, for the converse proposition, apply this to N =
0.

(5) For finite productivity, see Exercise 2.J. For r to be Jansenian means that
for all families of modules Mi , i E I ,

r(fMi) = Hr(Mi).
iEI iEI

To deduce productivity of Cr and C' is a straightforward exercise. On the other
hand, this is a necessary condition for the productivity of each Cr and Cr as the
application to zero-submodules shows.

(6) Cr = Cr holds if

r(MIN) = (r(M) + N) IN

whenever N < M ; by definition, this means that r is cohereditary. This condition
implies that Cr is additive since Cr is always additive. To prove the converse is
left as Exercise 3.M. That a cohereditary preradical is a radical follows from (1) and
(2).

D

We now turn to three specific preradicals, in fact: radicals, in the category
AbGrp (= Modz) of abelian groups which will be of interest later on. .

EXAMPLES

(1) Consider the radical t defined by the torsion subgroup

t(A)={aEA:(3nEZ)n>0 and na=0}

of an abelian group A. The corresponding closure operator Ct can be described
by

ct4(B)={aEA:(3nEZ)n>0 and naEB}
for every subgroup B <A. From the Theorem one obtains that Ct is hereditary,
idempotent and finitely productive, but neither productive nor additive. Furthermore,
it is easy to check that Ct is nevertheless directedly additive.

(2) The maximal divisible subgroup d(A) of an abelian group A defines a
'radical d . (Recall that A is divisible if for every y E A and for every positive
integer n , there is x E A with nx = y .) From the respective properties of d one
derives with the Theorem that C' is idempotent, weakly hereditary and productive
but neither hereditary nor additive. A subgroup B < A is Cd-closed (Cd-dense)
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if and only if A/B is reduced (divisible, respectively).
It is easy to see that Cd coincides with the discrete closure operator of AbGrp
for the groups A with the property that all quotients of A are reduced; see (i)
and (ii) of (3) below.

(3) The Frattini subgroup f(A) = n{M : M is a maximal (proper) subgroup
of A} of an abelian group A defines a non-idempotent and non-Jansenian radical

f of AbGrp . For the corresponding closure operator Cf one has

cffA(B) = n{M : M is a maximal subgroup of A with B < M}

The Theorem gives that Cf is idempotent, but neither weakly hereditary nor pro-
ductive. We note that B < A is C'-dense if there is no maximal subgroup of A
containing B .

The following presentation of f(A) turns out to be useful:

f(A)=n{pA : p prime }. (*)

In fact, for every maximal subgroup M of A there is a prime number p with
pA C M (since AIM is a simple Abelian group, hence p = JA/MI is prime). On
the other hand, for every prime p , A/pA is a group of exponent p , hence it is
a direct sum of cyclic groups of order p . Therefore f(A/pA) = 0 , and the Cf -
closed subgroup pA of A is an intersection of maximal subgroups. This proves
(*).
Since d(A) C pA for every prime number p , (*) gives d(A) < f(A) for every
A , hence Cd < Cf . In particular, Cd-dense maps are Ct-dense. In fact, the
converse proposition is also true (although Cd is weakly hereditary and Cf is
not): (*) gives that for a Ce dense subgroup B < A , the quotient A' = A/B
satisfies A' = pA for every prime p . This means that A' is divisible, hence B
is Cd-dense in A .
For a proof of the following result which relates properties of Cd and Cf further,
we refer the reader to Dikranjan-Prodanov [1976].

Equivalent are for an abelian group A

(i) Cd coincides with the discrete closure operator for A
(ii) every quotient of A is reduced;
(iii) no proper subgroup of A is Ct-dense ;
(iv) every proper subgroup of A is contained in a maximal subgroup;
(v) there exists a subgroup B of A and non-negative integers kp for every

prime p such that B - Z' for some n > 0 , and A/B is a torsion
group such that its p-torsion component tp(A/B) is of exponent p'P , i.e.,
p'Ptp(A/B) = 0 .
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3.5 Groups, rings and fields
We consider examples of closure operators in the category Grp of (multiplicar

tively written, not necessarily Abelian) groups and their homomorphisms, in the
category CR.ng of commutative unital rings and their homomorphisms, both with
respect to the class of monomorphisms, and in its full subcategory Fld of fields (in
which every morphism is monic).

(1) The normal closure of a subgroup M of a group G is defined by

vG(M):=n{N:M<N<1G}

with M < N standing for "M subgroup of N" and N,4 G for "N normal sub-
group of G". According to Exercise 2.D(a), (b) and Example 1.8, v = (vG)G£Grp
is an idempotent closure operator of the category Grp (with respect to the usual
subobjects) which is not weakly hereditary. Normal subgroups are not only stable
under intersection, but also under arbitrary joins in the subgroup lattice. Therefore
v is fully additive. It is trivially grounded and also easily seen to be productive.

(2) With the help of the normal closure, one may generate closure operators from
preradicals, as in the Abelian case (see 3.4). For a preradical r in Grp, that is: for
a subfunctor of the identity functor of Grp, we first observe that r(G) is actually
a normal subgroup of G (since it is invariant under every endomorphism of a ).
For every subgroup U < G , we therefore have

and we can define

(cr)G(U) := r(G) U,

crG(U) = x-1(r(G/vG(U)))

with r : G - G/vG(U) the canonical projection. While (cr)G(U) is, like U, just
a subgroup of G , cG(U) is always normal in G , so that vG(crG(U)) = c'G(U)
and due to the idempotency of v one also has c'G(U) = c=G(vG(U)) .

We can leave it to the reader to check that Proposition 3.4 remains valid for groups,
so that Cr and Cr are the least and last closure operators C respectively with
cG({e}) = r(G) , with e the neutral element of G .
Of particular importance is the preradical k given by the commutator subgroup:

k(G) = [G,G] = (xyx-ly-1 : x,y E G) .

Here one has (ck)G(U) = k(G) U = ckG(U) , so that there is (up to isomorphism)
only one closure operator C with cG({e}) = k(G) .

(3) For a subring B of A E CR.ng , let intA(B) be the integral closure of
B in A , i.e., the set of all elements a E A for which there is a monic polynomial
p(x) E B[x] with p(a) = 0 . It is elementary to verify that int is a closure operator
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of CR.ng. int is hereditary (since trivially C fl intA(B) = intc(B) for B <
C < A) and idempotent (which follows from elementary facts on finitely generated
modules; see, for example, Hungerford [1974], p.397). int is not grounded: in A =
Q(x)/(x2 - 2) = Q(f) , the least subobject, Z , is int-dense.

Although Fld is not closed under subobjects in CRng, it is nevertheless possible
to restrict int to Fld, since for fields B < A also intc(B) is a field; it coincides
with the algebraic closure of B in A ; i.e., with the subfield of elements of A
which are algebraic over B .

(4) Let S be a set of polynomials in 7L[x] of positive degree. For a field F ,
let KF(S) be the splitting field of S in F , i.e. the subfield of F generated
by the roots of polynomials from S in F . Then, for every subfield L < F ,
let 4(L) = L KF(S) . We leave it to the reader to verify that CS is an
idempotent and weakly hereditary closure operator of Fld; see Exercise U. Here
we just mention that, in general, CS is neither grounded (by the same example
as in (1)) nor hereditary: consider S = {x4 - 2} , L = Q , F = Q(v) and
M = %Y2-) . Then L is CS-dense in M , but CS-closed in F ; if CS was
hereditary, by assertion 5 of Exercise 2.F(b), we would have L also CS-dense in
F , a contradiction.

(5) We now generalize the setting of (4), by allowing S to be a set of pairs
(k, f) , with a field k and a polynomial f (x) E k[x] of positive degree. Let
kf be the subfield of k generated by the coefficients of f . For a fixed field
F and a subfield L < F , consider the set E(S) of all triples a = (k, f, a)
with (k, f) E S and a : kf --+ L a field homomorphism. For each such a
we have the polynomial o-(f (x)) E L[x] , so that we can form the splitting field
K. = KF({c(f(x))}) (see (2)). Now let 4(L) be the composite of L and all
K., aEE(S).
As before, CS is a closure operator of Fid. To check continuity, consider c : F -+
F' in Fld. For every a = (k, f, v) E E(S) , by restriction of V o- one obtains
a field homomorphism o' : kf -+ V(L) , and So(Kc,) C KF.({o-'(f(x))}) . This
implies

'o(cFS(L)) C cF.,(4 (L)) .

It is easy to see that CS is weakly hereditary, but in general no longer idempotent:
consider S = {(kl, fi) , (k2,f2)} with kl = Q , k2 = (Q(f2)) , fl (x) = x2 - 2
f2(x) = x2 - v ; then, for L = Q and F = Q(4 2) , one has

cF(L) = Q(/) and cF(cFS.(L) = F).

3.6 Graphs and partially ordered sets
A (directed) graph is a pair (X, E) with a set X and a subset E C X x X

Elements in X are called vertices, while elements in E are edges of the graph; an
edge of type (x, x) is a loop. W e often write x -+ y (or x E . y) if (x, y) E E .
A morphism f : (X, E) -+ (Y, F) of graphs is a map f : X -+ Y with the property
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that
z -+ y implies f (x) -+ f (y)

for all z, y E X . This defines the category Gph of graphs.
Much of our interest in graphs arises from the fact that each filter convergence

space (X, qx) induces a graph with X as its set of -vertices, as follows:

x->y:l=: i y

In particular, each pretopological space (X, kx) induces a graph:

x- y vyCi
('YN nbad of y) x E N

Y E kx({x}).

We note that graphs (X, E) arising this way have a loop for each z E X , i.e. the
relation E is reflexive on X . We call graphs (X, E) with this property spatial,
for reasons which will become clear from the Corollary below. The full subcategory
of spatial graphs in Gph is denoted by SGph.

Each preordered set (X, <) (with < a reflexive and transitive relation) is
in particular a spatial graph. Hence the category PrSet of preordered sets and
monotone maps is a full subcategory of SGph. Finally, PrSet contains the full
subcategory PoSet of partially ordered sets (X, <) (for which < is also antisym-
metric).

All Gph, SGph, and PrSet (but not PoSet) are topological categories over
Set : for a family fi : X -+ Xi with (Xi, Ei) E Gph one defines the initial
structure on X by

x - y (Vi E I) ff(x) -+ A(y) .

As in FC, this yields an easy description of substructures and direct products (also
for posets). A subset M C X in a graph (X, E) becomes a subgraph, by taking
E rl (M x M) as its set of edges. Clearly, Gph, SGph, PrSet and PoSet are M-
complete, for M the class of embeddings (of subgraphs) in the respective category.

For a graph (X, E) and a subset M C X one introduces the up-closure of
M by

TxM:={xEX :(3aEM)a-+x},
and the down-closure of M by

Ix M:={xEX:(3aEM)z-.a}.

It is clear that M C Tx M holds for all M C X if (X, E) is spatial; similarly
for lx . The other axioms for a closure operator hold even for arbitrary graphs,
hence one has closure operators I and I of SGph with respect to the class of
embeddings.
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The convex closure convX(M) of a set M C X in a spatial graph (X, E)
is defined as the set of all vertices x in X such that there exists a finite path of
edges

with both endpoints in M .

PROPOSITION

(1) 1 and I are hereditary, grounded, fully additive and productive but non-
idempotent closure operators of SGph.

(2) cony is a weakly hereditary, idempotent, grounded and finitely productive clo-
sure operators of SGph, but it is neither hereditary, nor additive, nor productive.

0

Proof (1) and the positive statements of (2) are checked routinely. To see that
cony is not additive, observe that in the spatial graph

0-+1-+2

both {0} and {2} are cony-closed, but 10, 2} is not. (When presenting a spatial
graph by a diagram, we do not draw loops.) In the spatial graph

0 -+ I -+ 2 -+ 3,

for M = 10, 3} and Y = 10, 2,3} one has 2 E Y n cony (M) , but 2 V
Y 1) convy(M) ; hence cony is not hereditary. Finally, to show that cony is not
productive, let (Xn, En) be the spatial graph

2n.

For every n E N , Mn = 10, 2n} is cony-dense in Xn , but x = (xn)nEN with
xn = n in X = fl Xn does not belong to convx(M) , with M = tl Mn . In

nEN nEN
fact, if

a-+ .... b

with a , b E M , then necessarily a = (0, 0, 0, ...) and b = (2,4,...,2n,. . *) .

Let k be the length of the above path, i.e. the number of edges. Projecting it onto
Xk yields a path of length at most k - a contradiction. 0

For a spatial graph (X, E) , both JX and jX are pretopologies on X
These assignments are functorial, so that there are functors

j : SGph -. PrTop and .: SGph - PrTop.
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THEOREM

(1) Both t and j give full embeddings of the category SGph as a bicorefiective
subcategory of PrTop.

(2) The closure operators t and j of SGph are the restrictions of the Cech
closure operator K of PrTop along the embeddings t and respectively.

(3) The following are equivalent for (X, E) E SGph

(i) T x is idempotent,

(ii) (X, T x) E Top,

(iii) jx is idempotent,
(iv) (X, jx) E Top,
(v) E is transitive,

(vi) (X, E) E PrSet.

(4) The following are equivalent for (X, E) E PrSet

(i) each vertex of the graph (X, E) is cony-closed,

(ii)' (X, tx) is a To-space,
(iii) (X, jx) is a To-space,
(iv) (X, E) is a partially ordered set.

Proof

(1) By repeated use of (x -+ y q y Et {x}) one shows that t is a full
embedding. Its coreflector is given by the underlying graph of a pretopological
space (X, kx) , as described before:

x 'k-+ygyEkx{x}.

Indeed, we then have that idx : (X , tX) -+ (X, kx) is continuous, i.e., T' e M C

kx(M) for every M C X (since x El M means a -+ x for some a E M
hence x E kx{a} C kx(M) ). One also easily verifies that, for any spatial graph
(Y, F) and its induced pretopology ty , every continuous map f : (Y, ly) --+

(X, kx) gives a morphism f : (Y, F) -+ (X, tX) of graphs.
This proves the claim for t which, by dualization, also proves the claim for j
there is an isomorphism of categories * : SGph .- SGph which sends (X, E) to
its opposite graph (X, E'1) , and j = t* .

(2) Apply Proposition 2.8.

(3) is trivial. (Of course, Top is being thought of as being embedded into PrTop,
according to 3.1.)

(4) Statement (i) means {x} = conv({x}) for all x E X ; that is: the existence
of a path x . ... -+ y --+ .... -+ x yields y = x . In the presence of transitivity,
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this simply means that E is antisymmetric. Hence (i) q (iv). For the equivalence
of these statements with both (ii) and (iii) one just needs to recall that a topological
space X is To if and only if kx({x}) = kx({y}) implies x = y .

Let us call a pretopological space (X, kx) Aterandroff if kx satisfies condition
(FA) of 2.6, i.e.

kx(U Mi) = U kx(Mi)
iEI iEI

for every non-empty family of subsets Mi of X . Hence we have the full sub-
category PrAlex of PrTop, and (with the notation introduced in 2.6), Alex =
PrAlex fl Top . By Topo we denote the full subcategory of To-spaces in Top;
and Alexo = Alex fl Topo .

COROLLARY There are isomorphisms of categories

PrAlex = SGph, Alex = PrSet , Alexo = PoSet .

Proof It suffices to show that the bicorefiective modification

idx : (X,Tz) - (X,kx)

of a pretopological space is an isomorphism if and only if kx satisfies (FA). Since
T is fully additive, "only if" is clear. On the other hand, if (FA) holds for kx , one
has

kx(M) = U kx({a})
aEM

for all M C X . Since kx({a}) =TX ({a}) for all a E M , this means kx(M) =Tz
(M) for all M C X .

We may summarize the relations between subcategories as given in this section,
as follows:
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PrTop

Top

PrSet - Alex

epi -

Tope

PoSet - Alexo

Hence there are full reflective and coreflective embeddings as indicated: see also
3.1 and Exercises 3.A, 3.J, and 3.L.

3.7 Directed-complete posets and Scott closure
A partially ordered set (X, <) is directed-complete if every directed subset A C X
has a supremum in X , thus V A exists in X whenever A 0 0 and for all
x, y E A there is z E A with z> x and z> y . The morphisms of the
category DCPO of directed-complete posets (dcpos, for short) are given by maps
f : X -+ Y which preserve directed joins, i.e., ' f (\( A) = `(f (A) for every directed
subset A of X . Note that such a map is necessarily monotone, and f (A) is
directed whenever A is. A subdcpo M of (X, <) is given by a subset which
is closed under directed joins. With the corresponding class M of embeddings,
DCPO is M-complete. (We remark that some authors require a dcpo to have
a bottom element, without insisting on its preservation by morphisms. However,
they assume then the bottom element of a subdcpo to coincide with the bottom
element of the given dcpo. The severe disadvantage of these assumptions is that the
resulting category has neither equalizers nor pullbacks of subdcpos. Not to insist
on the existence of a bottom element does not prevent us from recognizing their
importance. In fact, all our examples of dcpos either have bottom elements or can
easily be modified to this extent.)

Since DCPO is a non-full (!) subcategory of PoSet one is tempted to investigate
the up- and down-closures of PoSet in the new environment. For a subdcpo M
of X , the up-closure 1x M = {x E X : (3a E M)a < x} is indeed a subdcpo
(since for every non-void subset A C1 M with existing join X , this join belongs
to 11 M =1 M ). However the down-closure lx M = {x E X : (3a E M)x < a}
may fail to be closed under directed joins.

EXAMPLE Provide L = {a,, : n E N} U On : n E N} U {oo} with the following
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partial order:

bn /oo = Van

ao

Then X is a dcpo and M = {bnIn E N} a subdcpo. However, the directed
set {anInEN} has no join in jM=X\{oo}.

Of course, every subset Z of a dcpo X may be closed under directed joins,
i.e., dirx Z = {x E X : (3A C Z directed ) V A = x} is a subdcpo (check!). We
may now define the up-directed down-closure (dir j)x(M) of a subdcpo M of
X as dirx(lx M) .

PROPOSITION The up-directed down-closure dir j is a weakly hereditary, groun-
ded, additive and productive closure operator of DCPO . It is neither hereditary,
nor idempotent, nor fully additive.

Proof dir j is certainly extensive and monotone. For every map f : X - Y
of dcpos and every directed subset A C1 M with a subdcpo M , also f (A) C
f (J M) C j f (M) is directed and f (V A) = V f (A) . Hence f (dir j M) C dir J.

f (M) , thus the continuity condition holds.
To show that dir j is weakly hereditary, consider x E dirx lx M =: Y . Then

x= V A for a directed subset A Clx M. But since J X M =jy M C Y , this
shows immediately z E dirt ly M , as desired. Groundedness of dir J. is obvious
since dir j $ = $ .

In order to establish additivity of dir j , we first show

dir (Z U W) = dir Z U dir W (*)

for arbitrary subsets Z, W of a dcpo X . (In fact, here it suffices that X is
just a poset). Since "2" is obvious, we need to show only the inclusion "C" of (*) .
Hence consider x= V A for a directed subset A C Z U W . For each a E A the
set A. := An r a is directed and cofinal in A (so that for every b E A there
is c E A. with c > b ), hence x = VA. . Under the assumption x ¢ dir Z ,
we then know that no A, is contained in Z . This means that for every a E A
there is b > a in A with b V Z , hence wb E W W. Consequently, A fl W is
cofinal in A and A fl W is directed. Therefore x = V(A fl W) E dir W .

Since for a subdcpo M of X one has dir M = M , formula (*) shows that
the join of subdcpos M and N is simply given by M U N . Hence additivity of
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dir j follows immediately from (*) and the additivity of j in PoSet.
Checking productivity is a routine matter that can be left to the reader. To see

that dir J. is not hereditary one may return to the "ladder" L of the Example
and consider M = {bn : n E N} and N = M U {oo} . Then oo E N f1 dirL IL M
but oo V dirty IN M .

In order to show non-idempotency of dir j , we again consider the ladder L
and glue to each bn a new copy L{*3 of L , identifying oo E L(") with b E L .
This defines a dcpo L2 which contains Ll := L as subdcpo.

no

Now let M2 be the set of all maximal points of L2 , with the exception of
bo , bl,..., and oo . This is a subdcpo of L2 with

dir jM2=L2\({an:nEN}U{oo})0L2=dir j(dir jM2).
Finally, in order to show that dir j is not fully additive, first we remark that

the join of subdcpos Nn (n E N) is given by dir (U Nn) . Now consider the dcpo
L' = L U {c) with c < oo but c incomparable to any other element in L ,
and let Nn :_ {a; , b; : i < n} . This defines an ascending chain of subdcpos
Nn = dir j Nn of L' whose join is L . However, dir j (V NO = dir j L = L' .

0

DEFINITION A subset M of a dcpo X is called Scott-closed if it is down-closed
(j M = M) and closed under directed joins (dirM = M) . This is the same as
to say that M is a (dir j)-closed subdcpo of X . (If M = dir j M , then
jMCdirlM=M and dirMCdirjM=M.)

THEOREM (1) The Scott-closed subsets of a dcpo X form a topology on X
making X a topological space ScottX.

(2) The Scott closure scottx(M) of a subdcpo M of X is the Kuratowski
closure of M in ScottX , i.e. scottx(M) := kscottx(M) . This defines an
idempotent, weakly hereditary, grounded and additive closure operator of DCPO
which is neither hereditary nor fully additive. Coosedness with respect to scott means
Scott-closed.

(3) Scott : DCPO -. Top is a full and faithful functor which commutes
with the underlying Set functors.

Proof (1) Scott-closedness is stable under finite union since dir j is additive.
It is trivially stable under arbitrary intersection.
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(2) We check the continuity condition for scott. For f : X -+ Y in DCPO
and a subdcpo M of X , one has

f(scottx(M)) = f(n{N : M C N C X, N= dir IN))

C n{f(N):MCNCX, N=dir jN)

= n{L: f(M)CLCY, L=dir IL}
= scotty (f (M)) I

since N = dir j N implies f (N) C dir j f (N) , see the Proposition. Idempo-
tency, groundedness and additivity of scott in DCPO follow immediately from the
respective properties of K in Top. For weak hereditariness of scott one evokes the
respective property of dir j . Finally, scott is neither hereditary nor fully additive,
for the same reason as dir j , see the Proposition.

(3) The continuity condition for scott means that every map f : X -+ Y
in DCPO gives a map f : ScottX --> ScottY in Top. Hence Scott becomes a
functor which, at the Set level, maps identically. Its fullness follows from Exercise
3.P.

An element c of a dcpo X is called compact (or finite) if c < VA for a
directed subset A of X implies c < a for some a E A . The dcpo X is called
algebraic if every element x E X is the join of the compact elements below x
that is:

x=V{cEX : c<x, ccompact}.

(Note that this join is directed since finite joins of compact elements are compact.)
An algebraic dcpo X in which every pair of elements with an upper bound actually
has a least upper bound is called a domain. These structures play an important role
in Theoretical Computer Science. Although we must leave it to the interested reader
to study the closure operators dir j and scott in the realm of domains, we observe
that the crucial examples L = L1, L2 and L' used in the proof of the Proposition
are actually domains.

Exercises

3.A (PrTop as a topological category)

(a) For a family of Set-maps fi : Xi --+ X with (Xi , ki) E PrTop , show that

kx(M) = U fi (ki(f, 1(M)))
iEl

gives a pretopology on X with the property: a Set-map g : X --+ Y with
(Y, ky) E PrTop belongs to PrTop if each composite g - fi does.



Examples of Closure Operators 65

(b) Conclude that the forgetful functor U : PrTop - Set is topological. (Readers
not familiar with topological functors are referred to Exercise 5.P). In particu-
lar, PrTop is complete and cocomplete.

(c) Verify that Top is bireflectively embedded into PrTop.

3.B (Direct products in PrTop) For a family (Xi, ki) , i E I , of pretopo-
logical spaces, let X = fl,E1 Xi and pi : X --r Xi be the i-th projection. For
a subset M C X , let AM be the set of families (Ai)iEF with F C I finite,
AiCXi for each iEF,and

MC Up,'(Ai).
iEF

Finally, let kx(M) be the set of all x E X with the property:

(b(Ai)iEF E AM)(3i E F) x E pi i(ki(Ai))

(a) Show that kX is a pretopology on X .

(b) Prove that (X,kX) , together with the projections pi , gives a direct product
in the category PrTop .

(c) Conclude that the tech closure operator K of PrTop is productive. Hint:
For Mi C Xi , i E I , first consider the case I = 11, 2} and show kl(MI) x
k2(M2) C kx(M) , hence K is finitely productive. Then use finite produc-
tivity to show 11 ki(Mi) C kx(M) in the general case.

iEl

(d) Show that Top is closed under direct products in PrTop, by showing kXkx =
kX whenever kiki = ki holds for all i E I .

3.C (House-keeping in PC)

(a) Verify the claims that PC is a topological category over Set (see Exercise 3.A)
and that PrTop is bireflectively embedded into PC.

(b) Show for the Katetov closure operator K of PC and every M C X E PC

kx(M)={xEX:(3.F)(F! x and (VFE.F)Mf1F#0)}.

3.D (0-modification and 0-closure in PC)

(a) Show that for (X, qx) E PC one defines a new convergence structure Oqx
on X , as follows:

Fs x(39)Qi+x and FJkX(9);
here kx(g) denotes the filterbase (check!) {kx(G) : G E with kx the
Katetov closure operator.
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(b) Prove that the assignment (X, qx) -+ ©X :_ (X, 8qx) is functorial, i.e. yields
a functor FC -+ FC .

(c) Show that
8x(M) := kex(M)

is an additive closure operator of FC (with respect to the class of embeddings)

(d) Prove that the 8-closure of topological spaces (as defined in 3.3) is a restriction
of 0 in FC, subject to the embedding Top -+ FC . Conclude that the 8-
closure in FC is neither weakly hereditary nor idempotent (see 3.F below).

3.E (b-closure)

(a) Prove that b is hereditary, grounded, additive and productive, but not fully
additive.

(b)

(c)

Prove (2)(b) of Proposition 3.3. Hint: If bx = kx , using hereditariness of
bx , show that point-closures Y = kx({x}) are indiscrete.

Show that, in general, bx(M) is not comparable with vx(M) by inclusion.
Hint: Show ox(M) ig bx(M) for every non-discrete metrizable space X .
For bx(M) g ox (M) , consider the space X of ordinals < wl (the first un-
countable ordinal), provided with the following topology: basic neighbourhoods
of wl are intervals (a, wi], a < wl , and the least neighbourhood of a < wi
is [a,wl] . Then X = kx({wl}) . For M = X `{wl} , wt E bx(M) . On
the other hand, M is or-closed since no sequence (an) with an < wl
converges to wi .

IF (Bad properties of the 8-closure in Top)

(a) Show that the 8-closure of Top is neither idempotent nor weakly hereditary.
Hint: To disprove idempotency, provide X = {x, a, b} with the topology given
by the open sets 0, {a} , {b} , X , and consider the 0-closure of {a} . To
disprove weak hereditariness, consider the unit interval X = [0, 1] equipped
with the topology in which points x # 0 have the usual neighbourhoods while
a typical neighbourhood of 0 is of the form [0, e) \ F with 0 < c < 1 and
F = {. : n E NJ . Then Ox (F) = FU{0} is discrete, hence 0 0 BeX(F)(F)

(b) Prove that 8x satisfies the weak hereditariness condition (WH) for every finite
topological space X .

3.G (Behaviour of b, or, 8 and t with respect to full additivity) Prove:

(a) For every Alexandroff space X (see 2.6), all b , or , 8 and t are fully
additive.

(b) b is fully additive for a space X if X is Alexandroff; the corresponding
statement for t holds true for X Hausdorff.
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(c)

(d)

B is fully additive for a Hausdorff space X if X is discrete; there is a
non-discrete Ti-space X for which 0 is fully additive but K is not (i.e.,
X is not Alexandroff).
None of b , a, 0 and t is fully additive.

3.11 (Properties of maximal closure operators)

(a)

(b)

Prove all claims on the maximal closure operators induced by t, d, and f
as given in 3.3.

Show that every hereditary maximal closure operator of ModR is directedly
additive. Hint: For C = Cr with r hereditary, show that x E M belongs
to CM(N) if and only if x E cRz(Nf1Rx) ; here Rx is the cyclic submodule
generated by x .

3.1 (Properties of Cs)

(a) For S C Z[x] , show that Cs is an idempotent and weakly hereditary closure
operator of Fld (cf. 3.5 (2)).

(b) Let S be as in 3.5 (3), but assume that kf contains all roots of f (x) in
k , for every (k, f) E S . Prove that Cs is hereditary.

3.J (Some reflections and corefiections)

(a) Show that PrSet -+ SGph and SGph -+ Gph are full bireflective embed-
dings, and that PoSet -+ PrSet is epireflective. Hint: Every relation E
on a set has a "transitive hull". For a preorder < on X , consider X/
for (x=ypx<y and y<x) .

(b) Verify that Top0 (Alexo) is epireflective in Top (Alex, respectively)
Hint: For a topological space X , consider X/ - for (x - y p kx({x})
kX({y})) .

(c) Prove that Alex (Alexo) is bicoreflective in Top (Tops, respectively)
Hint: The bicoreflector of SGph 25 PrAlex -+ PrTop can be restricted
accordingly.

3.K (Undirected graphs) Characterize the spatial graphs (X, E) for which
E is an equivalence relation (a) in terms of the operators TX , Ix , and convX,
and (b) by topological properties of the space (X, lx) (see Theorem 3.6).

3.L (Why many corefiective categories are bicorefiective)

(a) Let Y be an epicorefiective subcategory X (so that the coreflexions px
RX - X are epic for every X E X ). Show that each pX is also monic, so
that Y is bicoreflective in X.
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(b) Prove that a coreflective subcategory of Top either contains only the empty
space, or is bicoreflective. If Y is replete, then RX can be chosen to have
the same underlying set as X, with px the identity map in Set; RX is
called the coreflective modification of X . Hint: If there is a non-empty space

(c)

Y E Y , consider constant maps Y -. X to show that px
Formulate conditions which allow to generalize (b) from

is surjective.

X = Top to an
arbitrary concrete category X (which comes equipped with a faithful functor

3.M

U X --. Set ).

(Minimality versus (full) additivity)

(a) Find examples in Top (with M the class of embeddings) which show that for
each of the implications

C minimal = C fully additive #- C additive

(b)

(c)

the converse does not hold true in general.

Prove that in ModR every additive closure operator is minimal (hence here
the implications of (a) are reversible), while there exist directedly additive non-
minimal (hence non-additive) closure operators. Hint: For a submodule N
of M , consider the submodule (N x N)+AM of M x M and use Exercise
2.J. For the second part consider the closure operator Ct of AbGrp.

Find an example of a fully additive closure operator of Grp which is not mi-
nimal.

3.N (Some non-examples in Grp and PoSet)

(a) For a subgroup H < G , let NC(H) = {g E G : gH = Hg) be the normalizer
of H in G . Show that H r-. NG(H) satisfies the axioms of a closure
operator (w.r.t. M = {monomorphisms}) , except monotonicity.

(b) Show that the following two constructions fail to give preradicals of Grp (w.r.t.
M = {monomorphisms} ): Z(G) = {g E G : (dx E G) gx = xg} , the centre
of G ; f(G) , the Frattini subgroup of G (to be defined as in the abelian
case, see Example 3.4(3)). Show that both constructions are functorial with
respect to surjective group homomorphisms.

(c) For every subset 'M of a partially ordered set X , let dirx(M) be the
set of elements x E X for which there is a directed subset D C M with
V D = x . Show that this construction satisfies the conditions of extension and
monotonicity for a closure operator of PoSet (w.r.t. order embeddings) as well
as conditions (ID), (HE), (AD), but that the continuity condition fails.

3.0 (Recognizing total preorders) Recall that a preorder < on X is total
if any two elements in X are comparable w.r.t. < . A subset of a preordered set
is a chain if it is total w.r.t. the induced preorder. For a preordered set (X, <) , let



Examples of Closure Operators 69

I (X, <) be the set of 1-closed subsets of X (hence j (X, <) gives a skeleton
of MI/(X, <) , while the entire powerset P(X) gives a skeleton of M/(X, <) ).
Prove:

(a)
(b)

A preorder < on X is total if and only if j (X, <) is a chain in (P(X), g) .

A preorder <_ on X is a total order if and only if j (X, <) is a maximal
chain in (P(X ), C) .

(c) For every chain C in (P(X), g) , there exists a total preorder <c on X
with T (X, <c) = C . (Hint: Define x <c y iff x E D implies y E D for
all DEC .Then {x={DEC:xED) for all xEX .)

(d) For every set X , show that the assignments

0 : < -. t (X, <) and ,: Ci-.<c

define a Galois correspondence between preorders on X and subsets of P(X)
that is:

(p-i tP:({ECX x X :EpreorderonX}, C)-+(PP(X), C)°P

is a pair of adjoint maps (see 1.3). Characterize the preorders < on X with
rp(,0(<)) = < and the subsets C C P(X) with 0((p(C)) = C .

(e) Show that there is a bijective correspondence between total orders on a set X
and maximal chains in (P(X),C)

3.P (Specialization order and Scott topology)

(a) For a topological space X , define the specialization preorder of X by (x <
y $ x E kx(y) "y specializes x") . Prove that this defines a functor S
Top -+ PrSet which is the corefiector of the embedding 1: PrSet - Top

(b) For every preordered set (X, <), there is a finest topology on X whose spe-
cialization preorder is < . This topology is given by the Alexandroff space
(X, Ix). There is also a coarsest topology X whose specialization preorder
is < , the so-called upper-interval topology; a base of its closed sets is given by
{1{x}:xEX} .

(c) For a dcpo X , show S(ScottX) = X . Conclude that ScottX is a To-space.
(Hint: Observe that for every y E X {y} = dir I {y} = Scott {y}.)

(d) Show that for a morphism f : (X, <) (Y,:5) in PrSet, f need not be
continuous with respect to the upper-interval topology. Conclude that "the
upper-interval topology is not functorial."

3.Q (Productivity of Scott) Is the Scott closure operator productive?

3.R (Cartesian closedness of Alex)
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(a) Show that the category Alex is cartesian closed, i.e., find for all spaces X, Y E
Alex a space YX E Alex and a continuous map e : YX x X - Y such
that every other continuous map f : Z x X -+ Y (with Z E Alex) factors
as f = e - (h x lx) for a unique continuous map h : Z -. YX. Hint: Find a
suitable topology on the set of continuous maps from X to Y, or work in the
category PrSet.

(b) Show that for every X E Alex the functor (-) x X : Alex - Alex preserves
all limits and colimits.

3.S (Modification of E-closure) For a topological space X and M C X
set cx(M) = U{kx(M n kx(B))I B C X compact} . Show:

(a) For X Hausdorff, cx = kx iff X is a k-space.
(b) c is a closure operator of Top which is weakly hereditary for Hausdorff spaces,

but not hereditary.

(c) c is productive.

Hint: (a) If X has the property that every compact subspace is closed, in particular
if X is Hausdorff, the k-space property means that c-closed sets in X are closed,
and the latter property translates into kx(M) C kx(cx(M)) = cx(M) . (c)
As in the proof of Theorem 3.3, let xi E cx,(Mi) for all i E I , hence xi E
kx, (Mi n kx, (Bi )) for compact sets Bi C X, , i E I . Since K is productive,

x = (xi)iEj E A = kx (ll(Mi n
IEI

By Tychonoff's Theorem, B = 11 B; is compact, hence kx (M n kx (B)) C
iEI

cx(M) . Since kx(B) _ Hkx,(Bi) , one has Mnkx(B) = !li£I(Minkx,(Bi))
iEI

Hence x E A C cx(M) .

3.T (Some topological concepts based on closure) For the category Top and
its Kuratowski closure operator K, and for every continuous map f : X -+ Y, show
the following properties:

(a) f is a closed map if and only if f(kx(M)) = ky(f(M)) for all M E X.
(b) f is an open map if and only if f -i (ky (N)) = kx(f -'(N)) for all N E Y.
(c) f is a local homeomorphism if and only if f and the induced diagonal map

6: X --* X xy X = {(x, x`) : f (x) = f (x')} C X x X are open.
(d) X is Hausdorff if and only if the diagonal map 6: X - X x X is closed.
(e) X is irreducible (that is if X = FUG with F, G closed subsets of X, then either

F = X or G = X) if and only if the diagonal map of (d) is dense.
(f) X is discrete if and only if the diagonal map of (d) is a local homeomorphism.
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3.1.1 (Metric spaces) Metric spaces form the objects of the category Met
whose morphisms f : (X, d) --. (Y, d) are non-expansive maps, i.e., d'(f (x), f (y)) <
d(x, y) for all x, y E X.

(a)

(b)

Prove that the class M of isometries (those f with d' (f (x), f (y)) = d(z, y) for
all x,y E X) makes Met an M-complete category, and that Met has finite
products.
For every fixed real e > 0 and every M C X E Met, define

Ax (M) := {x E X : dist(x, M) < e},

with dist(x, M) = inf{d(x, y) : y E M}. Show that p` is a non-idempotent but
hereditary, grounded, fully additive and finitely productive closure operator of
Met w.r.t. M.

(c) For all M C X E Met, show

U p`X(M)=X if MOO, and n pX(M)=M,
r>a t>o

with M = kx(M) the topological (Kuratowski-) closure of M in X.

Notes

The category FC contains the cartesian closed topological category of all Choquet
spaces or pseudotopological spaces as a full subcategory, and PrTop is still fully
contained in that subcategory: see Bentley and Lowen [1992] for details. We re-
fer also to Bentley, Herrlich and Lowen-Colebunders [1990) for further reading on
generalized convergence structures. Chapters 6-8 contain an abundance of closure
operators of Top which make the four given examples of 3.3 look like chosen rather
arbitrarily; however, these four are most frequently used as building blocks for new
operators. Moreover, the Kuratowski closure operator can be characterized as the
only non-trivial hereditary and additive closure operator of the subcategory of To-
spaces with "good behaviour" on products (called finite structure property, see 4.11);
this and further characterizations are given in Dikranjan, Tholen and Watson [1995).
Readers interested in (pre)radicals of modules and Abelian groups should consult
Fuchs [1970) and Bican, Jambor, Kepka and Nemec [1982]. Finally, we note that
domain theory is still a fast-growing branch in the interface between mathematics
and computer science. Almost any of the many expository articles and texts will
inspire the reader to establish new closure operators in the categories in question.



4 Operations on Closure Operators

Despite the powerful continuity condition, the notion of closure operator is very
general. It is therefore important to provide tools for improving a given operator.
Fortunately, there is a natural lattice structure for closure operators that allows us
to distinguish between properties stable under meet (idempotency, hereditariness,
productivity), and those stable under join (weak hereditariness, minimality, addi-
tivity). Hence it is clear that each closure operator has an idempotent hull and a
weakly hereditary core, and analogously for the other properties. The passage to
the hull w.r.t. to a meet-stable property will normally not destroy already existing
join-stable properties, and the passage to the core w.r.t. to a join-stable property
will normally preserve meet-stable properties.

In order to show this, it is advantageous to have computationally accessible
constructions at hand. In the case of the idempotent hull and the weakly hereditary
core, they are provided by the composition and cocomposition of closure operators.
The computation of the additive core and especially of the fully additive core and
the minimal core is fairly easy, while determining the hereditary hull requires more
effort and restrictive conditions on the category.

We do not describe (finitely) productive hulls since, contrary to first impressions,
(finite) productivity is an extremely weak property which, as we shall see, often
comes as a by-product of idempotency. Even in categories with a rich supply of
closure operators (like topological spaces), it is in fact hard to find examples of
closure operators which fail to be finitely productive.

4.1 The lattice structure of all closure operators
For a category X and a class M of monomorphisms as in 2.1, we consider the
conglomerate

CL(X,M)
of all closure operators on X with respect to M. It is preordered by

C < D #*cx(m)Gdx(m)for all mEMIX, X EX.
This way CL(X, M) inherits a lattice structure from M:

PROPOSITION For X M-complete, every family (Ci)iEI in CL(X, M) has
a join V Ci and a meet A Ci in CL(X, M) . The discrete closure operator is

iEI iEI
the least element in CL(X,M) , and the trivial closure operator is the largest one.

13

Proof It is easily checked that, in case 10 0 , with

cx (m) := V ci,(m) and dx(m) := A ci,, (m)
iEI i£7
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for all m E MIX , X E X , one obtains closure operators C and D on X
(For the continuity condition, use 1.4 (3), (4).)

That C and D assume the role of the join and meet of (C,);EI in CL(X, M)
respectively is checked immediately. It is also obvious that the discrete and the triv-
ial closure operators (as defined in Exercise 2.A) are least and largest respectively
in CL(X,M).

We say that CL(X,M) has the structure of a large-complete lattice in this
situation.

4.2 Composition of closure operators
In this and the following section we shall show that CL(X, M) has also an inter-
esting algebraic structure which is compatible with its lattice structure. We first
define the composite

DC = ((dc)x)XEX

of two closure operators C and D on X with respect to M by composing the
maps cx and dx :

(dc)x(m) := dx(cx(m))

for all ME M/X .

dx(cxJ(M))

cx(M)

cx(m)

dx(cx(m))

M M X

One easily proves (see Exercise 4.A):

LEMMA DC is a closure operator on X with respect to M. The composition
provides CL(X,M) with the structure of a monoid with zero which is compatible
with the lattice structure. More precisely, one has the following rules:

(1) (A B)C = A(B C) (associativity);

(2) S C = C = C S (discrete operator is neutral);

(3) T C = T = C T (trivial closure operator is absorbing);

(4) A < B = AC < BC and CA < CB (monotonicity);
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(5) (A Ai)C - n(AIC)
iEI iEI

(6) A(A Ci) < NAQ)
iEI iEI

For later use we prove:

Chapter 4

and (V Ai)C - V(AiC) (for I # 0 );
iEI iEI

and A(v Ci) > V (ACI).
iEI iEI

Q

PROPOSITION If both C and D are weakly hereditary (grounded, (fully, di-
rectedly) additive, minimal, (finitely) productive, resp.) closure operators, then also
DC is weakly hereditary (grounded, (fully, directedly) additive, minimal, (finitely)
productive, resp.).

Proof Groundedness, additivity, minimality and productivity are obviously sta-
ble under composition. The assertion for weak hereditariness is more complicated.
For m:M-.X in M ,let

j = jm : M -+ cx(M) and k:= jcx(m) : cx(M) --r dx(cx(M)) =: Y.

For my := k- j , we must show that dy(cy(my)) is an isomorphism. Since j is
C-dense, from Corollary 2.4(1) one obtains a morphism t rendering the diagram

M M

I

j

cx(M)

commutative. Since k is D-dense, we conclude ly - dy(k) < dy(cy(my)) and
have the desired result. O

The composite of hereditary (idempotent) closure operators need not be heredi-
tary (idempotent, resp.):

EXAMPLES

(1) The Kuratowski closure operator K of the category PrTop of pretopological
spaces is hereditary (see 3.1), but KK is not. In fact, for a pretopological space
X and subspaces M C Y C X one has

ky(ky(M)) = kx(kx(M) nY) nY,

but this set may be properly contained in kx(kx(M)) nY . For instance, consider
X =Z with kx(M) = {x : (3n E {-1, 0,1)) x -l- n E M} , and take Y the even
integers and M = {0} .
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(2) For the (hereditary) sequential closure operator a of Top, as is not hered-
itary: see Exercise 4.B.

(3) One defines an idempotent and weakly hereditary closure operator K` of
Top by

kX(M)=n{UCX:MCU, Uopen}
(see Exercise 2.D). K* is called the inverse Kuratowski closure operator of Top
The composite K*K (with K the Kuratowski closure operator of Top) fails to
be idempotent. Indeed, for the space X = {a, b, c} with 0, 1a), {a, b), {a, C), X
open and its (K-) closed subspace M = {b} , one has kj(kx(kj(M))) y'f kjr(M)
We also note that K*K is not hereditary: again consider X = {a, b, c} , but now
with 0 , {b} , {c} , {b, c} , X open; for M = {b} and Y = {b, c} , one then has
ky(M) = k; (M) = M while kX(kx(M)) f Y = Y . However, K`K is weakly
hereditary, by the Proposition.

4.3 Cocomposition of closure operators
Taking the D-closure of cx(m) as in the definition of the composite DC is only
one of the two obvious choices to proceed. The other is to form the D-closure of jm
in cx(M). Hence the cocomposite

D * C = ((d * c)x)xex

of two closure operators C and D on X with respect- to M arises by factoring
the morphism M -+ ex (M) =: Z through dz(M)

(d * c)x(m) := cx(m) dz(jm)

for all mEMIX .

dz(M)

t
t \zjm)

M

cx(M) = Z

M X

The cocomposition satisfies properties similar to the composition but the respective
rules are harder to prove:

LEMMA D * C is a closure operator on X with respect to M . Like the
composition, the cocomposition gives CL(X,M) the structure of a monoid with
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zero which is compatible with its lattice structure. Specifically, the following rules
hold:

(1) (A * B) * C = A * (B * C) (associativity );

(2) T * C = C = C * T ( trivial closure operator is neutral );

(3) S * C = S = C * S ( discrete closure operator is absorbing);

(4) A<B=A*C<B*C andC*A<C*B (monotonicity);

(5) (A Ai) * C A(Aj * C) and (V Ai) * C - V (Ai * C) ( for 10 0) ;
iEI iEI i51 iE1

(6) A* (A Ci) < A(A * Ci) and A * (V Cj) > V (A * Cj).
i51 iE/ iEI iEI

Proof D * C is obviously extensive. Its monotonicity follows easily with the
Diagonalization Lemma. In order to show the Continuity Condition, we consider
Diagram (4.3) and an X-morphism f : X -+ Y . One has £-morphisms e : M
f (M) and d : Z -+ f (Z) with Z = cx (M) . Let g be the composite

Z fm k cx(f(M)) _: W

with k given by the continuity condition for C . There is a commutative diagram

M
e f(M)

jm J.1f(m)

Z g -- W
which shows g(m) = f(m) , more precisely: g(j,,,) 25 jf(+n) in M/W . Similarly,
one easily sees that g(dz(m)) = f(dz(m)) . Now the Continuity Condition for D
applied to g shows

g(dz(jm)) < dw(g(jm)),
and this implies the desired inequality

f((d * c)x(m)) < (d * c)y(f(m))

For rules (I) - (6), see Exercise 4.A. 0

PROPOSITION If both C and D are idempoteni (hereditary, grounded, (finitely)
productive) then also D * C is idempotent (hereditary, grounded, (finitely) produc-
tive resp.). 0

Proof Once again we consider Diagram (4.3) and form the D * C-closure of
n:= (d* c)x(m) : N = dz(M) - X :
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dw (N)

k

dw(jn)

cX(N) = W

N n X

For C and D idempotent, we must show that k is an isomorphism. Since
m < n one has cx(m) < cx(n) . On the other hand, by definition of n we
have n < cX(m) , hence cx(n) < cX(cX(m)) = cx(m) . Therefore there is an
isomorphism i : Z = ex(M) -+ W = cX(N) with i dz(j,n) = jn . Since
dz(dz(jm)) ?° dz(jm) , this gives immediately that k is an isomorphism as well.

The assertions on hereditariness, groundedness and (finite) productivity are eas-
ier to prove and are left as Exercise 4.D. O

In general D * C does not inherit weak hereditariness, (full) additivity or min-
imality from D and C : see the Examples below and Exercise 4.C(c).

EXAMPLES

(I) In the category AbGrp of abelian groups, we consider the idempotent pre-
radicals given by

d(A) = maximal divisible subgroup of A (see 3.3),
soc(A) = sum of cyclic subgroups of prime order (socle of A ).

hen

r(A) = soc(d(A))

is a sum of cyclic subgroups of prime order, thus r(A) contains no divisible sub-
groups except zero. Hence d(r(A)) = 0 , whence also soc(d(r(k))) = r(r(A)) = 0 .
The induced closure operators Cd and CSOC are weakly hereditary (CS°- is
even hereditary), and one has

Csoc * Cd Csoc d = Cr

(see 3.4). But since r is not idempotent, Cr is not weakly hereditary.

(2) Both K and K` are additive, idempotent and hereditary closure operators
of Top (see Example (3) of 4.2). By Exercise 4.A one has

K*K' =KAK` .
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But KAK' is not additive. For this, provide X = [0, 1]U{oo} with the following
topology: the unit interval [0, 1] with its natural topology is an open subspace
of X , and the only neighbourhood of oo in X is X . Since kx({1/2}) _
11/2, oo} , for M = [0,1/2) U {oo} one has 1/2 E kx(M) f1 kj(M) , hence M
is not K A K' -closed. On the other hand, M is the union of the two K A K' -
closed subsets [0, 1/2) and {oo} . Therefore K A K' is not additive (see 2.6).

(3) Both I and j are fully additive, idempotent and hereditary closure op-
erators of PoSet (see 3.6). But j * J =T A J. (see Exercise 4.A) is not additive (see
Exercise 4.E).

4.4 Closedness and density for (co)composites
For arbitrary operators C and D , we wish to describe the DC-closed and the
D * C-dense morphisms. This will prove useful in the sequel. We first note some
easy facts on joins and meets of closure operators which follow immediately from
the respective definitions:

PROPOSITION

(1) If C<D,then £cCED and MDCM'

(2) If C - V Ci , then Mc = n Mci .

iEI iEI

(3) If D - A Ci , then £D = n £ci
iEI iEI

0

In pursuing our goal, we now prove:

LEMMA

(1) D*C<DAC<DVC<DC.
(2) MCC = Mc and £C*C = Cc.

Proof

(1) Immediately from the definitions of D * C and DC one has D * C < D ,
C:5 DC , hence (1).

(2) From C < CC one obtains MCC C Mc . On the other hand, m -
cx(m) implies cx(m) - cx(cx(m)) , hence Mc C MCC . Similarly C*C < C
gives £c'c C EC , and since ex(m) - lx implies cy(jm) - ly for Y =
cx(M) , one also has Cc C CC` 0

THEOREM For arbitrary closure operators C and D one has:
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(1) MCD _ MDC = MDVC = MD n MC.

(2) £C*D = £DsC = £DAC = £D n £C

Proof

(1) From the Proposition and the Lemma, we obtain

MDC C MDVC = M(DVC)(DVC)But

since D , C < (D V C) , monotonicity of composition gives DC < (D V
C)(D V C) , hence M(DvC) DvC) C MDC . With the Proposition, this shows
MDC = MDVC = MD n MC , with the latter term symmetric in D and C ;
hence it coincides also with MCD .

(2) follows dually, by reversing the order and by replacing composites by cocom-
posites.

We remark that £c may be a proper subclass of £CC and Mc a proper
subclass of Mc.C

EXAMPLE Consider the 0-closure of Top (see 3.3).

(1) Let X be the unit interval [0, 1] provided with the least topology such
that F = {1/n : n E N} and every naturally closed subset of [0, 1] is closed.
Now O (F) = FU {0} is discrete, hence Opu(o}(F) = F . In other words: F is
0 * 0 -closed in X , but not 0-closed. (See Exercise 3.F.)

(2) As in Example 4.2(3), let now X = {a, b, c} be the topological space with
0, {b}, {c}, {b,c}, X open. Then 8x({b}) _ la, b} and 8X({a,b}) = X .
Hence {b} is 98 -dense but not 0-dense in X . (For an algebraic example of this
type, see Exercise 4.C.)

4.5 Properties stable under meet or join
A property P for closure operators is said to be stable under arbitrary meet if for
any family (Ci)iEI of closure operators with property P also A Ci satisfies

iEI
P (whenever the meet exists); analogously for joins. Note that empty families are
permitted; hence a property stable under arbitrary meet (join) must necessarily hold
for the trivial (discrete) closure operator.

PROPOSITION

(1) The following properties are stable under arbitrary meet: idempotency, hered-
itariness, (finite) productivity.

(2) Stable under arbitrary join are: weak hereditariness, minimality, grounded-
ness, (full, directed) additivity.
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Proof

(1) A closure operator A is idempotent if and only if AA < A (see Exercise
4.A). From Lemma 4.2 one always has A(A Ci) < A(ACi) , hence for A =A Ci

iEI iEI iEI

one obtains

AA < A(ACi) < A(C;Ci).
iEI iEI

Therefore AA < A if each Ci is idempotent. Hence idempotency is stable under
arbitrary meet.

Stability of hereditariness and productivity under arbitrary meet follows from the
principle that "limits commute with limits", hence meets commute with inverse
images (cf. 1.4) and products. Indeed, for A =A

1
Ci and for m < y in MIX

iEI
(as in Diagram/ (2.7)), one has

ay (my) y_1(cix (m)) = y-'(Al cix(m)) 1(ax(m)),
iEI iEI

if each Ci is hereditary. Similarly for direct products.

(2) A closure operator A is weakly hereditary if and only if A * A > A (see
Exercise 4.A). Now stability of weak hereditariness under arbitrary joins follows
dually to the first part of proof (1) - replace < by > , A by V , and composition
by cocomposition. The assertion for groundedness and (full, directed) additivity is
obvious since 'joins commute with joins", and it is trivial in the case minimality.

We already showed in Example (2) of 4.3 that the meet CAD of additive (and
idempotent and hereditary) closure operators C, D may fail to be additive. Exer-
cise 4.E provides an example with C, D even fully additive (and idempotent and
hereditary). Likewise, CAD may not be weakly hereditary for both C and D
weakly hereditary: this follows from Example (1) of 4.3 in conjunction with Exercise
2.A(c).

Example (3) of 4.3 shows that C V D may fail to be idempotent when both
C and D are idempotent. Exercise 4.D (b) indicates how to show that heredi-
tariness in general, is not preserved by the binary join:

EXAMPLE Let (X, <) be a lattice (i.e., a poset with finite meets and joins). It
was observed in Exercise 2.E that every closure operation c of the lattice (X, <)
induces a closure operator C of the induced category X:

cx(rn) := c(m) A z

for all m < x in X . Obviously C is hereditary; in fact, any closure operator
of X is induced by a closure operation of the lattice (X, <) if and only if it is
hereditary.
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Assume that (X, <) is not distributive, so that there are elements a, b, x E X
with

(aVb)Ax>(aAx)V(5Ax).
(Consider, for instance, the lattice of subspaces of a 2-dimensional linear space.)
We may define closure operations c , d of the lattice (X, <) by

c(m):=rnVa , d(m):=mVb.

For the induced categorical closure operators C and D we obtain in case m=
0:

(c V d)2(0) = cy(0) V dx(0)

(a A x) V (b A x)

< (a V b) A x

_ (cl(0) V d1(0)) A x

_ (cVd)I(0)Ax.

Hence C V D is not hereditary.
Together with Exercise 4.D(b), this shows that a lattice is distributive if and

only if the join of any two hereditary closure operators of the induced category is
hereditary.

4.6 Idempotent hull and weakly hereditary core
In this section we assume X to be Al-complete. C is a closure operator w.r.t.
M. As an immediate consequence of Proposition 4.5 we obtain:

PROPOSITION

(1) There is a least idempotent closure operator C > C . We call C the idem-
potent hull of C .

(2) There is a largest weakly hereditary closure operator C < C . We call C
the weakly hereditary core of C .

Proof .

(1) With D = {D : D > C, D idempotent) , Proposition 4.5 gives that
AD is idempotent, hence C is a least element in D.

(2) follows dually.

In order to be able to "compute" C and C in concrete examples, we need a
more concrete description of C and C . To this end, one defines the ascending
extended ordinal chain of C
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CO < Cl < C2 < ... < ca < ca+1 < ... < C- < C-+1

as follows:
Co = S, ca+l = Ct a , CA _ v C''

'Y<p

for every (small) ordinal number a and for a = oo , and for every limit ordinal
(3 and for / = oo ; here oo, oo+ 1 are (new) elements with oo+ I > oo > a for
all a E Ord , the class of small ordinals. ( S is the discrete closure operator, see
Exercise 4.A.) Dually one can define the descending extended ordinal chain of C .

C°o+l :5 Coo <... <Ca+1
<Ca <...C2:5 C1 <C°

by putting
Co=T, Ca+1=C*Ca, CA= ACT

T«
for all a and /3 as above, with T the trivial closure operator.

LEMMA If for each m E MIX , X E X , there is an a E Ord U {oo} with
ca(m) = ca+1(m) , then C°° is idempotent. Similarly, if for each m there is an
a with ca(m) - ca+l(m) , then Coo is weakly hereditary.

Proof By ordinal induction, one easily shows c'(m) = ca(m) and 0(60(m)) -
cP(m) for all (3,7 E Ord U {oo} , 13 > a . Hence

c°J(c°O(m)) - C' (m)

for 6 = 7 = oo . Analogously one proves (coo * Coo) (m) L- c. (m) 0

We say that a preordered class P has no proper ascending extended ordinal
chains if for every ascending extended ordinal chain

x°< x1 <x2<...<xa<xa+l <... <xoo <xoo+l

in P there is an a E OrdU{oo} with x, z xa+l . In the dual situation one says
that P has no proper descending extended ordinal chains. Obviously, if there is only
a (small) set of - -equivalence classes in P , then P has neither proper ascending
nor descending extended ordinal chains. In particular, if X is M-wellpowered, so
that for every X E X , P = MIX has only a set of =-equivalence classes, the
hypotheses of the Lemma are satisfied.

Independently from M-wellpoweredness, we shall often encounter closure op-
erators C with Ca = Ca+1 for some (small) a E Ord , so that one has
C' (M) cX+l(m) for all m E MIX , X E X . In that case we shall call
C bounded, and the least such a is called the order of C ; otherwise C is un-
bounded. Similarly, if Ca = Ca+l for some a E Ord , C is called cobounded,
and the least such a is the co-order of C ; otherwise C is uncobounded.



Operations on Closure Operators 83

For each Cr E Ord , there are examples of closure operators with order a or
co-order a : see Exercise 4.F. Unbounded and uncobounded closure operators will
be considered in detail in Chapter 8.

THEOREM

(1) If X is M-wellpowered or if C is bounded, then CO° is the idem-
potent hull of C . One has

Mc-
= MC and ECO6 D £c

COO inherits the following properties from C : weak hereditariness, groundedness,
(full, directed) additivity.

(2) If X is M-wellpowered or if C is cobounded, then C,,. °_= C is the weakly
hereditary core of C . One has

£c°° = £C and Mc D MC

C,, inherits the following properties from C : idempotency, hereditariness, ground-
edness, (finite) productivity.

Proof

(1) Idempotency of C°° under the given hypotheses, follows from the Lemma.
By induction one easily shows CO < D for every idempotent closure operator
D > C and every a E Ord U {co} ; hence COO < C , and COO = C holds if (and
only if) COO is idempotent. Since C < C°° , one has £c C £c" . Furthermore,
with Proposition and Lemma 4.4 one shows

Mc*
= MC for all a E Ord U {oo}

by induction. Finally, with Propositions 4.2 and 4.5 one obtains that every C°° is
weakly hereditary (grounded, (fully) additive), a E Ord u {oo} , whenever C has
the respective property.

(2) is proved analogously. 0

REMARK We shall show in 5.4 that, independently from the validity of C - COO
and C-C,. ,onealways has MC=MCCMc and £0 =CCC£G as
well as the implications (C weakly hereditary = C weakly hereditary) and (C
idempotent = C idempotent).

COROLLARY For any closure operator C with C°° idempotent or C,,. weakly
hereditary, one has (C°,)°° < (C°°)°° . These two closure operators an isomorphic
if C is idempotent or weakly hereditary; otherwise, the inequality may be strict.

Proof C < C°° implies C,,. < (C°°)°° ; if COO is idempotent, also (C').. is
idempotent, hence (C,,.)°° < (C°°)°° . Similarly one obtains this inequality when
C°O is weakly hereditary. If C is idempotent, also C. is idempotent, and one
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has C - C°° and C°° (C°°)°° . Similarly, when C is weakly hereditary, one
has C - C. and C°° (C°°)°° .

In order to show that one may have (Co)' (C°°),° we consider C = Cr for
the preradical r = soc d of Example (1) of 4.3. According to Exercise 4.G, we must
show (rO°)°° < (r00)00 . We already saw in 4.3 that r2 = 0 , hence (r°°), = 0 .
On the other hand, soc.(A) = t(A) is the torsion subgroup of an abelian group
A , hence r0 = t d . Since r00 is idempotent, one has (r00)°O = r00 . For every
non-zero divisible torsion group A one now has (r,,.)°°(A) = ro°(A) = A # 0
O

The 0-closure of Top shows that, in general, Cc is properly contained in
£c" and Mc is properly contained in Mc : see Example 4.4. C = K in
PrTop or C = v in Top gives a hereditary closure operator for which C°° is not
hereditary: see Example 4.2. Example (1) below shows that the passage C,-+ C°°
does not preserve productivity. Finally there is an example of an additive (in fact:
fully additive, see Exercise 2.1) closure operator whose weakly hereditary core is not
additive; see Example (2) below.

EXAMPLES

(1) For a fixed prime number p , we consider the closure operator C of AbGrp
given by

cA(M)={ZEA:pxEM}.

It can be presented as the maximal closure operator Cl;, , with

sp(A)={xEA:px=O}

the p-socle of A . sp is a hereditary preradical with sp = sp = tp , with tp
the preradical given by the p-torsion subgroup of a group. It follows from Theorem
3.4 that C is hereditary. Furthermore, C is productive (since sp is Jansenian),
but C°° - CW = Ct, is not (since tp is not Jansenian). More specifically, {0}

00

is C°°-dense in Zpn , but {0} is not C°°-dense in 11 Zpn (cf. Exercise 4.G).
n=1

(2) For a prime number p , let p be the radical given by p-multiples: p(A) _
pA for an abelian group A . CP is easily seen to be fully additive. One has
(CP)0 = C(P-) (see Exercise 4.G), and p°O assigns to' A its maximal p-
divisible subgroup dp(A) . Now it follows from Theorem 3.4 that C(P-) is not
additive since C(P-) Clp-l . But one can see non-additivity of C(P-) also
without reference to the Theorem:

Consider the group A = Zp of p-adic integers; it satisfies dp(Zp) = 0 . Fix a cyclic
subgroup Z of Zp with Z Cg p2p ; it is Cd' -dense in Zp , i.e. dp(II/Z)
Zp/Z , or Zp/Z is p-divisible. Now consider

X=AZp+ZxZ
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as a subgroup of Ip xI,, , with A; the diagonal in Ip xZp . Both M1 = Z x {0}
and M2 = {0} x Z are proper Cdp-closed subgroups since

X= M1xIp=M2x1p

and dp(Ip) = 0 . On the other hand, X/(Z x Z) - ip/Z so that
Z x Z is a proper dp-dense subgroup, in particular not dip-closed.

M1 + M2 =

4.7 Indiscrete operator, proper closure operators
As remarked in Proposition 4.5, groundedness is stable under arbitrary join. Triv-
ially, one also has that A C; is grounded if at least one C1 is grounded. What

iEI
about the case I = 0 ? Certainly, the largest operator T in CL(X,M) is not
grounded unless Ox = X for all X E X . But is there a largest element in

GCL(X,M),

the conglomerate of grounded closure operators with respect to M?

PROPOSITION For X M-complete, GCL(X,M) has the structure of a large-
complete lattice. Arbitrary joins and non-empty meets are formed as in CL(X, M) .
The largest element G in GCL(X, M) is called the indiscrete closure operator
and is described by

(*) gx(m) = A{e-1(oz) : (3Z E X 3e : X -r Z in £) e(m) - oz)}

for all m E MIX, X E X , with the meet taken in MIX .

Proof We first show that (gx)xEx defined by (*) is in fact a closure operator,
with the help of the formulas given in 1.4 and in Exercise 1.K. First of all, for every
e E £ with e(m) - oz one has m < e-1(e(m)) = e-1(oz) , hence m < gx(m) .
In order to check 2.2 (4), let f (m) < n for f : X --> Y , m E MIX , and
n E M/Y . We then have

f(gx(m)) < A{f(e-1(oz)) : e E A, Z = codomain (e)}

with A = {e E £ domain (e) = X, e(m) = 0} whereas

gy(f(m)) = ! `{d-l(ow) : d E B, W = codomain (d)},

with B = {d E £ I domain(d) = Y, d(n) = 0} . Hence to obtain f(gx(m)) <
gy(n) it suffices to show that, for every d E B , there is an e E A with
f(e 1(oz)) < d'1(ow) (with Z , W the respective codomains). Indeed, f(m) <
n gives d(f (m)) < d(n) - oz , the (£ , M)-factorization of d - f = u e with
e E £ and u E M , hence u(e(m)) = ow and

e(m) = u 1(u(e(m))) = u-1(ow) 25 oz
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since u E M . Thus e E A , and from e(e';(oz)) < oz one obtains

d(f(e-t(oz))) - u(e(e-I(oz))) C u(oz) = ow ,

hence f (e_' (oz)) < d-'(ow) as desired.
Clearly, G = (gx)xcx is grounded (consider e = 1x ). For any other

grounded closure operator C and every e E A as above, one has

cx(m) < e-I(e(cx(m))) < e-1(cx(e(m))) - e-'(cx(oz)) = e-'(oz),

hence C < G . 0

EXAMPLES

(1) In Set with M the class of injective maps, one has

1 =$
gx(M) =

0 for M
X else

for all M C X , hence G induces the coarsest or indiscrete topology on X . The
same formula holds true in Top with M the class of embeddings.

(2) In ModR with M the class of monomorphisms, G coincides with the
discrete closure operator since this is the only grounded closure operator (up to
isomorphisms), see Exercise 2.G.

(3) In FId with M the class of all (mono)morphisms, the formula

gF(E)
E

= F
for the prime subfield E of F
else

holds. Indeed this formula obviously defines a closure operator of FId and therefore
gives the largest grounded closure operator of Fld .

Since groundedness is stable under arbitrary join, for every closure operator C
there is a largest grounded closure operator CG < C , called the grounding of C .
With the Proposition one obtains:

COROLLARY For a closure operator C of an M-complete category, Co -
C A G is the largest grounded operator < C , called the grounding of C . If C
is idempotent or hereditary, CG has the respective property. 0

Proof CAG is grounded since G is grounded, and for every grounded operator
D < C one has D < G , hence D < C A G G. G is idempotent and hereditary:
see Exercise 4.1. These properties are stable under meet, hence they are inherited
by CG-CAGfrom C. 0

In an M-complete category one always has the discrete, the indiscrete, and the
trivial closure operators:

S<G<T.
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Any closure operator not isomorphic to any of these is called proper. There are
categories which do not have any proper closure operators:

LEMMA The category Set (with M the class of injective maps) has no proper
closure operators.

proof Let C be a closure operator of Set, and for D = {0, 11 first assume
CD({O}) = D . We claim that then cx(M) = X for all 0 0 M C X . Indeed
for X E M and any y E X , one considers f : D --> X with f (0) = x and
Al) = y and has

y E f (cD ({0})) C cx ({x}) C cx (M) .
Hence C must be G or T in this case. The only other case is cD({0}) = {0}
, in which case one has C = S . Indeed, if there was N C X with N:0 cx (N) ,
consider h : X - D with h(N) = {0} and h(X \ N) _ {1} ; then

1 E g(cx(N)) C CD({0}) = {0}

We have seen in 3.3 that Top (with M the class of embeddings) has quite
a few proper closure operators. (We shall see in Chapter 8, for instance, that the
9-closure in neither bounded nor cobounded, so that all its powers 8a and copowers
8,,, are distinct.) We already know that every non-trivial closure operator C of
Top must be grounded (see Exercise 2.H), hence C < G , in fact C < G if C is
proper. The next question then is whether there is a largest proper closure operator
in Top.

For this we define Q = (gx)XETop by

qx(M) = n{A C X : A open and (K-)closed, M C A} ;

i.e., qx(M) is the quasicomponent of M in X .

THEOREM Q is an idempotent, grounded, additive and productive closure oper-
ator of Top, but neither weakly hereditary nor fully additive. It is the largest proper
closure operator of Top, hence every proper C satisfies S < C < Q < G < T .

Proof That Q is an idempotent closure operator of Top follows from Exercise
2.D(a). Checking the other properties of Q claimed in the first part of the Theorem
is left as Exercise 4.T. For any proper closure operator C we have C < G , and
we must show C < Q . Let D = {0, 1} be discrete. The first part of the proof of
the Lemma shows that we must have cD ({0}) = {0} . For every closed and open
N C X one considers the characteristic map h as in the second part of the proof
of the Lemma. This shows that N = h-1({0}) is C-closed. Consequently, for
every M C X ,

cx(M)Cn{NCX:N C-closed, MCN}Cgx(M).
0
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4.8 Additive core
Since additive closure operators are stable under arbitrary join, for each closure
operator C of an M-complete category there is a largest additive closure operator
< C , called the additive core of C . Under some additional assumptions, we will
give a more concrete description of the additive core below. However, without any
additional assumptions we can state:

LEMMA The additive core of an idempotent (grounded) closure operator is idem-
potent (grounded, respectively).

Proof Denoting the additive core of C by C , we have CC < CC < C when
C is idempotent. By Proposition 4.2, CC is additive, hence CC < C . But this
means that C is idempotent (cf. Exercise 4.A). The assertion on groundedness is
trivial since e < C . 0

Let now

cX(m)=11{cx(ml)V...VcX(mk):miEMIX, 1<i<k, m1V...Vmk>m}

for every m E MIX and consider the following conditions 6n X and M :

(a) Binary joins are preserved by inverse images, i.e.

f-1(nl V n2) - f-1(ni) V f-i(n2)

for all f : X - Y and nl , n2 E M/Y .

(b) Joins distribute over arbitrary meets in each MIX , i.e.

mV ArVmiiAEl mi -
i£I

for all r n, mi E MIX , i E I . (In other words, (MIX)°P has the structure of
a frame.)

REMARKS

(1) Condition (a) entails the distributive law

nA(nl Vn2)- (nAnl)V(nAn2)

for n = f E M , whereas condition (b) entails the distributive law

mV (ml Am2)- (mVml)A(mV m2).

In every lattice, the two (finite) distributive laws are logically equivalent. Therefore,
and since f can be factored as f = m e with e E E and m E M , in the
presence of (b) it is sufficient to consider f E E in (a).
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(2) If the distributive law holds in each MIX , in particular if condition (a) or
(b) holds, then

cX(m)=`i\{cx(ml)V...Vcx(mk):mi EM/X, 1 < i < k , ml V...Vmk =m}.

In fact, whenever ml V.. - V mk m , then (ml A m) V ... V (mk V m) t--- m and
cx(mlAm)V...Vcx(mkAm)cx(ml)V...Vcx(mk).

THEOREM Under condition (a), C+ = (c+)xex is a closure operator with
C+ < C and D < C+ for every additive closure operator D < C . If, in
addition, condition (b) holds, C+ is additive and therefore the additive core of C .
Furthermore, if C is idempotent (hereditary, grounded ), C+ has the respective
property.

Proof Extension and monotonicity are obviously satisfied. To check continuity
for C+ , f(m) < nl V ... V nk with m E MIX and ni E M/Y implies

m < f _'(f (m)) < f-1(nl V ... V nk) = f (nl) V ... V f-1(nr)

by Condition (a). Therefore

4(m) < cx(f-I(nl))V...Vcx(f-1(nk))
< f-1(cy(n1))V ...V f-1(cy(nk))

by continuity of C. Since f(-) preserves joins, it follows that

f(cX (m)) < f(f-1(cy(nl))) V ... V f(f-Icy(nk))
< cy(ni) V ... V cy(nk).

Consequently, f (c4 (m)) < cy+,(f (m)) .

Obviously, when D < C is additive, for any "cover" ml V ... V mk > m one
has

dx(m) < dx(ml) V ... V dx(mk) < cx(ml) V ... V cx(mk)

hence dx(m) < cX(m) .

For any "covers" ml V... V mk > m and nl V... V ni > n one has ml V
...VmkVn1V...Vnj >mVn,hence

A(mVn)<(cx(ml)V...Vcx(mk))V(cx(nl)V...Vcx(nj)).

Hence A (m V n) is covered by the meet of all latter terms which, under Condition
(b), is isomorphic to 4(m) V A(n)

By the Lemma, C+ inherits idempotency and groundedness from C . With-
out reference to Condition (b), we now show that C+ is hereditary when C is
hereditary. For that, let m = y my and y : Y - X be in M and consider
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any "cover" n1 V... V nk > my in M/Y . Then y n1 V... V y . nk > m (see
Exercise 1.J) and

cy(ni)V...Vcy(nk) = y-1(cx(y.ni))V...Vy-1(cx(y-nk))

yl(c'X(m)) ,

hence cy(my) > Y-, (cx(m)) . 0

Under the assumptions of the Theorem one obtains with Proposition 4.5:

COROLLARY The conglomerate of additive closure operators

ACL(X, M)

has the structure of a large-complete lattice. Joins are formed as in CL(X,M)
whereas the meet of (Ci)iEI in ACL(X,M) is given by

(ACi)+,
iEI

with A denoting the meet in CL(X,M) . 0

EXAMPLES (1) With K and K' as in Example 4.2

(K A K')+

is the front-closure b in Top (see 3.3).
(2) Although in ModR conditions (a) and (b) do not hold, it is easy to deter-

mine the additive core of a closure operator C (which, by necessity must be given
by the defining formula for C+ :) it is the minimal closure operator Cr , with
r the preradical induced by C (in particular, C+ as defined above, is indeed a
closure operator). For the proof observe that Cr < C < Cr with Cr additive (see
Theorem 3.4) implies Cr < C+ < Cr . Hence C+ induces the same preradical as
C , and according to Exercise 3.M it is minimal. Hence

C+=Cr.

4.9 Fully additive core
Fully additive closure operators are, like additive closure operators, stable under
arbitrary joins. Hence each closure operator of an M-complete category has a fully
additive core, i.e., a largest fully additive closure operator below itself. Replacing
finite joins by arbitrary joins, one may construct it analogously to the additive
core (see Exercise 4.M). Here, however, we give an alternative construction which is
modeled after the point-closure in Top (see Example 2.6) which is the fully additive
core of the Kuratowski closure operator K .
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A subobject p E M/X is called V-prime if p < ViE1 mi for any family
(mi);EI in MIX implies p < m; for at least one i E I . Since here I = 0
is permitted, one has p 90- ox . The class P of all V-prime elements in M will
assume the role of "points", under the following hypotheses:

(A) f (p) E P/Y for every f : X -r Y and P E P/X

(B) m-VIP EP/X:p< m} for every mEM/X .

Under hypotheses (A) and (B) we may put

4(m}:={ J x(}):PEP/X, p< m} if m9t OX ,
else,

and then prove:

THEOREM In an M-complete category satisfying conditions (A) and (B), the
fully additive core C9 of a closure operator C is given by the formula above.
CO inherits each of the following properties from C : idempoiency, groundedness
and hereditariness.

Proof First we must verify that C® is a closure operator. Property (B) implies
that for every m ox there is p E P/X with p < m . With this observation
one easily checks the properties of extension and monotonicity. Continuity for C19
follows from

f (cX (m)) - V { f (cx (p)) : p E P/X , p < m}

< V{cY(f(p)):pEP/X, p<m}

< V{cy(q):gEP/Y, q< f(m)}-cy(f(m))

for m ox ; here we use successively Axiom (B), preservation of joins by f
continuity of C , and Axiom (A). In case m - ox , continuity for C5 follows
immediately from continuity of C since f (ox) - oy

Clearly, C® < C . Full additivity of CO follows from (B) and the definition
of V-primeness. Furthermore, any fully additive D < C satisfies

dx(m) = V{dx(p) : p E P/X , p < m}

V{cx(p):pEP/X, p<m}-c4(m)

for m jtoX . The case m- ox is trivial. Therefore C'5 is the fully additive
core of C .
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As in Lemma 4.8 one may show that C® is idempotent and grounded if C
has the respective property. In order to show the same with respect to hereditariness
we need:

LEMMA In the presence of (B), condition (A) holds if and only if f-1(-)
preserves arbitrary joins.

Proof Under condition (A), for all
p E P/X one has

f :X-Y, ni ELI/Y(iEI) and

P :S f-1 (V ni) q f (p) S ni
iEI JJ iEI

q (3iEI) f (p) < ni
(3iEI) p < f-1(ni)

p < V f-1(ni)
iEI

and therefore f -1(y ie1 ni) - ViEI f-1 (ni) from (B). Conversely, the last formula
gives the implications

f(p):5y ni p< f-1 (Vni) y fnitEl

iEI iEI

(3iEI) p< f'1(ni)
(3iEI) f(p)<ni;

hence f (p) E P/Y , and (A) follows. O

Now we can complete the proof of the Theorem and show that C19 is hereditary
if C is. Indeed, if we consider m < y in MIX and denote by my : M -> Y
the morphism with m = ymy , then there is an order-isomorphism

{pEPfX:p<m} -
P '-* py

y q a-i q

(note that, by (A), y q y(q) belongs to P if q does). Hence, with the Lemma,
one obtains

y 1(cx(m)) = V {y '(cx(P)) -. p E P/X , p < m}

V{cy(py):pEP/X, p<m}

V{cy(q):gEPfY, q< my}

c(my) .
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EXAMPLES

(]) For the 0-closure operator of Top (with M given by subspace embeddings)

8x {x} _ fl{kx (U) : U open nbad of x in X} = adh(x)

is the set of adherence points of the neighbourhood filter of the point x in X.
Since the V-prime subobjects are described by singleton subspaces, one has

0X,5 (M) = U adh(x)
rEM

for every subset M of X

(2) It is easy to see that the Kuratowski closure K and the sequential closure
o of Top coincide on points. Consequently, o = KO is the point closure P
of Example 2.6.

(3) The hypotheses (A) and (B) are usually not satisfied in "algebraic categories".
For instance, in the category Grp of groups (with M the class of monomorphisms),
V-prime subobjects must be cyclic subgroups (since every group is the join of its
cyclic subgroups). On the other hand, since Z = nZ + mZ for n , m relatively
prime, the cyclic group Z (as a subgroup of itself) is not V-prime, and since every
non-zero subgroup of Z is isomorphic to Z, this group cannot be presented as the
join of its V -prime subgroups.

In general, the situation cannot be improved by restriction to subcategories: in
every full subcategory of Grp which is closed under finite direct products, every non-
trivial group G contains a cyclic subgroup which is not V-prime; just consider the
cyclic subgroup generated by (a, a) in G x G = (G x {e})({e} x G) , with e the
neutral element of G and a # e .

(4) Although conditions (A) and (B) do not hold in ModR either, it is easy to
"compute" the fully additive core of a closure operator in this category: since here
every additive closure operator is minimal (see Exercise 3.M), both its additive and
its fully additive core are given by its (easily computed) minimal core, as discussed
at the beginning of the next section. See also Example 4.8(2).

REMARKS

(I) Conditions (A) & (B) imply (a) & (b) of 4.8. Indeed, the more general state-
ment of ((A) & (B) (a)) follows from the Lemma, and for ((B) . (b)) see Exercise
4.M.

(2) When trading V-prime elements for V-prime elements (so that p < mg Vm2
implies p < m1 or p < m2 ), one may construct the additive core C+ analogously
to the fully additive core C$ .

(3) Instead of conditions (A) and (B), let us consider:
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(a) Meets distribute over arbitrary joins in each MIX , i.e., each MIX has
the structure of a frame.

(f3) Every m E MIX is the join of the compact elements below it, i.e., each
MIX has the structure of an algebraic dcpo.
Then, in our approach to C19 , if we replace V-prime elements by compact elements
and put

c.k(m) := V {cx(k) : k E MIX compact, k<-m),

then Ct is a largest directedly-additive closure operator < C , i.e., the direciedly-
additive core of C. (Condition (a) is needed to prove the analogue of condition
(A) in this context: f (k) is compact for every f : X --+ Y in E and every
compact k E MIX .)

We note that if C is additive, also Ct is additive, in fact fully additive (by
Theorem 2.6). Similarly, for C directedly additive, also the additive core Cf
(if constructed under the hypotheses (a) and (b) of 4.8) is directedly additive and
therefore fully additive. Consequently, in the presence of conditions (a), (b) of 4.8
and of (a) , (13) as above, there are two alternative ways to construct the fully
additive core of an arbitrary closure operator C : as (C+)k , and as (C4)+ .

4.10 Minimal core and hereditary hull
Clearly, for every closure operator C of X w.r.t. M one can find a largest
minimal closure operator < C . Indeed, every minimal closure operator D < C
must satisfy

dx(m) = mV dx(ox) < mV cx(ox),

and it is elementary to show that

cg'(m) :. m V cx(ox)

defines in fact a minimal closure operator Cm' < C (for the Continuity Condition,
just use preservation of joins under direct images). Cm' is called the minimal core
of C . For properties of Cm' , see Exercise 4.N.

Clearly, for every closure operator of ModR with induced preradical r, the
minimal core is given by the minimal closure operator Cr .

Since hereditariness is stable under meet, for each closure operator C of an
M-complete category one can find a least hereditary closure operator > C, the
hereditary hull of C . As in the case of the (fully) additive core, we are able to give
an explicit description of this hull only under additional hypotheses on X and M.

Let C E CL(X,M) . For every hereditary closure operator D > C and all
m:M-+X in M one has

ex(m) G

V{z-1(dz(z m)) : z : X -+ Z in M}
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dx(m).

We therefore define

cX (m) = V{z-1(cz(z m)) : z : X -t Z in M}. (*)

Clearly, each function ch is extensive and monotone. However, in order to ver-
ify the continuity condition we assume that X has the M-transferability property:
for every morphism f : X -* Y and all z : X -+ Z in M there is a commutative
square

X f Y

Z g W
with w E M . (If X has pushouts and if M is left-cancellable (w.r.t MorX ) then
X has the M-transferability exactly when M is stable under pushout.) The M-
transferability property is satisfied if X has enough M-injectives so that for every
object Y there is a morphism to : Y -+ W with W . M-injective. (Recall that
Y is M-injeciive if for all z : X -. Z in M and every morphism h : X -. W
there is a morphism g : Z -+ W with g z = h .) We are now ready to prove:

THEOREM Under each of the following two hypotheses the hereditary hull Che
of a closure operator C E CL(X,M) exists and is described by formula (*):

(a) X is finitely M-complete and has enough M-injectives;

(b) X is M-complete and each MIX has the structure of a frame (so that
meets distribute over arbitrary joins: m A ViE1 mi Vierm A mi ), and X
has the M-transferability property.

Under condition (a) Che is idempotent if C is idempotent, and under condition
(b) Che is (fully) additive if C is (fully) additive.

Proof Let us first operate under hypothesis (b). Obviously, the function che
defined by (*) is extensive and monotone. In order to verify the continuity condition,
for f : X - Y and every z : X --. Z in M we choose gt
as in (4.6) and observe that

(w. f)(z_1(k)) c
g2(z(z-1(k))) 5 g2(k)

and wZ : Y -* W=

holds for all k E M/Z , hence f(z 1(k)) < wz 1(g2(k)) . With
(for m E MIX) this gives

k := w;(z m)

f(ch (m)) V { f (z-1(cz(z m))) : z : X -- Z in M}
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< in M}

< in M}

in M}

< in M}

CY (f (m))

Hence, together with our initial considerations, we have that Che is a closure
operator _> C with D > Che for every hereditary operator D > C . Under
condition (b) one has that y-'(-) preserves joins for every y : Y --r X in M.
Therefore,

y-1(cJ (m)) = V{y 1(z-1(cz(z . m))) : z : X -Z in M}

V{(z y)-1(cz(z y) my)) : z : X -. Z in M}

in M}

che(my)

for every m E MIX with m < y and m . Hence C}7e is the hereditary
hull of C .

The following computation shows that (full) additivity is inherited by Ch, from
C , with m = ViElmi in MIX :

cX (m) L- V{z-1(cz(z m)) : z : X -* Z in M}

V{z in M}

V{z-1(ViElcz(z m.)) : z : X -+ Z in M}

Vier(V{z'1(cz(z mi)) : z : X - Z in M})

V iErcx (mi) .

Let us now assume that Condition (a) holds. We can then show that the join (*)
exists and is given by

cx (m) i-1(Cw(i
M)),

(**)

for any i : X -# W in M with W M-injective. Indeed, for every z : X -> Z
in M there is a morphism g : Z - W with g z = i , and one has

z-1(cz(z m)) < z-1(g-1(g(cz(z m))))
< i-1(cw(g(z m)))

i-1(cw(i - m)) .
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Hence, we obtain the closure operator Che > C with D > Che for every D > C
as under Condition (b). Under Condition (a) its hereditariness can be shown as
follows (notation as above):

y-' (cX (m)) = y-' (i-' (cw (i ' m)))

(i ' y)-'(cw((i ' y) ' my))

Cy ('my) .

Finally, idempotency of Che follows from idempotency of C :

cX (cz (m)) i '(cx(i(i-'(cx(=' m)))))
< i-1(cx(cx(i rn)))

i-'(cx(i "m) = cX (m)) .

0

COROLLARY If the M-complete category X is M-wellpowered and has enough
M-injectives, then (C°O)he is the least idempotent and hereditary closure operator
> C E CL(X,M) . In the chain

(Coo)°° < (C°°)oo < (Che)oo < (C°°)he

each closure operator is idempotent and weakly hereditary. The first and last in-
equalities. collapse to isomorphisms when C is idempotent.

Proof The first statement follows immediately from the Theorem. In Corollary
4.6 we showed (C(,0)00 < and that holds for C idempotent. The
middle inequality follows trivially from

(COO). < Coo < (Che)oo

Since Ch, < (COO)he with (C°O)he idempotent, one has (Che)oo < (Coo)he
In case C = Coo this inequality becomes an isomorphism since then (Coo)he
Che < (Che)oo .

EXAMPLES

(1) In Top, the hereditary hull of a non-hereditary closure operator may be quite
large. In the case of the 9-closure, one obtains the indiscrete operator : Bhe -_ G
More precisely, with K* as in Example 4.2 one has

K<KK*<9 and K=Khe<(KK`)heBheG.

In fact, in order to show (KK*)he = G it suffices to verify that

(KK')X({x}) = X
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holds for all X E Top and z E X . For that we take a new point y and define
the space Y := X U {y} in such a way that {y} is open in Y and that every
open set in Y which meets X contains y . Then ky(k* ({x})) = Y , hence
{x} is (KK`)he-dense in Y . But since (KK*)he is hereditary, {x} is also
(KK*)he-dense in X .

Since Y is a To-space if X is To , this construction persists in the category
Topo of To-spaces.

(2) That (KK`)he = G holds in Top and in Topo is quite surprising since for
its restriction to the category Top, of Ti-sp aces one has

KK`ITop, = KII Top,

which is hereditary. Nevertheless, one can show
(BlTOP,)he

= GJTupi

To see this, one proceeds as in (1) but considers the disjoint union Y := X U N ,
with each point of N open, and with basic neighbourhoods of a point x E X
having the form U U C , where U is neighbourhood of x in X and C C N
cofinite. Now 8y({x}) 2 X , hence 8 ({x}) = X for every z E X .

(3) In general, the inequality (Che)oo < (C°°)he is strict. For instance, the
idempotent hull T' of the up-closure 1 in SGph fails to be hereditary although
j is hereditary. (See Exercise 4.K). More generally, one can show for certain Set-
based categories X (including SGph and Top) and for every hereditary closure
operator C of X that CO' is hereditary if and only if C is idempotent (see
5.10 and Exercise 5.R; a more general proof is provided in 9.1).

(4) For a preradical r of ModR one can find a least hereditary preradical
the > r (with the partial order to be defined "pointwise"), namely

rhe(M) = r(E(M)) fl M ,

with E(M) an injective hull of the R-module M (see Bican, Jambor, Kepka and
Nemec [1982]). We claim that

(Cr)he = Lirb. .

In fact, since Crh. is a hereditary closure operator > Cr (see Theorem 3.4(4))
one has (Cr)he < Cram . From the same theorem one obtains that the preradical s
induced by (Cr)he is a hereditary preradical > r , hence the < s and therefore
Crba < C. < (Cr)he

In AbGrp a corresponding result holds for maximal closure operators: see Exercise
4.P.

4.11 Productivity of idempotent closure operators
All closure operators which we encountered in Section 3 are (at least) finitely pro-
ductive. We also noted that in an additive category with finite products, every
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closure operator (with respect to any notion of subobject) is finitely productive:
see Exercise 2.J. In this section we will give conditions in the general context of a
category X with subobjects in M as in 2.1 which ensure that every idempotent
closure operator is finitely productive, and then discuss an extension of this result to
arbitrary productivity. In these cases there is therefore no reason to worry about the
(finitely) productive hull of a closure operator (but see.Exercise 4.Q). As in 4.9, our
conditions are tailored for applications to topology and order theory, but in most
cases not to algebra. However, note that the idea for the proof of the key lemma
below is borrowed from the simple trick that one applies in the case of modules.

We assume that X has finite products and consider mi : Mi -+ Xi in
M (i = 1, 2) , and we first examine the behaviour of the sections for the canonical
projections pi : Xi x X2 -+ Xi . For any section s : X1 -+ Xl x X2 for p1
(hence pls = 1x, ) one has

s(lx,) < Ix, x m2

if and only if there is a section s' : X1 -+ X1 x M2 for the projection p`1

X1 x M2 X1 with (lx, x m2)s' = s . For such a section there is a section
s" : M1 -+ MI x M2 for the projection p'i Ml x M2 --+ Ml with (ml x lm,)s" _
s'mi .

Consequently,

s(mi) < (lx, x m2)(mi X 1M2) = ml xm2:M1 xM2--+ X1 xX2.

Therefore, if we denote by
Sect (pl, m2)

the class of sections s for pl with s(lx,) < lx, x m2 , one obtains

V{s(ml) : s E Sect(pl, m2)} < ml x m2 (*)

We say that the section condition holds for ml, m2 if in (*) one has
rather than "<". In greater detail, we say that finite products of M-subobjects in
X are covered by their sections if the section condition holds for all ml , m2 E M .
(Of course, since direct products commute up to isomorphism, in this case one
symmetrically has

V{t(m2) : t E Sect(p2iMl)} ml x m2) .

Let now C be a closure operator with respect to M. We shall write ci(rri)
instead of cxi(mi) and put in = ml x M2: M = Ml X M2 -+ X = X1 X X2 .

LEMMA If finite products of M-subobjects in X are covered by their sections,
then

(cl(ml) x m2) V (ml x c2(m2)) < cx(m) .
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Proof The continuity of every s E Sect(pl, m2) yields

s(ci(mi)) < CX(s(mi)) < cX(m) .

Hence the section condition for ci(rri) , m2 gives

ci(rri) x m2 < cX(m) .

Symmetrically one has mi x c2(m2) < cX(m) . O

PROPOSITION If finite products of M-subobjects in X are covered by their
sections, then every idempotent closure operator of X with respect to M is finitely
productive.

Proof Since always cX(m) < ci(rri) x c2(m2) , it suffices to show ">". The
Lemma gives

ci(rri) x m2 < cX(m),
when applied to mi , m2 and

CI (MI) X C2 (M2) < cX(Ci(mi) x m2)

when applied to ci(rri) , m2 . But then, with the monotonicity of cX one obtains

CI(MI) x c2(m2) < cX(cX(m))

Hence the desired result follows since C is assumed to be idempotent. 0

REMARKS

(1) The condition that finite products of subobjects be covered by their sections
is certainly essential to obtain finite productivity of an idempotent closure operator.
For example, if X and C are given by a lattice (X, <) and a closure operator
c of the lattice (see Example 4.5), then finite productivity of C amounts to the
preservation of finite meets by c . But obviously, idempotency of c does not
generally imply this preservation property. Indeed, the section condition fails badly
here.

(2) Idempotency is certainly not a necessary condition for finite productivity: see
Example (2) below.

(3) For an example of a closure operator of Top (in which finite products of
subobjects are covered by sections, see Example (1) below) which fails to be finitely
productive, see Exercise 4.U.

We now turn to (unrestricted) productivity and therefore assume the existence
of (arbitrary) products in X. For M-subobjects Mi -. Xi (i E I) and
every subset J C I , let

m.-JJmi:MJ=JIM, Xi,
iEJ iEJ iEJ
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and let pj : X = X1 -- Xi be the canonical map given by projection. A closure
operator C of X with respect to M is said to have the finite structure property
for products if

x < cx(m) t* (VF C I finite) pp(x) < cF(pp(m))

holds for all x , m E MIX ; equivalently, if

,,,,cx(m) = APFl(cF(pF(m)))
F

(*)

for all m E MIX . (Here we write cF instead of cXn .) The case m = mt
shows that finite productivity and the finite structure property for products entail
productivity, for non-trivial products, that is: for those products whose finite product
projections belong to E . In fact, from the latter provision one has mF = pF(m)
Hence, with x = 11iEt ci(mi) , finite productivity of C gives

PF(Z) < II ci(mi) cF(mF) 25 cF(pF(m))
iEF

for every F C I finite. Therefore, x < cx(m) follows from (*) . The following
Theorem gives a much better criterion in case C is idempotent.
THEOREM Let C be an idempotent and finitely productive closure operator of
X w.r.t. M. If there exists a closure operator D < C with the finite structure
property for products, then C is productive for non-trivial products.

Proof D < C implies C < DC < CC , hence C = DC since C is idempo-
tent. Therefore, in order to show x <cx(m) for m = mi and x < 11iEt ci(mi) ,

.it suffices to show x < dx(cx(m)) . But since D has the finite structure property
for products, for that we need to show only pF(x) < dF(pp(cx(m))) for every
finite F C I .

In fact, since m = mF x mI\F and since C is finitely productive, one has
cx(m) = cF(nF) X cj\F(mI\F) and therefore pF(cx(m)) = cF(mF) . Further-
more, applying finite productivity again, one obtains cF(mF) = IIieF ci(rri)
Therefore, x < 11iEt ci(mi) implies

PF(x) < cF(mF) = PF(Cx(m)) 5 dF(PF(eX(m))),

as required.

COROLLARY Let finite products of M-subobjects in X be covered by their sec-
tions, and let D E CL(X, M) have the finite structure property for products. Then
every idempotent closure operator C > D is productive for non-trivial products.-
EXAMPLES (1) In Top, with M the class of embeddings, one has the sec-
tions $ : X1 ` X1 X X2 of the form s(x1) = (x1, a2) with a2 E X2 constant,
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hence finite products of subspaces are covered by their sections. Furthermore, the
Kuratowski closure operator K has the finite structure property for products. Con-
sequently, every idempotent closure operator C of Top is finitely productive, and
it is productive in case C > K . Here both idempotency of C and the condition
> K are essential, see (2) and (3) below.

(2) According to the Theorem, the idempotent hull 91 of the (productive)
9-closure of Top is productive. It will be shown in Chapter 10 that, by contrast, 9''
is not productive. Since 9' > 9 > K , we therefore cannot dispense of idempotency
in the Corollary.

(3) Similarly, for the (productive) sequential closure or of Top, o-", is not
productive, but here also o = all (cf. Exercise 4.F(c)) fails to be productive
(see Chapter 10). Consequently, o < K .

(4) The Corollary may similarly be applied to the categories PrTop and FC,
rather than to Top, with K now playing the roles of the Cech and Katetov closure
operator, respectively.

(5) The product of a family {X;}IEf in Top is trivial if and only if there exist
i and j such that Xi is empty but X1 is not. Since for trivial products (PR) trivially
holds, one can drop the condition on non-trivial products in the Theorem and the
Corollary in this case.

Exercises

4.A (Computational rules for composition and cocomposition)

(a) Prove the rules given in Lemmas 4.2 and 4.3.

(b) Show that a closure operator C is idempotent (weakly hereditary) if and only
if C > CC (C < C * C , respectively).

(c) Show for closure operators C and D

D * C - D A C if D is hereditary,
DC 25 D V C if D is minimal.

(d) Show the distributive laws

C(A V B) CA V CB if C is additive,
C* (A A B) C* A A C* B if C is hereditary

for closure operators A, B, C
(e) Show the inequality

(D * B)(C * A) < (DC) * (BA).

Using the discrete and the trivial closure operators, show that this inequality
may be strict even when any two of the four closure operators A, B, C, D
coincide.
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(f)

(g)

Show the distributive law

(D * D)C - (DC) * (DC) if C is weakly hereditary.

Show that the inequality

(CA D)2 < C2 AD2

is in general strict. Hint: In SGph (see 3.6), consider 1 and j .

4.B (Bad properties of v2) Let o- be the sequential closure operator of
Top (see 3.3). Show:

(a) o2 is not hereditary. Hint: Consider the Arhangel'skii - Franklin space X
as described in the proof of Theorem 3.3. For M = {(z, y) : xy > 0} and
Y = M U {(0,0)} one has ox(M) = X \ {(0,0)} , (M) = X , but
4(M) = M . (Cf. Arhangel'skii and Franklin [1968].)

(b) Although o2 is weakly hereditary, there -are subobjects M C Y C X with
M o2-dense in X but not o2-dense in Y (cf. Exercise 2.F; see also
Exercise 4.C (a) below).

4.C (Bad properties of Cr and Cr )

(a) Let r(A) = d(A) be the maximal divisible subgroup of an abelian group A
(see Example (1) of 4.3). Show that Z is Cr-dense in Q , but that there
are intermediate groups Z C A C Q such that Z is not Cr-dense in A ; in
fact, Z C A is Cr-dense if and only if A is a subring of Q .

(b) Let r(A) = soc(A) be the socle of A (see Example (1) of 4.3). Show that
{0} is (CI)2 -dense in Z,2 (the cyclic group of order p2 , p prime), but
not Cr-dense.

(c) For r(A) = p(A) = pA with a prime number p , show that Cr * Cr is not
minimal (see Example 4.6(2)).

4.D (Cocomposites and joins of hereditary closure operators)

(a) Complete the proof of Proposition 4.3.

(b) Show for hereditary closure operators C and D that C V D is hereditary
if each MIX is a distributive lattice.

4.E (Meets of additive closure operators)

(a) For C =1 and D =1 in PoSet, show that C and D are fully additive,
idempotent and hereditary, but that C A D is not additive.
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(b) Let 2Top be the category of bitopological spaces: objects are triples (X, Tl, T2)
with r1, r2 topologies on the same set X , and maps must be continuous with
respect to both topologies. Show that with the usual closure with respect to
the first (second) topology, one obtains additive, idempotent and hereditary
closure operators K(i) ( K(2) , respectively) of 2Top, but K(i) A K(2) is
not additive. Hint: Consider the space (X, Tl, r2) with X = {a, b, c, d}
and {a, b} the only proper ri - open set in X and {a, c} the only proper
r2-open set in X ; examine the closure of {b} and of {c} .

4.F (Closure operators of order a and of co-order a ) For an ordinal
number a , let X. be the category arising from the ordered set a+ 1 = {13 : J3 <
a} (as in Example (2) of 1.10).

(a) Let C be the closure operator of Xa induced by the closure operator c

with c(f3) = (13 + 1) A a of the poset a + 1 (see Exercise 2.E). Show that
C has order a .

(b) Find a closure operator D of the category X,,*,p (the opposite category of

Xa ) with co-order a .
(c) Prove that the order of o in Top (cf. 3.3) is wl (the least uncountable

ordinal).

4.G (The extended ordinal chains for C = Cr)

(a) Preradicals in ModR are partially ordered by inclusion:

r < s . ('VM E ModR) r(M) < s(M) .

Show the existence of class-indexed meets and joins.

(b) Establish an extended descending chain of preradicals ra (a E Ord U {oo})
for every preradical r, with ro(M) = M and ra+i(M) = r(ra(M)) for all
M.

(c) Establish an extended ascending chain of preradicals ra (a E Ord U {oo})
with ro(M) = 0 and ra+i(M) = it i(r(M/ra(M))) for all M ; here 7r

M -- M/ra(M) is the projection.
(d) Prove by induction for all a E Ord U {oo}

(Cr),,, = C(r°) (Cr)a = C(ra)

(e) Define the Loewy length 1(r) (Ulm length u(r) ) to be the least a E Ord U
{oo} with ra+i = ra (ra+i = ra , respectively). Sow that the maximal
closure operator Cr has order 1(r) and co-order u(r) .

(f) Prove that, for C = Cr with r = soc d as in Corollary 4.6, C. is
idempotent, but C is not; and that C°° is weakly hereditary, but C is
not.
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4.H

(a)

(b)

(c)

(d)

(Revisiting conditions (ID), (WH), (CC) , (CD) of 2.4)

Recall that the implications

(ID)&(CC) . (WH) (CC) and (WH)&(CD) (ID) (CD)

hold (see 2.4); give "direct" proofs of these implications, without referring to
1.5 or 1.8.

Let CO, be the weakly hereditary core of C . Show that C is idempotent
if and only if £° is closed under composition.

Let C°° be the idempotent hull of C . Show that C°° is weakly hereditary
if and only if .M° is closed under composition.

With the help of Exercise 4.G, find an example of a closure operator which
simultaneously shows

(CC)&(CD) A* (ID) and (CC)&(CD) A* (WH) .

41 (The indiscrete closure operator G )

(a) Determine which of the properties described in 2.4-2.7 are enjoyed by G

(b) Prove for m E MIX : in is G-dense if, for all e : X -+ Z in £, e(m) = oz
implies that Z is trivial; m is G-closed if, whenever k > m has the
property (e(m) = oz e(k) = oz) for all e : X - Z in £ , then k = m

4.3 (Iterations and order of fully additive closure operators)

(a) Verify that full additivity is stable under arbitrary join and under composition
of closure operators. Conclude that every "power" C' is fully additive if C
is.

(b) Show that the order of a fully additive closure operator C is at most w (the
least infinite ordinal). Hint: Examine cx (c'X (m)) for m E MIX . Conclude
that T and I in SGph have order w .

4.K (Operations on t and I in SGph)

(a) Show that every iteration Tn (n > 2) is weakly hereditary, grounded, fully
additive and productive, but neither idempotent nor hereditary. Hint: For the
first four properties, see Theorem 3.6 and Proposition 4.2. Then consider the
graph 0 --r 1 - ... -> (n + 1) and compute In {0}
For the subgraph H

0 -i (n+1)

one has n E (T" {o}) fl H , but n VTX {0} .



106 Chapter 4

(b) For integers m , n > 1 a subset M of a spatial graph G is (m, n)-convex
if M contains every vertex x in G for which there is a subgraph

ao -+ al - ... -r a., = x = bo -> bl - ... -+ bnr

in G with 0 < m' < m , 0 < n' < n , and ao , bn' E M .
1. Prove that M is (1m A 1n) -closed if and only if M is (m+ i, n+ 1) -
convex.
2. Show for r n, n > 1

(Tm+l A jn) > (Tm A in) < (1m A jn+1).

Hint: Let G, be the spatial graph a -. 1-} 2 -+ ... -+ s - b . Now evaluate
the closure operators in question for the subgraph {a, b} of G,n+n . (Here
"<" means " < and ", similarly for '>".)
3. Show for mn > 1

(I- A in) > (I A I)--fm,n}

Hint: Evaluate the closure operators for M in G,,,+n-l (see 2.).
4. Prove that the closure operators 1m A in (m, n > 1) are mutually non-
isomorphic, i.e.

(1mAjn)=(TkA1')= m=k, n=I.
5. Show that the operators 1' A jn are grounded and productive, but
neither idempotent nor additive nor hereditary. Tm A in is weakly hereditary
iff m=n=1 .

(c) Show that 1`° and r are grounded, fully additive, idempotent, weakly
hereditary and finitely productive closure operators, but neither hereditary nor
productive.
Hint: For a subgraph M of G one has z Er (M) iff there is a finite path
in - ... --+ z in G with x E M . To show its non-productivity, consider
the spatial graph G = N :

1-,2-}...-*n-,...
{1} is 1°' -dense in G . On the other hand, {(1,1,1,. .... )} is not 1`°-dense
in GN since there is no finite chain from (1,1,1.... ) to (1, 2,3 ....) in GM .

4.L (Interplay between idempotent hull and additive core) (a) Under existenc
guaranteeing assumptions on X and M , show

(C+)°° < (C°°)+

both operators are isomorphic if C is idempotent or additive.

(b) Prove that for a preradical r of ModR one has (C+)O° = (C°°)+ for
every closure operator C with induced preradical r if and only if r is a radical.
Hint: First observe that (C+)°O is the minimal closure operator Cr (cf. Example
(2) of 4.8). Then show that it suffices to consider C = Cr .
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4.M (Fully additive core and generalized distributivity) (a) Show that con-
dition (B) of 4.9 implies the generalized distributive law

V A mid - A V Midi
iEIjEJi (i.)ietEf,EIJi iEl

in MIX ` for every X E X (with 11iE1 Ji # 0 ).
(b) Suppose that f-1(-) preserves arbitrary joins for every morphisms f
X -+ Y and that the generalized distributive law holds in MIX , for every object
X of the M-complete category X . Show that the fully additive core C'9 of a
closure operator C can be constructed by

cX{m) - A {V cx(mi) : mi E M/X(i E I), V mi > m} .

JJJJJJ+EI iEI

4.N (Minimal core) Show that the minimal core C'' of any C E CL(X, M)
is idempotent and minimal, in particular fully additive. If C is hereditary and if
each MIX is modular, then also C"' is hereditary. (Recall that a lattice L is
modular if for all a, b, c E L with a > c one has a A (b V c) _ (a A b) V c .)

4.0 (Hereditary hull oft for Tychonoff spaces) Show that the hereditary
hull of the restriction of the 1-closure to Tychonoff spaces (= completely regular
T2-spaces) is the Kuratowski closure:

(tITych)he - KITyc
Hint: Consider any compactification Y of a Tychonoff space X . For every
M C X one has

th (M) = the (M) n X D ty(M) n X = ky(M) fi X = kx(M) .

4.P (Hereditary hull of maximal closure operators in AbGrp) Prove that
for every preradical r of AbGrp one has

(Cr)he - Cr"

(see Example 4.10(4)).

4.Q (Productive hull) Show that every closure operator of an M-complete
category has a (finitely) productive hull. Investigate which properties of C are
inherited by these hulls.

4.R (Scott closure as idempotent hull) Prove that the Scott closure operator
of DCPO is the idempotent hull of the up-directed down closure: scott = (dir j)O° .
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4.S (Finite structure property for products in ModR) Prove that if a closure
operator of ModR has the finite structure property for products, then its induced
preradical r is Jansenian and both Cr and C' are productive.

4.T (Properties of Q) Check the properties of Q stated in Theorem 4.7.

4.U (A closure operator of Top that is not finitely productive) For a subset
M of a topological space X , let x E jx(M) iff s E kx({a)) or a E kx({x})
for some a E M . Show that J = (jx)XETop is a hereditary and fully additive
closure operator of Top which is neither idempotent nor finitely productive. Show
also that J = Ke V K* , with K* as in Example 4.2(3). Hint: To show that J
is not finitely productive, consider X = S x S , with S the 2-point 3-open-set
Sierpiriski space. (Cf. Dikranjan, Tholen and Watson [1995].)

4.V (Closure operators of Grp and normality) Show that for every closure
operator C of Grp and for every normal subgroup N4G also CG(N) is normal
in G . Conclude

vCv = Cv,

and that Cv is idempotent whenever C is idempotent. In this case show that
the Cv-closed subgroups are exactly the C-closed normal subgroups.

Notes

The constructions for both the idempotent hull and the weakly hereditary core of
a closure operator via infinite (co-)iterations can be found in Dikranjan and Giuli
[1987a] who, however, do not formally introduce the binary (co-)composition of
closure operators. Additive cores appear in the context of topological categories
in Dikranjan [1992]. The categorical constructions for the additive core, the fully
additive core and the hereditary hull of a closure operator do not seem to have
been published previously, and the same is true for the general construction of the
indiscrete operator and for the sufficient criteria for (finite) productivity given in
4.11.



5 Closure Operators, Functors,
Factorization Systems

The functorial presentation of closure operators and their well-behavedness "along
functors" are the dominating themes of this chapter. Briefly, closure operators are
equivalently described by (generalized functorial) factorization systems. The inter-
play between closure operators and preradicals which we have seen for R-modules in
3.4 extends to arbitrary categories; it is described by adjunctions which are (largely)
compatible with the compositional structure. With the notion of continuity for func-
tors between categories that come equipped with closure operators we can define -
like in topology - initial and final structures. This permits us to "transport" clo-
sure operators along functors. For adjoint functors and for M-fibrations, these
"transported" closure operators can be computed effectively.

In 5.4 we present criteria for detecting classes of dense subobjects which will be
used frequently in subsequent chapters.

5.1 Pointed endofunctors and prereflections
In order to describe closure operators functorially we recall some general categorical
notions which will be used in various contexts.

For an arbitrary category K , one calls a pair (C, 7) with an endofunctor
C : K -+ K and a natural transformation 7 : Idx -+ C a pointed endofunctor of
K . (C, 7) is idempotent if

7C= C7:C--ACC

is an isomorphism of functors (i.e., a natural equivalence). Finally, a pointed endo-
functor (C, 7) is called a prereflection if for every commutative diagram

A 7A CA

B f° - CB

in K one has h = Cf .

For a given class E of morphisms in K , a pointed endofunctor (a prereflection)
(C,7) is E-pointed (an E-prereflection, respectively) if 7A E E for all A E K ;
in case E is the class of all epimorphisms in K , we shall speak of epipointed
endofunctors and epiprerelections.

With each pointed endofunctor (C, 7) of K one associates the class

Fix (C,7) = {A : 7A iso} ,
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considered as a full subcategory of K.

EXAMPLES

(1) Let A be a full reflective subcategory of a category X . Hence for every
X E X one has an object RX E A and an X-morphism. px : X -+ RX , the
reflection of X into A , such that every X-morphism f: X -+ A with A E A
factors uniquely as

with h : RX -. A . These data define uniquely an idempotent prereflection (R, p)
of X. If A is replete, i.e. if X= A E A implies X E A for every X E X,
then A = Fix (R, p) .

(2) For a topological space X , let IIo(X) be the set of arc-components of X
provided with the quotient topology with respect to the natural map

irx:X -->IIo(X).

(IIo, x) is an epiprereflection of Top. Fix(IIo, a) is the category of arcwise totally
disconnected spaces (i.e., each arc-component is a singleton set). (Ho, 7r) is not
idempotent: for the Topologist's Sine Curve

X={(x,sin!):x>O}U{(O,y):-1<ys1}CR2,

IIo(X) is the (two-element) Sierpinski space, whereas IIo(IIo(X)) is a singleton
space.

(3) For a preradical r of ModR , the projection

7rm M -+ M/r(M) = RM

gives a epiprereflection (R, 7r) ; it is idempotent if and only if r is a radical.

PROPOSITION In each (1) and (2) below, the implications

(i) (ii) . (iii)

hold for a pointed endofunctor (C,7) , whereas in (3) all three statements are equiv
alent:

(1) (i) (C,7) is epipointed,

(ii) (C, 7) is a prereflection,

(iii) 7C = C7 .

(2) (i) (C,7) is idempotent,

(ii) 7CA = C-tA is monic for every A E K
(iii) (C, 7) is a prereflection.
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(3) (i) (C, 7) is idempotent,

(ii) (C,7) is a prerelection with CA E Fix(C,7) for all A E K

(iii) Fix (C, 7) is a reflective subcategory with relexions 7A , A E 1C

proof

(1) (i) . (ii) is trivial. (ii) (iii) For all A E K apply the prereflection
property to

A 7A - CA

7A 7CA (5.2)

CA 7CA -- CCA

to obtain 7cA = CiA

(2) (i) #. (ii) is trivial. (ii) (iii) Given the commutative diagram (5.1) we
obtain

7cA=C7B Of

hence It = Of .

(3) can be left as an exercise.

LEMMA For the pointed endofunctor (C,7) of IC with 7C = C7 , and for
an object A E K, let 7A be a section. Then A E Fix(C, y) .

Proof Suppose f 7A = 1A . Then

7A-f=Of '7CA-=Cf-C7A=CIA =1CA

THEOREM For a prereflection (C,7) of K , the full subcategory Fix (C,7)
of K is closed under all ( existing) limits of IC . In particular, it is replete and
closed under retracts.

Proof Consider a functor H : V -+ K with Hd E Fix (C, 7) for all d E V
such that its limit L = lim H exists in K . We must show L E Fix (C, 7) . The
limit property yields a morphism f : CL -+ L rendering the diagram
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L Ad .Hd

17ird
(5.3)

CL C\d-CHd

commutative (with Ad a limit projection). Since

Ad 'f''YL=ItHd'CAd'7L='7Hd'"YHd'Ad =Ad

for all d E V , one has f 7i = 1L . Now the Lemma (in conjunction with
Proposition (1)) yields L E Fix (C:7)

If B is a retract of A , so that there are morphisms s : B -} A , r : A -+ B
with rs = 1B , then one has an equalizer diagram

BMA A
sr

(5.4)

Hence A E Fix (C, 7) implies B E Fix (C, 7) by the preceding observation. In
particular, Fix (C, 7) is replete.

5.2 Closure operators are prereflections
Throughout this section, let M be an arbitrary class of morphisms in the

category X. M can be considered a category which, by abuse of notation, is
denoted by M again, as follows: its objects are the elements of the class M, and
a morphism

(u, v):m-.n
in the category M is given by a pair of morphisms in X such that

M U N

X V Y

commutes. There are the projection functors

dom : M -+ X and cod :M --+X

which assign to each object m E M its domain and its codomain, respectively,
and there is the structure transformation

c : dom -} cod,
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given by o := m for all in E M M.
Let us now go back to the situation of 2.1/2.2 and consider a closure operator

C = (cx)xex of X w.r.t. M. Then we have in fact a functor

C:M-M, .cx(m),

which assigns to a morphism (u, v) : in -+ n in the category M the morphism
(w,v) : cx(m) -+ ex(n) ; here w : cx(M) -+ cx(N) is the "diagonal morphism"
of diagram (2.3). Furthermore, we have a natural transformation

7 : IdM -+ C , 7m := (?m, 1x) : rn --+ cx(m) ,

arising from the commutative diagram

M 3m cx(M)

MI

jcx(rn) (5.6)

X lx
--

X

Naturality of y is easily checked by chasing along the arrows in

M u - N

j-
cx(M} w cy(N) in

in

cx(m) x v cy(n) y

Ix/ fly
X Y

V

We observe that each 1m belongs to the following class of morphisms of the cate-
gory M :

(M,1):={(u,v):uEM, v=1}.
(We note that for any morphism (u, v) m --+ n in the category M , v = 1
necessarily yields u E M ). Hence (C, 7) is an (M, 1) -pointed endofunctor of
M. But when M is a class of monomorphisms in X , then (M, 1) is a class of
monomorphisms in M, hence by (2)(ii) = (iii) of Proposition 5.1, (C,7) is in
fact an (M, 1) -prereflection.

This proves most of the following Theorem; the rest of its proof is routine work.

THEOREM For X and M as in 2.1, there is a bijective correspondence between

closure operators of X w.r.t. M , and
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(M, 1)-prerefiections of M.

Idempoteni closure operators correspond exactly to idempoteni (M, 1)-prereflection.
0

Under the correspondence described by the Theorem, isomorphism classes of
closure operators correspond to isomorphism classes of (M,1)-prereflections. Recall
that the closure operator C = (CX)XEX and D = (dx)xex are isomorphic if
C < D and D < C , i.e., if cx(M) RL, dx(m) for all m E M/X , X E X .
This gives an isomorphism of funetors a : for the induced (M, 1) -
prereflections (C, 7) and (D, b) , with the additional property that

7 b

C a D

commutes. This, by definition, means (C, 7) 25 (D, b) .
The Theorem indicates how to expand the notion of closure operator to the case

that M is an arbitrary class of morphisms of X:

DEFINITION A closure operator of X w.r.t. M is an (M,1)-prereflection
of the category M . In other words, the Theorem holds true by definition in the
arbitrary case.

Also for a closure operator (C, 7) in the general context, when there is no

danger of confusion, we often simply call C a closure operator. For M a class

of monomorphisms, 7 is uniquely determined by C anyway: for every in E M
one has cod 7,,, = 1 , and dom 7,,, is determined by ex (m) jm = in when
cx (m) is monic.

Since, in the context of 2.1 each (M,1)-pointed endofunctor of M is a pre-
reflection, requiring a closure operator in the general context to be an (M, 1) -
prereflection rather than just an (M,1)-pointed endofunctor seems like an unnec-
essary complication. However, a closer examination shows that when M is not
necessarily a class of monomorphisms in X, the prereflection requirement means
precisely that the crucial Diagonalization Lemma remains true verbatim.

As in 2.3, also for a closure operator (C, 7) w.r.t. an arbitrary M one calls
in : M - X in the class M to be C-closed if j,,, = dom 7,,, is an isomorphism;
as before, let Mc be the class of C-closed elements of M. We now have a common
proof for Proposition 1.7 and Theorem 2.3, even in the current more abstract context;
see the Remark below.

COROLLARY For every closure operator (C,7) with respect to a class M of
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,V-morphisms, which is closed under the formation of D-limits, also the class Mc
is closed under D-limits, for any diagram type D .

proof One considers a natural transformation p : H -. K with H , K : V -.
,'X such that m : lim H -+ lim K exists in X. We shall show that if pd E Mc for

all d E D and m E M, then rn E Mc . Indeed, p: H K yields a functor
M : D -+ M with dom M = H , cod M = K , aM = p . One routinely verifies
that m - limM in the category M which contains Mc as a full subcategory.
But by definition, Mc = Fix (C, 7) , hence Theorem 5.1 yields m E Mc . 0

REMARK Clearly the Corollary generalizes Theorem 2.3. That it also generalizes
proposition 1.7 can be seen as follows. If X has right M-factorizations, then one
can define a closure operator (C, 7) with respect to Mo := Mor X the class of
all morphisms of X, by putting Cf := m and 7f :_ (e, 1) with a right M-
factorization f = m e . Now M = M' = Fix (C, 7) is closed under D-limits in
Mor X , by the Corollary.

When considered without restrictions on the class M, the concept of closure
operator w.r.t. M becomes self-dual. To see this, let us re-draw diagram (5.8) as

M 1M M

cX(M) X--(-M)
X

It now represents a morphism

6m:=(1M,cX(m))m
in the category M. With Dm := j,,, one obtains a copointed endofunctor (D, b)
(so that D : M -+ M is a functor and b : D - 1dM is a natural transformation),
with the additional property that each b,,, belongs to the class

(1,M):={(u,v):u=1, vEM}

of morphisms in the category M.
Dually to the notions introduced one says that a copointed endofunctor (D, b)

is idempotent if 6D = b is an isomorphism, and a precore fiection if bB h = f bA
for f : A -+ B implies f = Dh .

Routine work shows:

THEOREM" For any class M of morphisms in X, there is a bijective corres-
pondence between
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closure operators of X w.r.t. M , and

(1,M)-precoreflections of the category M.

For X and M as in 2.1, weakly hereditary closure operators correspond to idem-
potent (1, M)-precorefiections.

REMARK* Finally we ought to supply a proof of Theorem* of 2.3 which states
that, in the context of 2.1, the class E° of C-dense morphism is closed under
D-colimits. For that one defines an (1, Mo)-precoreflection (D , 6) of Mo :_
Mor X , by putting D f = j,,, e and b f := (lx, cy (m)) for every f : X -. Y
in X and f = m e a right M-factorization. Then Sc = Fix (D, b) is closed
under D-colimits, by the dual of the Corollary above.

5.3 Factorization systems

In 1.6 and 1.8, we introduced the notions of right M-factorization and (E, M)-
factorization, respectively. For a closure operator C of X w.r.t. M, and under
the assumptions of 2.1, we considered the factorization

with c l := cy (m) and d f := j,,, e , for f = m e an (E, M)-factorization of
f : X -* Y. This factorization gives a right Mc-factorization of f provided C is
idempotent, and it is an (Ec, M°)-factorization of f if, in addition, C is weakly
hereditary. In general, the essential property of (*) is as follows:

LEMMA (Diagonalization Property) For every commutative diagram

v

(5.10)

of morphisms in X, there is a uniquely determined morphism w rendering the
diagram



Closure Operators, Functors, Factorization Systems 117

u

df dg

W

v

commutative.

(5.11)

proof First consider (£, M)-factorizations f = m e and g = m' e' and apply
the (£, M)-diagonalization property. to obtain a morphism u' with u'e = e' u
and m' u' = u m . Then apply the Diagonalization Lemma 2.4 to the latter
identity to obtain the desired morphism w ; it is trivially unique since M is a
class of monomorphisms. o

The Corollary leads us to the following definition which requires no assumptions
on the category X :

DEFINITION A factorization system F of X is a map which gives, for every
morphism f , a pair (d f, c f) of morphisms in X such that (*) and the Diago-
nalization Property hold. (Note that there are no further conditions on df and c f
for instance, cf need not be monic in X .) We call (*) the F-factorization of
f.

For every factorization system F, there are associated classes of morphisms,

DF={h:chisiso} and CF'={h:dhisiso},

the left and right factorization class of F , respectively. F is called a left (right)
factorization system if, for every morphism f , one has d f E DF ( cf E CF
respectively). An orthogonal system is both, a left and right system.

Let us first note the following elementary properties:

REMARK For a factorization system F of X one has:

(1) The only endomorphism t with td f = df and c12 = cf is t = 1 .

(2) If in (5.10) both u and v are isomorphisms, then also the diagonal w is
iso.

(3) DF fl CF is the class of all isomorphisms of X
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(4) Each DF and CF is closed under composition with isomorphisms of X.

For the proof of (1), use the uniqueness part of the Diagonalization Property in
case g = f and u = 1 , v = 1 . (2) and (3) follow from (1). For (4), consider
an isomorphism v such that the composite v f exists. Then, from (2), one has
f E DF if v f E DF , and the same for CF . Analogously one treats the case of
an isomorphism u such that the composite g u exists.

Two factorization systems F = (f '--* (df,cf)) and F' = (f - (d',,c`J)) of
X are isomorphic (written as F F' ) if, for every morphism f, there is an
isomorphism a f with a f d f= d', and c j' a f= c f. From assertion (4) of the
Remark one has that F - F' implies DF = DF' and C' = CF' . However, the
converse proposition does not hold in general; in other words: in general, the left
and right factorization classes of a factorization system F do not determine the
system:

EXAMPLE Consider the poset (R,:5) as a small category X in the usual way
(see Example (2) of 1.10). A factorization system on X chooses monotonely, for
every pair (z, y) of real numbers (that is: for a morphism x -- y in X), a point
z in the dosed interval [x, y] (that is: a factorization x -+ z -. y in X ). For
instance, for every t with 0 < t < 1 , the assignment

(x,y)- tx+(1-t)y
yields a factorization system Ft of X . For 0 < t < 1 , one has

tx+(1-t)y=zt ,z=y=tx+(1-t)y=y;
hence VF' = CF' is the class of identity morphisms in X. Nevertheless, for t # s
the factorization systems Ft and F, are not isomorphic. We also note that the
system Ft is neither a left nor a right system, unless t = 0 or t = 1 , in which
case Ft is orthogonal.

The notion of factorization system subsumes the notions of factorizations consid-
ered in Chapter 1: assigning to every morphism its right M-factorization (provided
it exists, with M closed under composition with isomorphisms) yields a right fac-
torization system F with CF = M . Conversely, for a right factorization system
F , every morphism has a right CF-factorization. Unlike a general factorization
system, a right system F is therefore determined (up to isomorphisms) by the
class CF .

In summary, with the terminology introduced in 1.5 and 1.8 we have:

PROPOSITION For every category X there is a bijective correspondence between

classes M (closed under composition with isomorphisms) such that every mor-
phism in X has a right M -factorization,

isomorphism classes of right factorization systems of X.
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This correspondence has a left counter-part, and both correspondences can be
restricted to a bijection between

pairs (C,M) such that X has (E,M)-factorizations,

isomorphism classes of orthogonal factorization systems of X.

We already saw in the preamble to this section that, in the context of 2.1, a
closure operator C of X w.r.t. M yields, via (*) , a factorization system
F of X ; one easily sees that

DF = EC and CF = MC .

F is a right system if C is idempotent, and a left system if C is weakly
hereditary.

A closure operator defines a factorization system even in the more general con-
text of 5.2, provided X has right M-factorizations, with any class M which is
closed under composition with isomorphisms. In fact, the uniqueness part of the
Diagonalization Property still holds in this case (without the assumption that M
is a class of monomorphisms), as one readily verifies. Hence an (idempotent; weakly
hereditary) closure operator (C, y) of X w.r.t. M defines, via (*) a (right; left
respectively) factorization system F of X , with CF C M .

Conversely, every factorization system F of X gives a closure operator (C, y)
of X w.r.t. the class Mo = MorX of all X-morphisms, with C(f) := c f ,
yf := d f -, and with f = c f d f the F-factorization of f . If X has right M-
factorizations, and if c,,, E M for every m E M , then we may restrict (C, y) to
become a closure operator of X w.r.t. M; the second condition certainly holds if
F is a right system with CF C M .

In summary we have that factorization systems provide an alternative in (fact.-
self-dual) description of closure operators, or vice versa. More precisely, the following
holds:

THEOREM For every category X, there is a bijectioe correspondence between

isomorphism classes of (idempotent; weakly hereditary) closure operators of X
w.r.t. Mo = MorX ,

isomorphism classes of (right; left, respectively) factorization systems of X.

For a fixed class M C MorX (closed under composition with isomorphisms) for
which X has right M -factorizations, this correspondence gives a bijection between

isomorphism classes of idempotent closure operators of X w.r.t. M,

isomorphism classes of right factorization systems F with CF C M .
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For C and F corresponding to each other, one has Mo = CF . Hence,
from Corollary 5.2 we obtain the first half of the following Corollary; its second half
follows by dualization:

COROLLARY For a factorization system F of X, the. class CF is closed
under 1{-limits and DF is closed under 7-1-colimits, for any diagram type W. 0

5.4 Recognizing classes of C-dense and C-closed subobjects

We return to the standard situation of 2.1 and assume that X is M-complete.
Associated with every closure operator C of X w.r.t. M are the classes EcnM
and Mc of C-dense and C-closed M-subobjects. Vice versa, given subclasses
V and C of M, we may ask which properties are required to recognize them as
classes of C-dense and C-closed M-subobjects, respectively, for a suitable closure
operator C?

For a class C C M to have a closure operator C w.r.t. M with C
Mc , necessarily C must be stable under pullback and multiple pullback; the latter
property means that the M-intersection of a family in C belongs to C (see Theorem
2.3). Vice versa, since X is M-complete, stability of C under pullback and M-
intersection means that X is also C-complete, hence one has right C-factorizations
(Theorem 1.9). According to Theorem 5.3, such a factorization corresponds to an
(idempotent) closure operator C w.r.t. M with Mc = C . Hence one has:

PROPOSITION A class C C M is the class of C-closed M-subobjects for some
closure operator C (w.r.t. M) if and only if C is stable under pullback and under
M-intersections. In this case, there is, up to isomorphism, only one idempotent
closure operator C with Mc = C . 0

However, the dual of the Proposition does not give a characterization of classes
V of the form D = Ec n M which, as we remarked in 2.3, need not be stable
under pushout. In what follows we will show that there is a more lattice-theoretical
version of the Proposition which also leads us to a characterization of classes of dense
subobjects.

DEFINITION

(1) A class A C M is called left cancellable w.r.i. M if n m E A with
m, n E M implies m E A . Dually, A is right cancellable w.r.t. M if

n E n E A.

(2) For every f : X Y in X, m E MIX and n E M/Y , one has the
following commutative diagram
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M A f-1(N) --- N

I
M f(M) V N

(5.12)

Here the vertical arrows are canonical injections, and the horizontal arrows arise as
restrictions of f. We say that a class A C M has the A-V-reflection property if,
for all f, m, n as above, k E A implies i E A ; and A has the A-V-preservation
properly if i E A implies k E A.

REMARK In (5.12), it suffices to consider the case m ?5 lx and f (1X) V n x
ly , i.e. pullback diagrams

N

X f-- Y

(5.13)

with f (lx) V n = ly . Hence A has the A-V-reflection property (A-V-preservation
property) if and only if for every such pullback diagram, n E A implies f-1(n) E
A (f-1(n) E A implies n E A , respectively). Indeed, easy diagram chasing
shows that diagram (5.12) is a pullback diagram of type (5.13) which, in turn, is a
special case of (5.12).

LEMMA A class A C M is stable under pullback in X if and only if A is left
cancellable w.r.t. M and has the A-V-reflection property.

Proof The Remark and the proof of Theorem 1.7 confirm that stability under
pullback yield the A-V-reflection and the left cancellation property. Conversely, for
f : X -* Y in X and n E M f Y left cancellability of A w.r.t. M gives that
N --r f(X) V N belongs to A if n : N . Y does. Then the A-V-reflection property
implies that i = (f m)-1(n) belongs to A. 13

The Proposition, the Lemma and Theorem 5.4 give the following Theorem:

THEOREM (Tonolo [1995]) A class C C M in an M-complete category X is
the class of all C-closed M-subobjects for some closure operator C w.r.t. M if
and only if

(a) C is left cancellable w.r.t. M,
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(b) C has the A-V-reflection property,

(c) C is stable under M-intersection.

In this case there is a uniquely determined idempotent closure operator C (up to
isomorphism) with C = M° . This closure operator is weakly hereditary if and only
if C is closed under composition. 0

According to Exercise 2.D, the idempotent closure operator C with C = M°
can be defined directly by

cx(m)_A{k EC/X:k>m}.

We shall use this construction in the "dual" situation to characterize classes of C-
dense M-subobjects.

We call a class V C M stable under M-unions, if 1X E V for all X E X
and if n, mi E M/X with n < mi for all i E 154 0 (so that there are M-
morphisms ji : N Mi with mi ji = n ), then ji E(Vmi)V for all i E I implies

j E D , with j : N V Mi the M-morphism with j = n .
i£I IEI

THEOREM` (Tonolo [1995]) A class D C M in an M-complete category X
is the class of all C-dense M-subobjects for some closure operator C w.r.t. M
if and only if

(a) V is right cancellable w.r.t. M,

(b) V has the A-V-preservation property,

(c) V is stable under M-unions.

In this case, there is a uniquely determined weakly hereditary closure operator C
(up to isomorphism) with D = £C fl M . This closure operator is idempotent if
and only if the class V is closed under composition.

Proof We first prove that (a)-(c) are necessary conditions. In fact, (a) and (c)
follow from Corollary* 2.3 and Exercise 2.F(d). In order to show (b), we observe
that diagram (5.13) can be decomposed as

N

e m

In

Y

(5.14)
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with e E £ . Hence f'' (n) E £c implies e- f'1 (n) E £c and therefore j E EC
(see Exercise 2.F(b)). Since trivially IN E £c , we conclude (see Exercise 2.F(d))
that also

n : N- (f (X) AN)V N -+Y - f(X)V N

belongs to £c
Conversely, for a class V with (a)-(c), we define a closure operator C by

cx(m)=V{kE MIX: k- d=mfor some dEV}

(cp. Exercise 2.C(b)). Obviously, since lX E V , one has m < cX(m) . To show
monotonicity, let m< n and consider k, d E M with k- d = m and d E
D . Then, with (a), we obtain that the canonical arrow i : K A N -+ K (with
k i = k A n ) belongs to D. Now application of (b) with f = lx gives that also
j : N -4K V N with (k V n) j = n belongs to D, hence k < k V n < cx(n)
Therefore cx(m) < cx(n) .

For f : X -+ Y and m E M/X , we must show f(cx(m)) < cy(f(m))
Since f (-) preserves joins, it is sufficient to show that, for all k , d as above,
there is I E V with f (k) I = f (m) . Indeed, by (b) the right vertical arrow in

K A f-1(f(M)) AM)

(5.15)

K - f(K) -1(K) V 1(M)

belongs to D since the left vertical arrow does, because of (a).
Hence we have a closure operator C w.r.t. M which, obviously, satisfies

V c,61 fl M . The proof that C is weakly hereditary, and that V = £c n M if
(and only if) condition (c) holds, is straight forward and can be left as an exercise:
see Exercises 2.C(b) and 2.D(d).

Furthermore, by Theorem 2.4, C is idempotent if and only if £c is closed
under composition. But the latter condition is easily seen to be equivalent to V
being closed under composition. 0

COROLLARY For the idempotent hull C and the weakly hereditary core C of
a closure operator C of an M-complete category X, one has

ax (m) !`{k E Mc/X : k > m},

EX(m) V{k E M/X : k d= m for some d E £c}.

'In particular, Mc = Mc and CO = £c . If C is weakly hereditary (idempoteni,
resp.), then C (C , resp.) is both idempotent and weakly hereditary.
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Proof The Theorem and Theorem* give uniquely determined idempotent and
weakly hereditary closure operators C and C with Mc = Mc and £0nM =
£c n M , respectively, which are described as in the proofs of the Theorem and
Theorem*. With Exercise 2.C one easily checks that D > C for every idempotent
closure operator D > C , and that E < C for every weakly hereditary operator
E < C . Also note that by Proposition 2.4, £c is closed under composition for C
idempotent, and that by Proposition* of 2.4, Mc is closed under composition for
C weakly hereditary, so that everything follows from the Theorem and Theorem*.

0

EXAMPLES For a closure operator C of Top (w.r.t. the class of embeddings),
one defines a subspace M C X to be totally C-dense if N n M is C-dense
in N for every C-closed subspace N C X . It is easy to check that the class
Dc of totally C-dense embeddings satisfies hypotheses (a), (b), (c) of Theorem*.
Consequently, there exists a uniquely determined weakly hereditary closure operator
Clot such that total C-density means Ct°- density for subspaces. If C is hereditary
and if Ly := cX({x}) is C-closed for all x E X E Top , then Ctot may be
described explicitly by

x E cX (M) «x E CL, (m n L=) . (*)

In fact, the right-hand side of (*) describes a weakly hereditary closure operator
with the characteristic properties of CtOt (as we shall show in greater generality in
9.5). The presentation (*) shows that the passage C -- Ct°t preserves additivity
and productivity. Now we can choose particular closure operators for C .

(1) (Characterization of the b-closure) For C = K , formula (*) shows im-
mediately that the b-closure of 3.3(b) is characterized as the weakly hereditary
closure operator that describes total Kuratowski density, i.e., b = Ktot From this
presentation one concludes in particular that b is additive and productive.

(2) For C = b , formula (*) shows btOt(M) = M , hence
is the discrete closure operator.

(3) For C = o the sequential closure operator, one has

S<otot<b.

btot = (Ktot)tot = S

Indeed, since cx({x}) = kx({x}) for all x E X , formula (*) shows o-tot <
Ktot = b . For o-tot < b , topologize the set X = IR U {co} by taking X and
every at most countable set that does not contain oo to be closed in X . Then
kx({oo}) = X , and no sequence in R converges to oo , i.e., }E1 is a- closed in
X . But oo belongs to bx(R) = krt(1R) . For the proof of S < Qtot , modify the
topology of X by changing "at most countable" to "finite".
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5.5 Closure operators versus M-preradicals
For a closure operator C of the category ModR of R -modules, one obtains
a preradical r by putting r(M) = cm(O) . Vice versa, given a preradical r, we
considered two closure operators, Cr and Cr , associated with r (see 3.4). In
what follows we shall show that these constructions exist in the setting of 2.1, and
we clarify their categorical meaning.

Hence an M-preradical (r, r) is simply an M-precorefiection of the finitely
M-complete category X, that is: an endofunctor r : X X , together with a
natural transformation r : r - Idx such that, for every X E X

rx : r(X) -+ X

belongs to M. (Since we are in the setting of 2.1, so that M is a class of monomor-
phisms of X, it follows from the dual of Proposition 5.1(1) that (r, r) is actually
a precoreflection.) Often we shall simply refer to r as an M-preradical.

The conglomerate
PRAD(X, M)

of all M-preradicals is preordered by

r < s t= rx < sx in M/X for all X E X .

Equivalently, one has a commutative diagram

r 1 s

(5.16)

Idx

with a uniquely determined natural transformation j . Similarly to CL(X,M) ,

if X is M-complete, PRAD(X, M) inherits the structure of a large-complete
lattice from M, as follows:

(Vri) = V(ri)x
iEI X iEI

and

(A ri)
- p(ri)x .

let x let

PRAD(X, M) has a largest element, 1, given by (lx)x.Ex , and a least element
0, given by (ox)xEx (with each ox the trivial M-subobject of X ).

Each closure operator C of X w.r.t. M induces an M-preradical t = ar(C)
with

t(X) = cx(Ox) and tx = cx(ox).
Vice versa, for r E PRAD(X,M) , one considers Cr and Cr defined by

(cr)x(m) = m V rx ,

cx(m) = 1 1 {e'1(rz) : (3Z E X)(3e : X - Z in E) e(m) = oz).
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One readily checks that Cr is in fact a closure operator of X w.r.t. M. The
proof of the same fact for Cr is more difficult, but is in fact just a straightforward
generalization of the proof of Proposition 4.7 (indiscrete closure operator G ); in
fact, we obviously have

G=Cr for r=0.
Furthermore, the following rules hold:

LEMMA For X M-complete and C E CL(X,M), r E PRAD(X,M) one
has:

(1) r<a(C)G>Cr<C;
(2) ir(C)<r4==,^, C<Cr;

(3) 9r(Cr) - r =1r(Cr).

Proof

(1) For t = 7r(C) and r < t one has

(cr)x(m) = m V rx < m V cx(ox) < cx(m)

for all m E MIX . Conversely, evaluating (cr)x(m) < cx(m) for m = ox gives

rx C cx(ox) = tx .

(2) For t = ir(C) < r and every e : X -+ Z in E with e(m) = oz one has
cz(oz) < rz and m < e-1(oz) , hence

cx(m) < e-1 (cz(oz)) < e-1(rz)

C < Cr follows by construction of Cr . Conversely, this inequality implies

cx(ox) < cxx(ox) < (lx)-1(rx) = rx

since lx (ox) E--- ox .

(3) 7r(Cr) - r is trivial. Furthermore, since

r(X) r(') r(Z)

rx
lrz

X e - Z

(5.17)

commutes, one has rx < e-1(rz) for every e : X -r Z , hence rx < cxx(ox) .
Hence r < ir(Cr) , whereas ">" follows from (2). O
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PROPOSITION Let X be M-complete. The map

r: CL(X,M) ----F PRAD(X,M)

preserves all meets and joins. For every r E PRAD(X,M) , the fibre it-1(r)
contains a least and a last element, Cr and Cr respectively. The assignments

r,-+C,. and ri-*CT

define monotone maps which are left and right adjoint to xr , respectively. The
following rules hold:

(1) rVri*Cr-VCr,;
157 iEI

(2) rA riCr A G"r`.
151 iEt

O

Proof The statements on adjointness follow from the Lemma, together with
Lemma 1.3. Therefore the assertions on preservation of meets and joins, including
rules (1), (2) follow from Theorem 1.3. The Lemma also asserts that Cr and Cr
play the indicated role in the fibre u-Ir = {C: 7r(C) = r} . 0

REMARKS

(1) For X = ModR with M the class of monomorphism, one easily checks that
Cr and Cr as constructed above coincide (up to isomorphism) with the minimal
and maximal closure operator induced by r, respectively. We therefore keep this
terminology also in the abstract setting, for any M-preradical r.

(2) The examples of preradicals in AbGrp given in 3.4 indicate that, in general,
PRAD(X, M) may be quite "big". Here is an opposite indicator: for X = Top
and M the class of embeddings, PRAD(X,M) contains, up to isomorphism,
only the M-preradicals 0 and 1 : see Exercise 2.H. Ci - C1 = T is the trivial
closure operator, Co - S is discrete and CO = G indiscrete.

(3) M-preradicals can be composed in a natural way; the natural transformation
t : t - Idx belonging to the composite t = rs of first s and then r is defined by

tx = rx - r(sx) = sx r8(x)

(see Exercise 5.A).

rt sx

sx

(5.18)
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It is easy to see that x transforms cocomposites of closure operators into composites
of preradicals:

ir(C * D) - 7r(C)7r(D) .

Hence

rs 7r(Cr)7r(CS) - 7r(C'* CS)

7r(Cr)7r(CS) - 7r(Cr * CS) .

(4) One easily checks the rule

r A s _ 7r(CrC5)

(with CrC5 the composite of the closure operators). This leaves us with the task
of describing the M-preradicals 7r(C`CS) .

DEFINITION The cocomposite of r, s E PRAD(X, M) is defined by

(r : s) := 7r(CTC5)

Explicitly, with t = (r : s) one has

tx = ex(sx) = A {e-1(rZ) : (3e : X -+ Z in E) e(sx) - oz}

for every X E X . Since sx < crx(sx) and rx = ex(ox) < crx(sx) one has
r V s < (r : s) , in particular r < (r : r) . We call r an M-radical of X if
r - (r : r) , and r is idempotent if r - rr

THEOREM Let X be M-complete.

(1) For C, D E CL(X,M) one has

7r(CD) < (r(C) : 7r(D)) ,

and - holds if C is maximal, i.e. if C - Cr for some r E PRAD(X, M)

(2) For r E PRAD(X, M) , Cr is idempotent; Cr is idempotent if r is an
M-radical.

(3) For r E PRAD(X,M) , Cr is weakly hereditary iff r is an idempotent
M-preradical; both conditions hold if Cr is weakly hereditary.

Proof

(1) Since, by adjointness, C < CS() and D < Cr(D) , and since composition
of closure operators and r are monotone, one has

7r(CD) < 7r(CT(C)Cr(D)) = (7r(C) : 7r(D)) .

For C maximal one has C - Cr(C) ; hence, with t = (7r(C) : 7r(D)) , we obtain
for every X E X

tx = CXC)(dx(ox)) cx(dx(ox)).
Therefore t - 7r(CD) .
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(2) The idempotency of C,.( is trivial./If/ Cr is idempotent, one has, with (1),

r = 7r(Cr) = 7r(C'Cr) (7r(Cr) : 7r(Cr)) = (r : r).

Furthermore, for all r , s E PRAD(X, M) , since 7r(CrCs) = (r : s) , one obtains

C`Cs < C(r:s) (*)

from the Lemma. Hence r = (r : r) implies C""Cr < Cr , i.e. idempo-
tency of Cr .

(3) In Remark (3) we noted the rules

rs - 7r(Cr * Cs) - 7r(Cr * Cs).

Therefore, if Cr or Cr is weakly hereditary, i.e., if Cr * Cr = Cr or Cr * Cr
Cr , then

rr = 7r(Cr) = 7r(Cr) = r,

so that r'is idempotent.
Furthermore, since rs - 7r(Cr * Cs) , the Lemma yields the rule

C.:5 Cr * C.

so that idempotency of r gives weak hereditariness of Cr . (Under additional hy-
potheses one can show that also weak hereditariness of Cr is a necessary condition
for r to be idempotent; see Corollary 5.6.)

For an M-preradical r , one defines powers - ra and copowers ra (a E
Ord U {oo}) , as follows:

r0 = 1

ra+1 = rra

r3 = A 0
7«

(for a E Ord and 9 a limit ordinal or f3=oo )

ro = 0
ra+i = (r : ra)

rp = V r7
7«

COROLLARY For every r E PRAD(X, M) and all a E Ord U loo} , one has:

(1) 7r((Cr)a) S_- r. and 7r((Cr),,,) 5_-- r*;

(2) (Cr)a < C(re) and C(re) < (Cr)a.
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Proof With the help of the Lemma, (1) implies (2). We establish the first
isomorphism of (1) by induction, the second isomorphism is done analogously:

7r((C`)o) 7r(S) - 0 = ro

7r((CT") = 7r(C`(C`)a)
(-(Cr) : ir((C")a)) by (1) of the Theorem

(r:ra.)=ra+1,

r)Yirl/(C')pl L' (C
J

YV

7r((Cr)Y) = \ t rY rp .
Y<p YO

0

EXAMPLE For the radical p of AbGrp given by p-multiples (for a prime
number p , see Example 4.6(2)), we show that the second inequality of the Corollary
may be strict. Indeed, since C = Cp - Cp is (both minimal and) maximal, and
since (CP),o - C(P) (see Exercise 4.6), we see that C = C(P-) . Hence
(Cp)oo Ctp°°) , as we shall show now that C is not directedly additive, and
consequently, not minimal. Let X = ®n°_ 1X,,, with X =<cn> a cyclic group of
order p" . Then each subgroup Mn =< ck - pck+l : k = 1, ... , n> of X is C..-closed,
but the (directed) join En Mn is a proper subgroup of X.

5.6 M-preradicals versus E-prereflections
We wish to give a handier description of the closure operator Cr and the pre-
radical (r : s) , as defined in 5.5, in case our category X has a zero object 0 .
Furthermore, we assume that the class E (as given in 2.1) is contained in the class
of epimorphisms of X, and that X has kernels and cokernels. In other words, for
all morphisms e and m we have the equalizer and coequalizer diagrams

Ker(e) ker a E M a X coker(m Coker(m)

(with 0 denoting the only morphism between two given objects which factors
through the zero object 0 ). Equivalently, one has the pullback and pushout dia-
grams

Ker(e) -. 0

ker(e) p.b.

M--'- 0

I M1 P-0- I
(5.19)

X e - E X - Coker(m)
coker(m)
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Since 0 - E belongs to M (consider its (E, M)-factorization and use that
the 6-part is epic; hence 0 -} E is isomorphic to og ), and since M is stable
under pullback, one has ker(e) E M . Dually one obtains coker(m) E £ . Hence
there are maps

coker:M-+£.
if we consider S a category in the same way as we consider M a category in 5.2,
then these maps become functors. Moreover:

LEMMA The functor ker is right adjoins to coker, and the diagram

ker
£ M

coker

dom cod (5.20)

X

commutes in the obvious sense.

Proof * One easily shows m _< ker(coker(m)) for every m E MIX . The arising
morphism

M - Ker(coker(m))

ml

I

ker(coker(m))

X lx , X

(5.21)

serves as a unit of the adjunction; the verification can be left to the reader. Trivially,
cod(ker(m)) = dom(m) and dom(coker(e)) = cod(e) for all m and e .

An M-preradical (r, r) can be described equivalently as a functor

r:X - M, XHrx,
with cod r = Idx . Dually, an £-prereflection (q, q) (that is: a natural trans-
formation q : Idx -> q pointwise in 6; remember that £ is assumed to be a
class of epimorphisms, so that the prereflection property comes for free) is described
equivalently by a functor

q:X--,£, X '--*qx,

with dom q = Idx . Composition of the functors r and coker gives an £-
prereflection since

dom (coker r) = cod r = Idx ,

and for an £-prereflection q one obtains the M-preradical ker q
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The conglomerate
PREF(X, £)

of all £-prereflections is preordered by

(q, q) :5 (p,p) < (3j : q -p) jq =p.
With the Lemma we obtain:

PROPOSITION The monotone functions

kerPREF(X,£) tPRAD(X,M)

given by composition are adjoint to each other: coker -l ker . Hence M-preradicals
(r, r) with ker coker r - r are equivalently described by .6-p re reflections (q, q)
with coker ker q - q . 0

EXAMPLES

(1) In the category MOdR one has ker coker Idj and coker ker - IdE .
Hence every preradical (r, r) satisfies ker coker r r , that is: r - ker q for an
£-prereflection (q, q) .

(2) In the category Grp, coker ker - IdE remains valid but ker coker Idj
(witnessed by every non-normal subgroup of a group). But since r(G) is normal in
G for every preradical (r, r) and every group G , we still have ker coker r - r

(3) Let Set. be the category of pointed sets: objects are pairs (X, xo) with a
set X and xo E X , and morphisms f : (X, xo) =-4 (Y, yo) are maps f : X - Y
with f (xo) = yo . With M and £ the injective and surjective maps, respec-
tively, one easily checks that ker coker - Id,..t holds, but coker ker IdE .
Nevertheless, as in the previous two examples, the operators of the Proposition pro-
duce a bijective correspondence since there are only two non-isomorphic preradicals
and prereflections, respectively (see Exercise 5.H).

Coming back to the goal as stated at the beginning of this section, first we
observe that for every M-preradical r one obtains a closure operator C from
the pullback diagrams

cx(M) ' r(Coker(m))

cX (m) rCoker(m)

coker(mX Coker(m)

Hence

(5.22)

CX(m) q '(rCoker(m)) (*)
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for every m E MIX , with q,,, := coker(m) . We claim that C - Cr . Indeed, C
is easily seen to be a closure operator of X, and since coker(ox) is iso one has
cx(ox) - rx ; that is: ir(C) - r . For any other closure operator D of X with
u(D) - r we have

cx(m) gm1(rCoker(m))

q1 (dCoker(m) (OCoker(m)) )

dX (qm' (OCoker(m) ))

dx(m).

Therefore C is largest in the fibre 1r 1(r) , hence C - Cr (see Prop. 5.5).

This proves the first statement of

THEOREM The maximal closure operator Cr for an M-preradical r of X
is described by formula (*) . The M-preradical (r : s) is given by the formula

(r : S)X - qsX (rCoker(sX))

with q,X = coker(sx) .

Proof By definition, (r: s) - 7r(CrC') (see 5.5). Hence,

(r: s)x = crx(cx(ox))
= crx(sx)

qsX (rCker(,x))

0

We may use (*) to characterize hereditariness and weak hereditariness of the
closure operator Cr in terms of the preradical r. One calls r E PRAD(X,M)
hereditary if

ry - y 1(rx)
(**)

for every y : Y -+ X in M. Clearly, this is a necessary condition for any closure
operator C with ir(C) - r to be hereditary. Indeed, (**) follows immediately
from (HE) of 2.5 applied to m = ox :

cy(oy) °` y 1(cx(ox)) .

In order to show that it is also sufficient in case C = Cr , we need a hypothesis on
the functor coker : M -+ £ . We say that Coker preserves M-morphisms if for
all y, m, my in M with y . my = m one also has Coker(1M, y) in M.
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M

Y y X

qmy qm

Coker(my) Coker(1M, y) Coker(m)

(5.23)

Since the lower part of (5.23) is a pushout diagram, Coker preserves M-morphisms
whenever M is stable under pushout (along £ morphisms).

COROLLARY If Coker preserves M-morphisms, then Cr is hereditary if and
only if r is hereditary. If, in addition, £ is stable under pullback, then Cr is
weakly hereditary if and only if r is idempotent. D

Proof Since y" := Coker(1M, y) E M one has

rcoker(my) C y 1(rCoker(m))

if r is hereditary. Consequently, with (*) one derives

Cy(my) = gmy/(rCoker(my))

qmy(y 1(rCker(m)))

y '//(q;1(rCoker(m)))

Y 1(Cr (M)).

Hence Cr is hereditary.
Let now £ be stable under pullback and consider y = cx(m) and let j = my.

Then the top arrow qn, : Y = cx(M) -. r(Coker(m)) of diagram (5.22) belongs to
£, and since rCoker(m) . qm . = q,, = 0 with rcoker(m) monic, q;,, factors through
qi : Y -+ Coker(j) by a morphism v : Coker(j) - r(Coker(m)) belonging to £ (c£
Exercise 2.F(b)). Since qi is epic, the composite rc,ke1.(m) v is the bottom arrow of
diagram (5.23), hence it belongs to M by hypothesis. But then also v belongs to
M (cf. Theorem 1.7 (3)), so it is an isomorphism. Consequently, if r is idempotent,
so that r(r(Coker(m))) -- r(Coker(m)) is an isomorphism, also rcoker(j) must be an
isomorphism, and one has cy (j) = ly by formula (*). This shows that idempotency

M1M
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of r implies weak hereditariness of Cr . The converse statement was shown in
Theorem 5.5(3).

EXAMPLES

(1) In ModR , Coker preserves monomorphisms. Hence the Corollary provides
a categorical proof of the result shown for modules in Theorem 3.4(4) and (6).

(2) In Grp, Coker does not preserve monomorphisms. The normal closure v =
Co is not (weakly) hereditary although the (pre)radical 0 is of course hereditary
(cf. 3.5(1)).

(3) Although there are no non-trivial M-preradicals in Set, (see Exercise 5.H),
we note that the hypothesis of the Corollary is satisfied in this case.

5.7 (C, D)-continuous functors

The transition from one category to another is described by functors. In this section
we shall describe such transitions when the categories in question come equipped
with closure operators with respect to given classes of subobjects. Hence, throughout
this section, we consider a functor F : X --+ Y with X finitely M-complete
and Y finitely N-complete, for classes M and N of monomorphisms, both
closed under composition. Hence there are classes £ and F such that X has
(£,M)-factorizations and Y has (F,N)-factorizations (see 1.8, 2.1). We assume
throughout the section (with the exception of the final Remark) that F preserves
subobjects, that is: Fm E N for every m E M . Consequently, for every X E X ,

F induces a monotone function MIX -+ Nf FX . What is the impact of this
assumption on basic constructions, like inverse image and direct image?

LEMMA Let f: X -+Y be a morphism in X and m E M f X, n E M/ Y
Then

(1) F(f-1(n)) < (Ff)-'(Fn), and "_'" holds for all f and n exactly when
F preserves pullbacks along M-morphisms; we say that F preserves inverse
images in this case.

(2) (F f)(Fm) < F(f(m)), and "." holds for all f and m exactly when Fe E
F for all e E £ ; we say that F preserves (direct) images in this case.

The easy proof can be left as an exercise to the reader.

Let us consider closure operators C and D of X and Y with respect to

M and N , respectively.
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DEFINITION F is called (C, D)-continuous if

Fcx(m) < dFx(Fyn) (*)

holds for all m E M/X , X E X . F is (C, D)-preserving if "<" may be
replaced by "S5".

As we saw in 5.2, the closure operators C and D are described as prereflec-
tions (C, 7) and (D, 5) of the categories M and N , respectively. Since F
preserves subobjects the functor F extends to a functor F : M -+ Iv' . Now
(C, D)-continuity means that there exists a (uniquely determined) natural transfor-
mation

a :PC -i DF with a FT = bF .
In fact, for an object m E M

a,,, : Fcx(M) -} dFx(FM) with dFx(Fm) . a= Fcx(m)

is defined by (*). Naturality of a follows from the following diagram (with
(u, v) : m --> m' in M): the upper parallelogram commutes since the rectangle and
the lower parallelogram commute, since dFx,(Fm') is monic.

Fcx(M) FC(u,v) Fcx,(M')

F(cx(m)) dFx(FM)

'Fx (Fm)

D(Fu, Fv)

F(cx, (m'))

dFX'(FM') (5.24)

ldFX'(Fm')

FX Fv FX'

(C, D)-preservation by F therefore means PC DP .
It may seem strange at first sight that condition (*) ignores arbitrary mor-

phisms f : X -+ Y of X . However, as the following proposition shows, one
automatically obtains, from (*) a number of compatibility conditions.

PROPOSITION If F is (C, D)-continuous, the following inequalities hold for
all f : X - Y in X, m E M/X and n E M/Y :
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(Ff)-1(dFy (Fn))

(C, D)

(Ff)-1(Fcy(n))

im-1

dFx((Ff)-'(Fn))

dFy(F(f(m)))

(C,D\ \im
F(cy(f(m))) dFy((Ff)(Fm))

im 1 CI
I D

F(f-1(cy(n))) dFx(F(f-1(n))) F(f(cx(m))) (Ff)(dFx(Fm))

(C, D) im\ \C, D)

Fcx(f-1(n)) (Ff)(Fcx(m))
(5.25)

(with upwards directed lines to be read as

Proof Inequalities marked by im and im-1 follow from the Lemma. The
others are due to the continuity of f (w.r.t. C), of Ff (w.r.t. D), and of F
(w.r.t. (C, D)). 13

The notion of continuity for functors is a straight generalization of the notion of
continuity of morphisms (as given by the definition of closure operators). The follow-
ing example will clarify this point and also illustrate the meaning of the inequalities
given in the Proposition.

EXAMPLE Let rp : A -+ B be a Set-map between topological spaces. The
usual Kuratowski closure in A defines a closure operation of the poset 2A (see
Exercise 2.E). When considered as a category X, we obtain a closure operator C
of X defined by

cx (M) = kA(M) n X= M n X

for all M C X C A . In the same way one defines the closure operator D of the
category Y given by the poset 2B . The map 9 defines a functor F : X - Y
with FX = (p(X) . Continuity of the functor F is described by the condition

w (V n x) C p(M) n so(x) (*)

for all M C X C A , which holds exactly when (p is a continuous map.
For a morphism f : X Y in X, which is given by the inclusion map

X y Y , and for M C X , N C Y , the diagrams (5.25) can now be described as
follows:
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,p(N) n o(X) 'P(M) n'p(Y)

o(N nY) n ca(X) so(N) n ro(X) n <o(X) 'p(M nY)

,p (NnX) q(NnX)n(p(X) 'P(M n X)

io(M) n co(Y)

so(NnXnX) o(MnX)
(5.26)

Note that F trivially preserves images (since f (M) c M ), but not in general
inverse images unless co is injective (since f-1(N) = N n X ).

The importance of the notion of continuity of functors, however, does not arise
from the fact that it constitutes a generalization of the continuity of maps (or mor-
phisms of a category with a closure operator). Rather, it can be used to construct
new closure operators from old, in the same way as one constructs the initial (weak)
topology or the final (quotient) topology with respect to a map. The sequence of
easy properties below will lead us quickly to these constructions.

Properties on continuity:

(1) Idx is (C,C)-continuous for every C E CL(X,M)

(2) If F is (C, D)-continuous and G : Y - Z is (D, E)-continuous (with E
a closure operator of Z with respect to a class fC), then GF is (C, E)-continuous.

(3) If C < C in CL(X,M) and D < D' in CL(y,N) , then (C, D)-
continuity of F implies (C, 1Y)-continuity of F .

(4) If F is (Ci, D)-continuous for every i E I , with any family (Ci)IEI in

CL(X, M) , then F is (C, D)-continuous with C V Ci (see 4,1).
iEI

(5) If F is (C, Di)-continuous for every i E I , with any family (Di)iEJ in
CL(y,N) , then F is (C, D)-continuous with D :- A Di (see 4.1).

iEI

(6) Note that the case I = 0 is permitted in each (4) and (5). Hence F is
(S, D)-continuous and (C, T)-continuous for all C E CL(X, M) and D E CL(Y,N),
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with S the discrete closure operator on X and T the trivial closure operator

on Y.

THEOREM Let F : X -+ Y be a functor which preserves subobjects given by the
classes M and N . We then have:

(1) For every D E CL(y,N) there is a largest C E CL(X,M) such that F
is (C, D)-continuous. C is called the initial closure operator induced by
D and F and is denoted by D(F) .

(2) For every C E CL(X,M) there is a least D E CL(Y,N) such that F
is (C, D)-continuous. D is called the final closure operator induced by
C and F and is denoted by C(F) .

Proof (1) Necessarily, we must have

C = V{C' E CL (X, M) : F in (C', D)-continuous} .

It follows from property (4) above that with C defined this way, F is (C, D)-
continuous.

(2) Dually, one considers

D'_5 A{D' E CL(y,N) : F in (C,D')-continuous)

and evokes property (5).

In Sections 5.8 and 5.13 we shall encounter important examples of closure oper-
ators of type D(F) and C(F) . Here we just note:

COROLLARY Under the assumptions of the Theorem, there are adjoint monotone
maps

(-)(F}
CL(X, M) CL(Y, N)

(_)(F)

with (-)(F) -! (-)(F) . In particular, the formulas

(F)

(vc) XVCr
99

and

(F) iD1) =/(Di)(F)

hold.

Proof One must show (C < D(F) t* C(F) < D) for all C E CL(X, M)
and D E CL(y,H) . But "." follows from the implications ( F is (D(F), D)-
continuous F is (C, D)-continuous . C(F) < D ), and follows dually.
13
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One also has

C < (C(F) )(F) and (D(F) )(F) < D .

We call (C(F) )(F) the F-closure of C and (D(F))(F) the F-interior of D

REMARK Although our blanket assumption that F preserve subobjects seems
natural in order to consider continuity, we shall encounter situations when it is more
convenient to consider the (C, D)-continuity condition

F (cx(m)) < 4.x (Fm) (*)

without the hypothesis Fm E N for all m E M . The inequality (*) still makes
sense in this case, provided we naturally extend the <-relation and the notion of
closure from subobjects to arbitrary morphisms with common codomain, as follows:
for g:K--+X , h: L - X define

g< h :. g(IK) < h(lL),

eX(g) cX(g(lK))

The inequalities of the Lemma and properties (1)-(3) on continuity remain valid
without the blanked assumption, but (4) and (5) may fail. Consequently, the exis-
tence of the initial closure operator D(F) and the final closure operator C(F) is
no longer guaranteed. However, as we shall see in 5.10 and 5.13, often it is possible
to construct D(F) and C(F) by means different from those used in the proof of
the Theorem, without assuming that F preserve'subobjects.

5.8 Lifting closure operators along M-fibrations
In this section, we discuss functors which allow for an easy description of the initial
closure operators induced by them (as defined by Theorem 5.7). Necessarily such
functors should allow for an easy "lifting" of the notion of subobject. As a leading
example, the reader should consider the forgetful functor U : Top -+ Set : every
subset M C X of a topological space carries a natural topology which makes M
a subspace of X .

Let U : X -+ S be a functor which, for convenience, is assumed to be faithful.
An X-morphism f : X -- Y is called a (U-)lifting of an S-morphism So : S -+
UY if UX = S and U f = cp . By abuse of language, an S-morphism zp : UX -+
UY is said to be an X-morphism if it has a U-lifting f : X --> Y (which, due
to faithfulness, is uniquely determined). An X-morphism f : X -+ Y is called
U-initial (or U-cartesian) if, for every Z E X , an S-morphism b : UZ -+ UX
is an X-morphism whenever Uf 0: UZ - UY is an X-morphism.

For a class M of morphisms in S, the functor U is called an M-fibration if every
V: S -+ UY has U-initial lifting. In case M is the class of all (mono-)morphisms
of S, one calls U a (mono-)fibration.
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EXAMPLES

(1) U : Top -+ Set is a fibration. A continuous map f : X -+ Y is U-initial
iff X carries the initial (or weak) topology w.r.t. f , i.e. the coarsest topology
making f continuous. For M the class of embeddings in Top and for every full
replete subcategory A of Top closed under subspaces, the forgetful A -+ Set is
an (M R Mar A) -fibration.

(2) The underlying Set-functor of PoSet is a monofibration, but not a fibration;
AbGrp -r Set is not even a monofibration.

(3) The inclusion functor Y - X of a full subcategory closed under M-
subobjects (cf. 2.8) is an M-fibration.

LEMMA The class Initu of U-initial morphisms in X is closed under c6mposi-
lion and under those limits in X which are preserved by U.

Proof Closedness under composition is easy to check. For functors H, K : V -+
X , consider a natural transformation a : H --+ K pointwise in Initu. We shall
show that the induced f : lim -+ H lim K is U-initial, provided U preserves
lim H . Indeed, for any t' l= UZ -+ U(lim H) with U f tl:: UZ -+ U(limK)
an X-morphism, also every Urcd U f t/i : UZ -+ UKd (with rcd : lim K -+ Kd

a limit projection) is an X-morphism. By U-initiality of ad , this means that
UAd ' 0 : UZ -> UHd (with .\d : lim H Hd a limit projection) has a U-lifting
f3d : Z -+ Hd . Now /3 = ((3d)dEa induces a morphism h : Z limL with
Ad h=f3d(dED) ,and one has

UAd'Uh=UQd=UAd tb

for all d E D , hence Uh = t/, when the family (UAd)dEV is monic in S, in
particular when U preserves the limit. Q

For a class M of morphisms in S, let

Mu := U''M 0 Initu .

For M the class of all monomorphisms in S, we call Mu the class of U-
embeddings. Under mild assumptions on the functor U , good subobject properties
of S w.r.t. M are inherited by X w.r.t. MU . First of all, faithfulness
of U guarantees that, if M is a class of monomorphisms in S containing all
isomorphisms and closed under composition, then MU has the same properties in
X. More importantly:

PROPOSITION For a faithful M-fibration U : X -+ S one has:

(1) If S has M-pullbacks (M-intersections), then X has Mu-pullbacks (Mu-
intersections, resp.).
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(2) If every morphism (sink) in S has a right M factorization, then every mor-
phism (sink, resp.) in X has a right MU-factorization.

(3) If S is (finitely) M-complete, then X is (finitely) MU-complete.
Q

Proof

(1) In order to construct the inverse image of n E .MU/Y and f : X -+ Y in
X, construct the pullback diagram

(5.27)

in S with co E M . Let m : M - X be a U-lifting of rp. Then in E MU , and
by U-initiality of n, 0 has U-lifting f' : M N . With the pullback property
of (5.27) and the U-initiality of m , one easily verifies that

M f - N

X f- Y

(5.28)

is a pullback diagram in X. This shows that M-pullbacks in S yield the existence
of Mu-pullbacks in X; the proof for intersections is very similar.

(2) In order to establish the right MU-factorization of a sink (fi : Xi - Y)iEr
in X, consider the right M-factorization

Ufi = (UXi-"=-S "-UY)
of (Ufi)iEI , with so E M . With in : M -+ Y a U-initial lifting of gyp, one

obtains morphisms ei : Xi -. M with Uei = rli . Checking that

fi = (Xi-'i M-' Y)
satisfies the simultaneous diagonalization property (see 1.10) can be safely left to
the reader. Lifting right M-factorizations of morphisms is the special case when
Ill= 1 . 0

COROLLARY For a faithful M--febrution U , MU-intersections and Mu-
unions are obtained by U-initially lifting the corresponding M-constructions. The
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same holds true for images and inverse images; hence U preserves images and
inverse images in the sense of Lemma 5.7.

The map
7x:Mu/X-1M/UX, m-Um,

defines an order-equivalence for every X E X : choosing for every cp E M/UX
a U-initial lifting defines a map bx in the opposite direction with 7xbx = id
and bx7x = id . (In case U is amnestic, the latter natural isomorphism may be
replaced by a strict equality: see Exercise 5.M). Since U preserves images, for

f(-) : Mu/X - Mu/Y and (Uf)(-) : M/UX -+ M/UY

(with f : X -+ Y in X) one has 7y f(-) = (U f) (-) 7x , hence f (-) bx
by . (Uf)(-) . Similarly, f-1(-) -by bx (Uf)-1(-) .

THEOREM Let U X --y S be a faithful M-fibration. For every C E
CL(S, M) , one obtains a closure operator Cu E CL(X, Mu) by putting

(cu)x(m) :L bx(cux(Um))

for every in E Mu/X . Then U is (Cu, C)-preserving, and Cu is the initial
closure operator induced by C and U in the sense of Theorem 5.7, i.e, Cu =
C(U) . The following properties of C are inherited by .Cu : idempotent, (weakly)
hereditary, minimal, grounded, (fully) additive; also (finite) productivity is preserved,
provided U preserves (finite) products.

Proof Cu is obviously extensive and monotone, and the continuity condition
holds since b commutes with images. Hence Cu is in fact a closure operator
w.r.t. MU . By definition of Cu , one has

7x((cu)x(m)) = cux(Um)

for all m E Mu/X , hence U is (Cu, C)-preserving. For every D E CL(X, Mu)
such that U is (D,C)-continuous, 7x(dx(m)) < cux(Um) implies

dx(M) < bx(cux(Um)) = (cu)x(m) .

for all m E Mu/X . Therefore, Cu °-` C(u)
For C idempotent one has

(cu)x((cu)x(m)) = bx(cux(U((cu)x(m))))
bx(cux(7x(bx(cux(Um)))))

S5 bx(cux(cux(Um)))

S5 bx(cux(Um))

for all in E Mu/X . Hence Cu is idempotent. Using the fact that bX commutes
with all meets, joins and direct and inverse images, one shows similarly that also the
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other properties mentioned in the Theorem are inherited by CU from C . In case
of (finite) productivity, one notes that bx commutes also with direct products, if
U preserves them, according to the Lemma. O

REMARKS

(1) The closure operator Cu constructed by the Theorem is its own U-closure.
In fact, from Corollary 5.7 one has

CU = C(U) ((C(U))(U))(u) = ((CU)(u))(U) .

(2) If the faithful M-fibration U is essentially surjective on objects so that
every S E S is of the form S = UX , X E X , then C is the final closure
operator induced by CU and U , i.e.

C C-- (CUP)

This follows from the observation, that any D E CL(S,.M) such that U is
(CU, D)-continuous must satisfy

cux(Um) < dux(Um)

for all X E X and m E .Mu/X . Under the hypotheses on U , this suffices to
conclude C < D .

(3) In case U is the inclusion functor Y -+X of a full subcategory closed under
M-subobjects, then the closure operator Cu coincides with Cry as constructed
in 2.8.

(4) We observe that, in order to define Cu , we do not need the existence of
U-initial liftings of all subobjects in M but just of those which are closures of
subobjects in MU . This observation turns out to be essential in some cases, as we
will show in the next section.

5.9 Applications to topological groups
A topological group is a group G provided with a topology on C such that both
(x, y) +-* xy and x H x-1 give continuous maps C x G -+ G and G -r
G , respectively. (We do not require any separation axiom for the topology.) A
morphisms in the category TopGrp is a continuous homomorphism of topological
groups. There are two forgetful functors of interest along which we wish to lift
closure operators:

U : TopGrp -. Grp and V : TopGrp -. Top.

Since every subgroup of a topological group becomes a topological group when pro-
vided with the subspace topology, U is a monofibration. ( U is in fact a topological
functor, see Exercise 5.P.) Hence Theorem 5.8, with the subsequent Remarks, gives
immediately:
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PROPOSITION Every closure operator D of Grp can be initially lifted to a
closure operator Du of TopGrp. This way CL(Grp, M) is reflectively embedded
in CL(TopGrp,Mu) , with M the class of group monomorphisms.

The functor V behaves very differently from U . Since a subspace of a topo-
logical group is in general not a subgroup, V is not an H-fibration, with H
the class of embeddings in Top. However, it turns out that the lifting procedure of
Theorem 5.8 is still applicable to V in case of finitely productive closure operators
(see Remark (4) of 5.8), due to the following crucial lemma.

LEMMA For every finitely productive closure operator C of Top, the closure
cG(H) of a (normal} subgroup H of a topological group C in Top is again a
(normal} subgroup of G.

Proof Since c : C -+ G , x .-+ x'I , is continuous, the continuity condition for
C gives c(cG(H)) C cG(c(H)) C cG(H) . Since C is finitely productive, we are
able to argue similarly in case of the continuous map p : G x G --+ G, (x, y) .-r xy

fi(cG(H) X cG(H)) = lc(cGxG(H x H)) S CG(.u(H x H)) C cG(H).

Finally, exploiting the continuity condition for C in case of the continuous conju-
gation x .-+ gxg-' (for every g E G ), we see that CG(H) is normal if H is.
(Cf. Exercise 4.V.).

From Proposition 4.11 and Theorem 5.8 (with Remark (4)) we now obtain:

THEOREM Every finitely productive and, in particular, every idempotent closure
operator C of Top can be initially lifted to a finitely productive closure operator
Cv of TopGrp. If C is (weakly) hereditary (idempotent, productive), then Cv
has the respective property.

Let FPCL(Top, H) be the conglomerate of finitely productive closure opera-
tors of Top w.r.t. the class H of embeddings. We then have the two procedures of
defining closure operators of TopGrp given by the Proposition and the Theorem,
and every closure operator of TopGrp gives the induced preradical, as in 5.5.
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CL(Grp, M)

(-)u

CL(TopGrp, Mu) + PRAD(TopGrp, Mu) (5.29)

/-)
FPCL(Top, N)

The left and right adjoints of r are given by the minimal and maximal closure
operators Cr and Cr belonging to a preradical r , respectively (see Prop. 5.5).
According to Theorem 5.6, for a subgroup H of a topological group G one has

(cr)G(H) = H r(G) and crG(H) = q-1(r(G/v(H))) . (*)

For this note that, as for abstract groups, r(G) must be normal in G (cf. 3.5(2)).
Furthermore, G/v(H) is provided with the quotient topology, and q : G --*
G/v(H) is the projection. Here v = vu is the lifting of the normal closure of
Grp (cf. 3.5(1)) to TopGrp, given by the Proposition. It inherits the good prop-
erties of idempotency, full additivity and productivity from its parent in Grp, but
also the fact that it is not weakly hereditary (just provide any witness in Grp with
the discrete topology). The normal closure may be combined with other closure
operators, as follows.

COROLLARY For every closure operator C of TopGrp with 7r(C) = r one
has closure operators

Cr<C<vVC<PC<Cv<Cr

all of which induce the same preradical r.

Proof Trivially Cr < C <.v V C _< vC (see Lemma 4.4(1)). In the Lemma we
observed that CG(v(H)) must be normal in G , for all H < G ; hence PC < Cv .
Finally, Cm < Cr follows from formula (*) . That the closure operators induce
the same preradical follows from the stated inequalities.

EXAMPLES

(1) Lifting the Kuratowski closure operator of Top gives an idempotent, heredi-
tary and productive closure operator K = Ky of TopGrp. K is neither grounded
nor additive in TopGrp. The topological groups for which K is grounded are exactly
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the Hausdorff topological groups. (Recall that for topological groups the separation
axioms To , Ti , T2 , T3, T3! are equivalent, cf. Hewitt and Ross [1963].) For
non-additivity, consider the closed subgroups Z and ZV2 of (R, +) whose join
7L-1-Z / is in fact a dense subgroup of R , according to Kronecker's Theorem (cf.
Bourbaki [1961]).

(2) The Kuratowski closure kG(H) of a normal subgroup H of a topological
group G may be formed by taking the closure of the neutral element e in G/H
and pulling it back along q : G -+ G/H , i.e., kG(H) = q-1(kG/H({e})) . This
shows that Kv = C, ,(K) is maximal. The minimal closure operator C,r(K) is
properly smaller than K : for the subgroup Q of (R,+) , one has c (K)(Q) _
Q96 R=kir(Q)

(3) For every non-abelian Hausdorff' group G , the diagonal subgroup AG <
G x G is (K-) closed but not normal, hence not (v V K)-closed (see Theorem
4.4(1)). Hence K < v V K .

(4) We give an example which shows vK < Kv . Let G be the group of
permutations of a discrete countable set, i.e., G = S(N) C NN , with the topology of
pointwise convergence. The stabilizer subgroups stab(m) = {g E G : g(m) = m}
m E N , generate a neighbourhood base for the neutral element. Now consider

00

S.= USn,
n=1

00

with Sn = n stab(m) .
m=n+1

SS, is a dense normal countable subgroup of G , while G is uncountable. Any
(non-identical) involution of N generates a closed subgroup H of order 2 in
G whose normal closure can be shown to coincide with 5,,, . Hence

v(kG(H)) = v(H) = S,, < G = kG(Sw) = kG(v(H)) .

(5) The lifted sequential closure operator v and K induce the same preradical
in TopGrp (since their point closures coincide; cf. Example 4.9(2)), thus C"(°) =
C ,(K) . For any topological group G with a non-closed sequentially-closed normal
subgroup N , one has vG(v(N)) = N :A kG(N) = kG(v(N)) = cGK)(N) , hence
o-v < C"(o) .

5.10 Closure operators and CS-valued functors
In a Set-based category X with a grounded, additive closure operator C , each
cX may be viewed as a map 2' -+ 2' , provided each subset of X carries a
subobject structure. One would then obtain a functor C : X --+ PrTop which
may be used to transfer (pre)topological notions to X. If C is not grounded
and additive, PrTop must be replaced by the larger category CS of closure spaces
which is defined as PrTop (see 3.1), except that for a CS-object (S, ks) , the
map ks does not necessarily satisfy the axioms ks(M U N) = ks(M) U ks(N)



148 Chapter 5

and ks(0) = 0 . The (tech closure operator K of PrTop has therefore a natural
extension to CS.

More precisely, let U : X -+ Set be a faithful monofibration, and let C be a
closure operator of X w.r.t. the class MU of U-embeddings. For X E X , the
inclusion map of every subset S C UX has U-initial lifting and can therefore be
assumed to be of the form UM C UX ; furthermore, in this case we may assume
for the closure cx(M) that Ucx(M) C UX . Similarly, for f : X - Y in X
and UM C UX , the Mu -image f (M) can be chosen such that U(f (M))
WPM) C UY .

Let us now define a CS-structure cUx on UX , as follows

kx(UM) = Ucx(M).

Since cx is extensive and monotone, also cUx is extensive and monotone. Hence

CX := (UX,kx)

is a closure space. Furthermore, for f : X .- Y in X one has

(Uf)(kx(UM)) _ (Uf)(Ucx(M)) = U(f(cx(M)))
C U(cy(f(M))) = ky(U(f(M))) = ky((Uf)(UM)) .

Hence we have a functor C which makes

X C CS

(5.30)

Set

(with V the forgetful functor) commute.
Vice versa, if we are given such a functor C, denoting CX by (UX , kx)

we may define a closure operator C = (cx)xex of X w.r.t. MU as fol-
lows: cx(M) , for UM C UX , is the U-initial lifting of kx(UM) . Since
the U-embeddings whose underlying Set-maps are inclusion maps, form a skeleton
of Mu , this defines C uniquely, up to isomorphism.

The completion of the proof of the following Theorem can be left to the reader:

THEOREM For a faithful monofibration U : X ---r Set , there is a bijective
correspondence between

isomorphism classes of closure operators of X w.r.t. Mu ,

functors C : X --* CS which make (5.30) commute.
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When replacing CS by PrTop (Top) this correspondence remains valid for isomor-
phism classes of grounded and additive (and idempotent, resp.) closure operators.

0

We note that the bijection of the Theorem respects the preorder of CL(X, M) ,
in the following sense: we have C < D if and only if there is a natural transfor-
mation a : C -+ D with Va = lu .

The Theorem provides an easy tool for the construction of closure operators:

COROLLARY Let U : X -+ Set and W : Y - Set be faithful monofi-
brations, and let F : X -+ y be a functor with WF = U . Then, for every
(grounded; additive; idempotent) closure operator D of Y, w.r.t. Mw , one
may define a (grounded; additive; idempotent, respectively) closure operator C of
X w.r.t. My by taking for cX(m) the U-initial lifting of W(dFx(Fm))
W(dFx(FM)) UX . It is the initial closure operator induced by D and F

Proof C is the closure operator with C = DF . By definition of C , one has
F(cx(m)) = dFX(Fm) , hence F is initial with respect to D and F . (Note:
F does not in general preserve subobjects. Initiality is to be understood in the
more general sense of Remark 5.7.) 0

EXAMPLES

(1) There is a functor (-)` : Top -+ Top taking a topological space X to
a new space X* with the same underlying set such that the closed sets of X
form a base of open sets for X* . The initial closure operator induced by the
Kuratowski closure operator K of Top is the operator K* of Example 4.2(3),
i.e., K* = K(-)' .

(2) Define the sequential modification functor Top -+ Top as follows:
provide a topological space X with a new topology such that A C X3 is closed
iff A C X is sequentially closed (i.e., a limit of a convergent sequence in A stays h.
A ). The closure operator given by K(-)' is grounded, additive and idempotent
since K has these properties. It is the idempotent hull of the sequential closure
operator o , i.e., KX. (M) = o-X (M) for all M C X (see Exercise 5.Q).

(3) Let O : FC -+ FC be the 0-modification functor of filter spaces, see Exercise
3.D, and let K be the Katetov closure operator of FC. The 0-closure of FC is
given by the composite 6 = KO . Since K takes values in PrTop, the same holds
true for 6, hence 0 is additive in FC.

(4) An analysis of the proof of the Corollary reveals that we do not need the full
strength of the hypothesis that U be a monofibration: it suffices to guarantee the
existence of the U-initial lifts needed to construct cx(m) . An instance of the
Corollary under this relaxed assumption is given by the functor Scott : DCPO -+
Top and the Kuratowski closure operator K of Top: the initial closure operator
with respect to these data is scott, as defined in 3.7. Groundedness, additivity and
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idempotency of scott follow from this presentation.

The Corollary may be applied in case Y = CS and W = V . It is easy to
check that V : CS --. Set is a fibration, in fact: a topological functor (see Exercise
5.P). A morphism cp : (S, ks) --> (T, kT) in CS is V-initial if

ks(M) ='P 'kT('P(M))
for all M C S . In particular, (S, ks) is a subspace of (T, kT) if S T is
V-initial, i.e.

ks(M) = T ft ks(M)
for all MCS.

Let us now compare U-embeddings with V-embeddings in terms of the functor
C : X - CS induced by a closure operator C w.r.t. Mu .

PROPOSITION For a faithful monoftbration U : X -r Set , the induced functor
C : X -- CS preserves subobjects, (i.e., C(MU) C My ) if and only if C is
hereditary. In this case the functor C is (C, K)-preserving, and C is the initial
closure operator induced by K and V .

Proof For MU-subobjects M - Y -> X with UM C UY C UX

cuy(UM) = Ucy(M)

by definition of CY . On the other hand, UY carries the Mv-subobject structure
kuy which it inherits from CX :

kuy(UM) = UY ft cux(UM) ;

since U preserves meets of subobjects (see Corollary 5.8), this means

kUY = U(Y A cX (M)).

But cy(M) - Y Acx(M) = y-I(cx(M)) is a U-initial morphism. Hence it is an
isomorphism if and only if its underlying Set-map is an isomorphism. Hence one
has

cuy = kUY t cy (M) - Y A cX (M) for all M -* X in Mu
That C is (C, K)-preserving follows immediately from the relevant definitions.
0

REMARKS

(1) Considering Y = cX(M) in the proof of the Proposition, one proves that
C is weakly hereditary if and only if C preserves embeddings of type cX(M) -* X

(2) Productivity of the closure C does not in general imply that the functor C
preserves products: see Exercise 5.N.

(3) The assertion of the Proposition that C is the initial closure operator induced
by K and V remains true even if C is not hereditary, with the understanding
of Remark 5.7.
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5.11 Closure-structured categories, uniform spaces
A striking feature of the Kuratowski closure operator K of Top is that a Set-map
V : X --+ Y of topological spaces is continuous (i.e., belongs to the category Top)
if (and only if)

go(cx(M)) S cy(ip(M)).

for every subspace M of X . In other words, the operator K alone determines
which are the structure-preserving maps of topological spaces. We say that Top is
K-structured, in accordance with the following definition.

As in 5.8, we work in the context of a faithful M-fibration U : X -+ S with S
finitely M-complete, for M a class of monomorphisms closed under composition,
and provide X with the subobject structure given by Mu (cf. 5.8).

DEFINITION (1) For a closure operator C of X w.r.t Mu , a morphism +p :
UX --- UY in S with X, Y E X is C-continuous (w.r.t. X and Y ) if

,p(U(cx(m))) < U(cy(by(gp(Urn))))

for all m E Mu/X . (Recall that Sy provides gp(Um) with the U-initial
structure; see 5.8.) The morphism rp is C-continuous, for a subconglomerate C C
CL(X,Mu) , if it is C-continuous for every C E C - In case C = CL(X,Mu) ,,

is called totally continuous.
(2) The functor U or, more laxly, the category' X is called C-structured

( C-structured, closure-structured) if every C-continuous ( C-continuous, totally
continuous, resp.) morphism <p : UX -+ UY in S is an X-morphism, i.e., of the
form g= U f with f: X --> Y.

REMARKS

(1) It follows from the continuity condition of a closure operator that U f : UX -+
UY is totally continuous, for every f : X Y in X.

(2) In case S = Set , the category X is C-structured if and only if the induced
functor C : X -+ CS of 5.10 is full.

Note that C is always faithful since U = VC is faithful.

(3) With S the discrete and T the trivial closure operator of X, every mor-
phism go : UX -4 UY in S is IS, T}-continuous. Hence X is {S, T}-structured
if and only if the functor U if full.

EXAMPLES

(1) The categories Top, PrTop, and FC are K-structured, with K the Kura-
towski, Cech, and Katetov closure operator, respectively.

(2) Each of the categories SGph, PrSet, and PoSet is both j- and j-structured,
but not cony-structured.
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(3) Top is not a-structured, for o the sequential closure operator: a map of
topological spaces that preserves convergence of sequences if o-continuous, but may
fail to be continuous.

(4) The category TopGrp is not Ky-structured, with Ky the lifting of the
Kuratowski closure operator K along V : TopGrp -+ Top (see 5.9). Consider a
group G with two different topologies r, r' , both of which make G a topological
group such that G has the same closed subgroups w.r.t. r and r' . Then both
identity maps

(G, r) --. (G, r') and (G, r') -. (G, r)
are Ky-continuous, but at least one of these cannot be continuous.

In the remainder of this section we discuss a mono-fibration (in fact: a topological
functor) V : X -+ Set which fails to be closure-structured, i.e., the structure.of
X cannot be described by its closure operators. The most natural example of this
type is the category Unif of uniform spaces which, for the reader's convenience,
we describe here explicitly.

For a set X we denote by SGph(X) the set of reflexive relations on X
(since these are the spatial graph structures on X , see 3.6). A uniformity on X
is a filter U on SGph(X) (ordered by "C") such that for every E E U there
exists F , G E U with

F-1 = {(y,x):(x,y)EF)CE,
G o G = {(x, z) : (3y E X)(z, y) E G and (y, z) E G) C E .

A uniformly continuous map f: (X,U) -+ (Y,V) is a map f : X -Y such that,
f o r every F E V there is E E U such that f : (X, E) -+ (Y, F) is a map of
spatial graphs (i.e, (f x f)(E) C F ).

For a uniformity U on X , each E E U defines a pretopology l (x,E) on
X (see Theorem 3.6). Thee meet k(xu) of these pretopologies is described by

k(x,u)(M) = {x E X : (VE E U)(3a E M)(x, a) E E}

= {xEX:(VEEU)E[x]f1M#@},
with E[x] =I (x,E) ({x}) = {y E X : (x, y) E E} and M C X . Since k(x,u)
is idempotent, (X, k(x,u)) is actually a topological space. For every x E X
the sets {E[x] : E E U} form a base of neighbourhoods at x . Every uniformly
continuous map f : (X,U) --+ (Y,V) gives a continuous map with respect to the
induced topologies. Hence one has a functor W which makes the diagram

W TopUnif

(5.31)

Set
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commute. The forgetful functors U and V are fibrations (in fact: topological
functors), and with M the class of injective maps W is a MU-fibration with
(MU)w = My .

Every closure operator C of Top may be initially lifted to a closure operator
Cw of Unif (see Theorem 5.8). In terms of CS-valued functors, it is described
by CW (see Theorem 5.10). In particular, the Ktiratowski closure K of Top
can be lifted to Unif and yields an idempotent, hereditary, grounded, additive
and productive closure operator of Unif . However, unlike Top, Unif, is not K-
structured: the map f : IR -. IR with f (x) = x2 is (K-)continuous but not
uniformly continuous. Actually, we shall show below that f is D-continuous with
respect to every closure operator D of Unif , i.e., is totally continuous.

A Set-map f : X -+ Y of uniform spaces X and Y is called uniformly
approachable for all x E X and M C X if there is a uniformly continuous map
g : X -* Y with g(x) = f (x) and g(M) C f (M) .

LEMMA Every uniformly approachable Set-map of uniform spaces is totally con-
tinuous.

Proof For every closure operator D of Unif and every uniformly approach-
able Set-map f : X --> Y , we must show f(dx(M)) C dy(f(M)) for all
M C X . But for x E dx(M) , one may choose g : X -+ Y in Unif with
g(x) = f (x) and g(M) C f (M) . Since g is D-continuous, one obtains

f(x) = g(x) E g(dx(M)) C dy(g(M)) S dy(f(M)).

THEOREM " The functors V : Unif -+ Set and W : Unif --. Top are not
closure-structured.

Proof It suffices to show that every continuous function f : R -+ IR is uniformly
approachable and therefore totally continuous since, as mentioned above, not every
such function is uniformly continuous. Let f : IR -> R be continuous, and consider
x E R and M C IR . Choose a E M fl (-oo, x) if this set is non-void, and put
a = x -1 otherwise; similarly, choose b E M fl (x, oo) or put b = x + 1 . Now let
g : IR IR coincide with f on the compact interval [a, b] , and let it be constant
f (a) on (oo, a] and constant f (b) on [b, oo) . Then g is obviously uniformly
continuous and satisfies g(x) = f (x) and g(M) C f (M) , as required.

The Theorem is especially surprising since, in addition to the closure operators
obtained from initially lifting closure operators of Top along W , Unif has impor-
tant closure operators which may not be obtained this way, as we shall see next.
Call a subset N of a uniform space X uniformly clopen if the characteristic func-
tion h : X -+ D = {0, 1) with h-1(0) = N is uniformly continuous; here D is
provided with the discrete uniformity U (i.e., the diagonal AD belongs to U ).
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For M C X , one puts

qx(M) = fl{N C X: N uniformly clopen, M C N}

and proves:

PROPOSITION Q" _ (g1)xEu if is an idempotent, grounded, additive and
productive closure operator of Unif, but neither weakly hereditary nor fully additive.
It is the largest proper closure operator of Unif, but it cannot be obtained as an
initial lifting of a closure operator of Top.

Proof Everything but the last statement can be proved analogously to Theorem
4.7 and is therefore left to the reader as Exercise 5.U. In order to show that Q"
cannot be described as Cw with a closure operator C of Top, first we observe
that, for a uniform space X and M C X , (cw)x(M) is uniquely determined by
cwx (M) . Consequently, for uniform spaces X and Y which, as topological space
are homeomorphic, one has (cw)x 25 (cw)y . With this in, mind, we consider two
distinct uniformities UI and U2 on Q both of which provide Q with its natural
topology. It then suffices to show that Q" differs on (Q,UI) and (Q,U2) .

For UI we choose the usual metric uniformity. Then every uniformly continuous
function h : Q -+ D into the discrete space D = {0, 1} can be uniformly extended
to the completion 1(P of Q . But since R is connected, every (uniformly) continuous
function IR -+ D is constant. Consequently, q(Q, 4)(M) is Q for 0 0 M C Q
and empty otherwise, that is: on (Q,UI) , Q" coincides with the largest grounded
operator of Unif.

In order to define U2 , we embed the zero-dimensional space Q topologically
into the Tychonoff product X = D' . The least filter in SGph(X) which contains
the relations E. _ {(x,y) E X2 : p"' (Z) = n < w (with p,a the n-th
projection) defines a uniformity on X (in fact, the only one which induces the
Tychonoff topology). U2 is its restriction to Q . Since X is compact, each
projection p is uniformly continuous. Consequently, the uniformly clopen sets
separate points in X and therefore in (Q,U2) . From this one derives that, on
(Q,U2) , Q" coincides with the Kuratowski closure operator K = Kw .

5.12 Modifications of closure operators
In the setting of 2.1, we consider closure operators C and D of X. A morphism
f : X -4 Y of X is called (D, C)-continuous if

f(dx(m)) < cy(f(m))

holds for all m E MIX . Since f is (C, C)-continuous (and (D, D)-continuous),
it is certainly (D, C)-continuous in case D < C . Given C and a class K of
morphisms in X, one may ask whether there is largest closure operator D such
that each morphisms in IC is (D, C)-continuous. In this section we deal with this
question when K is the class {rlx : X E X) , for a pointed endofunctor (T, q)
of X, and with the dual question.
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LEMMA For every commutative square

X g - Z

f +G

Y `p W

and every n E M fZ , one has f (g-' (n)) < rp-'(tf'(n)) .

Proof Repeated adjointness arguments yield

g(g-1(n)) < n 0(g(g-1(n))) < ,k(n)

to(f(g-1(n))) < i,i(n)
f(g-i(n)) < <p '(t(i(n)) .

(5.32)

THEOREM For a pointed endofunctor (T, q) of X and every closure operator
C of X there is a largest closure operator TC of X which makes every +tx :
X -+ TX (TC, C) -continuous. The passage C t--+ TC preserves arbitrary meets
and idempotency of closure operators.

Proof For any D such that all +tx , X E X , are (D, C)-continuous we
must have iix(dx(m)) < cTx(rlx(m)) , hence dx(m) < r7xI(cTx(px(m))) for all
m E MIX . For the first part of the Theorem it therefore suffices to show that,
when putting

(TC)x(m) := ?j'(CTx(gx(m))) (*)

we obtain indeed a closure operator TC . Since the properties of extension and
monotonicity are rather obvious, we just check the continuity condition for TC .

Indeed, for every f : X -+ Y in X one obtains with the Lemma from the
continuity condition for C

f((TC)X(m)) < t7Y'((Tf)(cTX(1IX(m))))
< 17Y1(CTY((Tf)(ix(m))))

r7Y'(cTY(r7Y(f (m))))

(Tc)Y(f(m))
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The rule

T (Act) AT(Cii
i

follows immediately from the fact that inverse images preserves meets. Finally,
assume C to be idempotent. Then, for every m E MIX , cTx(77x(m)) is
C-closed, hence >)X(m) < TgX((TC)X(m)) < cTX(rgX(m)) - CTX(CTX(rgx(m)))
This implies orx(r7x((Tc)x(m))) = cTX(nx(m)) and then, with the definition of
TC, (TC)X((TC)X(m)) - (TC)X(m) O

THEOREM` For a copointed endofunctor (S,e) of X and every closure op-
erator C of X, there is a least closure operator SC of X which makes every
eX : SX -+ X (C, SC)-continuous. The passage C -+ SC preserves arbitrary
joins.

Proof For any D such that all ex , X E X , are (C, D)-continuous one has
ex(csx(n)) < dx(ex(n)) for all n E M/SX or, equivalently, csx(eX1(m)) <
ex'(dx(m)) , hence dx(m) > ex(csx(eji(m))) for all m E MIX . Since triv-
ially dX (m) > m , one therefore puts

ScX(m) m V ex (csx (ex, (m)))

We just check the continuity condition for SC , using preservation of joins by direct
images, the continuity condition for C , and the Lemma successively:

f(Scx(m)) f(m) V ey((Sf)(csx(ezl(m))))

< f(m) V ey(CSy((Sf)(cX'(m))))

< f(m) V ey(Csy(ey'(f(m))))
Se Scy(f(m))

for f : X -r Y in X and m E MIX . Preservation of joins by direct images is
also responsible for the validity of the rule

S (vc) - Vsci
i i

0

The closure operator TC as defined by the Theorem is called the (T,,))-
modification (or just T-modification) of C , and SC as defined by Theorem *
is the (S, c)-comodification (or just S-comodification) of C . The following Corol-
lary illustrates these constructions in an algebraic context. They will be used mostly
for topological applications in 6.3 and 7.7.
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COROLLARY Let s be a preradical in ModR with corresponding prereflection
q (i.e., q(X) = X/s(X) ), and let C be a closure operator with induced preradical
r. Then the s-comodificaiion 8C of C induces the preradical r s , and the
q-modification qC of C induces the preradical r : s . Furthermore, if C =
Cr is minimal, then also 8C and qC are minimal, Moreover, if C = Cr
is maximal, also 'C and qC are maximal, provided the functor s : ModR -
ModR preserves epimorphisms.

Proof For a submodule M of X E ModR , one has

'cx(M) = M+c,(x)(Mns(X)),

(gc)x(M) = P 1(cq(x)(P(M)))

with p : X -r q(X) the projection. Hence

Scx(O) = r(s(X)),
(gc)x(O) = P 1(r(X/s(X))) = (r : s)(X) .

If C is minimal, then cs(x) = (M n s(X )) + r(s(X )) , hence

'cx(M) = M + r(s(X )) ;

furthermore, since p 1(p(M)+r(X/s(X))) = M + p:1(r(X/s(X)))

(qc)x(M) = M + (r : s)(X).

If s preserves epimorphisms, then the restriction s(X) -+ s(X/M) of the projec-
tion it : X -+ X/M is surjective. This implies

s(X/M) = s(X)/M n s(X) ,

(X/M)/s(X/M) = (X/s(X))/p(M).

Consequently, if C is maximal, one obtains

'cx(M) = M + r-1(r(s(X/M)))
7r-1(r(s(X/M))),

(qc)x(M) = P'(q-1(r((X/M)/s(X/M))))
p 1((r : s)(X/M)),

with q : X/M --> q(X/M) the projection.

REMARK For a preradical s of ModR , the following conditions are equivalent:

(i) s : ModR --. ModR preserves epimorphisms,

(ii) s is cohereditary (i.e., s(X/M) = (s(X)+M)/M for all M < X E ModR ),
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(iii) C. = C8,

(iv) there exists a two-sided ideal J of the ring R such that

s(X) = JX for all X E ModR ;

if these conditions hold, s is a radical (cf. Theorem 3.4).

5.13 Closure operators and adjoint functors
Recall that a functor U : A -+ X is right adjoint if for all X E X there is a
(chosen) U-universal arrow for X ; this is a pair consisting of an object FX E A
and a morphism rlx : X -+ UFX such that for all A E A and f X - UA
in X there is exactly one morphism f* : FX -+ A in A with U f nx = f .
Hence the correspondence

XfUA

is inverse to the map sPX,A : A(FX, A) -+ X(X, UA) given by g Ug rix
The existence of a U-universal arrow for X therefore gives a natural isomor-
phism <px,_ : A(FX, -) -+ X (X, U-) exhibiting X (X, U-) : A -+ Set as a
representable functor. Vice versa, the representability of X (X, U-) yields a U-
universal arrow for X : with FX the representing object and with an isomorphism
sax as above, Put "lx :_ +PX,FX (1FX) .

If U is right adjoint then there is a unique way of making F (as above) a
functor X A such that q : IdX --+ UF is a natural transformation, by putting
Ff = (rh' f?

X 'lx UFX FX

f UFf Ff

Y 'l UFY FY

(5.33)

Moreover there is a natural transformation c : FU - Id,A defined by rA =
(1UA)# which satisfies the so-called triangular identities

and

Any pair of functors (F : X A, U : A -+ X) is called adjoins if there are
natural transformations q : IdX -+ UF and e FU -+ Id A satisfying the trian-
gular identities; these are called the unit and counit of the adjunction, respectively.
Usually one writes

17

F -lU or F H U:A -}X
C
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in this situation and calls F left adjoint to U and U right adjoint to F . One
easily derives from the triangular identities that U is in fact a right adjoint functor
in the sense of the initial definition; just put f# := CA F f in order to show that
(FX,''7x) is a U-universal arrow for X . The notion of adjointness is self dual, in
the sense that

17 COP

F -1 U : A _ X <* U-P F°P : ,'r°P _, A-P

C 77°P

(with A°P denoting the opposite category of A). This means in particular that for
every A E A , the pair (UA,CA) is an F-couniversal arrow for A , in the sense
dual to universality as defined before.

The first part of the following Proposition recalls the most prominent property
of adjoint functors the proof of which is left as Exercise 5.W. In the special case of
preordered classes it was shown in Proposition 1.3.

PROPOSITION Let F -i U : A --+ X be adjoint functors. Then:

(1) U preserves all (existing) limits of A , and F preserves all (existing) col-
imits of X .

(2) If X has (£,M)-factorizations and if A has (F,N) factorizations, then
UNCM if and only if FE CF.

Proof (2) In the notation of 1.8 one has £ = M1 and Jr = N1 . Hence,
in order to show F£ C .F if UN C M , it suffices to show that Fe 1 n holds
for all n E N . But with the adjointness property one easily shows that this is
equivalent to e 1 Un for all n E N , which holds by hypothesis.

That UN C M is also a necessary condition for F£ C .F follows dually since
M = £1 and N = F1 (see 1.8).

For the remainder of this section we keep the hypotheses and notations of Propo-
sition (2) and assume X to be finitely M-complete and A finitely N-complete.
Hence U is required to preserve subobjects but F is not. We adopt the conven-
tions of Remark 5.7 regarding the application of a closure operator to morphisms
not necessarily in M or N .

Given a closure operator D of A w.r.t. N, we wish to give an explicit
description of the initial closure operator D(F) induced by D and F . For
m : M X in M, consider

dx(m) := 7i'(UdFx(Fm)) , (*)

with dFX(Fm) = dFX((Fm)(1FM)) ; see Remark 5.7.
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M

m

YX

UFM77M

4(m)

t

UFm

-UFX

(5.34)

LEMMA Formula (*) defines a closure operator DI of X ; it is the initial
closure operator induced by D and F : Dq = D(F) .

Proof Extension and monotonicity are easily checked for D" . For every f :
X -. Y in X and m E MIX one obtains with Lemma 5.12, Lemma 5.7, and
with the continuity condition for D :

t 1 ((UFf) (UdFx (Fm)))

'tY 1(U((Ff)(dFx (Fm))))

rly1(UdFY((Ff)(Fm)))

711,1(UdFY (F(f (m))))

dY(f(m)).;
Hence Dn is a closure operator. Next we show that F is (D", D)-continuous, i.e.,
Fd''x(m) < dFx(Fm) for all m E MIX . For this one simply observes that the
horizontal morphism t of (5.34) corresponds by adjunction to a morphism t# with
dFx(Fm) - t# = Fdnx(m) . For any other closure operator C E CL(X,M)) such
that F is (C, D)-continuous, one has Fcx(m) < dFx(Fm) ; since i x(cx(m)) <
UFcx(m) , this implies

cx(m) <77Xl(UFcx(m)) <71x1(UdFx(Fm)) t--- dx9(m)

Hence we have D'" = D(F) . 0

Dn was obtained by pulling back D along the unit t . We now investigate
the "dual" procedure: mapping a closure operator C of X along the counit e
to obtain a closure operator `C of A . For n : N -> A in H we put

`CA(n) = n V CA(FcuA(Un)) , (**)
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with FA(FCUA(Un)) = CA((FcUA(Un))(1)) ; see Remark 5.7.

FUN

FUn

FCUA(Un)

FUA

NEN

(5,34)

CA

n
A (n

Note that in case eN belongs to £ , one has n < CA(FcUA(Un)) , which simplifies
formula (**) .

LEMMA* Formula (**) defines a closure operator `C of A ; it is the final
closure operator induced by C and F : to = C(F)

Proof We check only the continuity condition for `C , using the same tools
as in the proof of the Lemma, plus preservation of joins by the direct image along
f:A-+B in A:

f (EcA(n)) = f(n) V (f CA FcUA(Un))(1)

f(n) V (e, FUf FcUA(Un))(1)

f(n) V EB(F((Uf)(cUA(Un))))

< f(n)V EB(FcUB((Uf)(Un)))

< f (n) V CB(FcuB(U(f (n))))

CB (f (n))

In order to show `C - C(F) , it suffices to show that (C '-+ `C) is left adjoint
to (D -+ D'+ - D(F)) since we already know that (C'-+ C(F)) is left adjoint to
(D +-+ D(F)) , see Corollary 5.7. Hence it is sufficient to show

C<D"a`C<D
for all C E CL(X,M) and D E CL(A,N) .

"." For all n : N -+ A in N, cUA(Un) < d4A(Un) by hypothesis, and
F4'UA(Un) < dFUA(FUn) since F is (D7, D)-continuous (according to the
Lemma). Hence

cA(n) < n V CA(FCrUA(Un)) < n V EA(dFUA(FUn))

< n V dA(EA(FUn)) < dA(n) .
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Let 'C < D and consider m : M -. X in M. Then

ggX(cX(m)) <cUFX(gX(m)) <cuFX(UFm) =: m',

and with A = FX and the triangular identity one has

m' = (U£A)((TIUA(m'))) < (U£A)(UFm') < U(£A(Fm')).

Consequently, by hypothesis,

17X(cX(m)) < U(£FX (FcUFX (UFm))) < Udp,(Fm),

and this implies
cx(m) < rlxl(Udfx(Fm)) - dx' (m) .

0

The Lemma and Lemma` prove the first part of the following Theorem.

17

THEOREM Let F -I U : A - X be adjoint functors with UN C M

(1) Then the assignments C +-4 `C and D 1-4 D'" define adjoint maps

CL(X,M)= CL(A,N),
(-)v

with `(-) (-)(F) - (-)(F) - (-)" . In particular, F is (C, `C)-
continuous and (D", D)-continuous for all C E CL(X,M) and D E
CL(A,N) .

(2) If N C Initu , then (D(F))(U) <- D for all D E CL(A, N) , and if U is a
faithful fibration, then (C(U))(F) C for all C E CL(X, M) . In the latter
case one has

(-)(U) 'l (-)(U) - (-)(F) - (-)(F) ;
in particular, U is ('C, C)-continuous for all C E CL(X, M)

Proof (2) For D , E E CL(A,N) , assume U to be (E, D")-continuous.
Then UeA(n) < 4A(n) for every n N . A in N, hence gUA(UeA(n)) <
UdFUA(FUn) . Since U£A 'RUA = 1UA , this implies

UeA(n) < (U£A)(UdFUA(FUn))

< U(£A(dFUA(FUn)))

< UdA(£A(FUn))

< UdA(n),
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hence eA(n) < dA(n) if N C Initu . This proves E < D whenever E <
(D'+)(U) , hence (D(p))(u) < D with (1).

Let now U be a faithful M-fibration. First we show that the units Tlx must
be isomorphisms in this case. In fact, let e A -+ FX be a U-initial lifting of
17x : X -> UFX , and consider f = (lx)* : FX --+ A . Then Uf Ue = 'UA ,
hence f e = 1A Since U (e f) r)x = r)x one also has e f = i px , hence e and
therefore nx is an isomorphism. With C E CL(X,M) and D = Cu = C(U)
its U-initial lifting, one therefore has for all m : M -. X in M

d'x(m) - r)j'(Udpx(Fm)) - r?j'(cupx(UFm)) - cx(m) .

With (1), this proves (C(U))(F) - C . Together with (D(p))(U) < D , one derives
(-)(U) -1 (-)(F) . Since also (-)(F) -1 (-)(F) , we must have (-)(u) - (-)(F) .
Finally, since (-)(F) -- `(-) , one concludes C(u) = `C , hence U is (EC,C)-
continuous for all C

COROLLARY Let U : A --+ X be a faithful fibration with left adjoint F Then
C+-+ CU embeds CL(X,M) reflectively and coreflectively into CL(A,.,V) . Every
C E CL(X, M) is its own U-interior and F-closure in the sense of Corollary 5.7.
Finally, (-)(u) - (-)(p) preserves all meets and joins in CL(X,M) .

Proof The map C ' CU - C(U) = C(F) has both a left and a right adjoint,
(_)(U) and (-)(F) respectively. Since (C(U))(p) = C , the map provides an
embedding, and each C in its own F-closure. Since ((C(U))(U))(U) = C(u) (see
Remark an application of (-)(F) gives (C(u))(U) - C . Hence C is its
own U-interior.

EXAMPLES

(1) The forgetful functor U : Top --. Set is a fibration and has a left adjoint
(discrete topology). If D is the Kuratowski closure operator (or any other proper
closure operator of Top w.r.t. the class of embeddings), then D" is the discrete
closure operator of Set (see Lemma 4.7). In particular, U is not (D, Dl?)-
continuous.

(2) The forgetful functor U : TopGrp - Top has a left adjoint F (free
topological group). For every finitely productive closure operator of C of Top
(w.r.t. the class of embeddings), U is (` C, C)-preserving (see Exercise 5.X).
Hence `C is both the initial closure operator C(U) induced by C and U and
final closure operator C(F) induced by C and F (see Lemma!).

(3) Let U : A c-' X be the embedding of a full £-reflective subcategory. Since
the counit is an isomorphism, for every C E CL(X,M) , `C is (isomorphic
to) the restriction CIA (cf. 2.9), hence `C is again the initial closure operator
w.r.t. C and U . Warning: In general CL(X,M) cannot be embedded into
CL(X,M) ; for instance, in Top consider the full subcategory of spaces with at



164 Chapter 5

most one element. This shows that in part (2) of the Theorem, and in the Corollary,
it is essential to assume U to be a fibration, not just an M-fibration.

REMARK In the setting of the Theorem (1), let T = UF and S = FU , so that
one has pointed and copointed endofunctors (T, rl) and (S, e) . The constructions
of this section may then be compared with the modification and comodification as
given in 5.12, as follows:

(1) (D(F))(') - `(D") < SD < SD < D,

(2) C < TC < TC < (°C)n (C(F))(F)

holds for all C E CL(X,M) , D E CL(A,H) , with TC and SD defined as in
Exercise 5.V. In fact, for in : M -> X in M and with m' = CUFX(UFm) and
A = FX , we showed m' _< U(6A(Fm')) in the proof of Lemma`. Pulling back
the last inequality along nx gives (TC)X(m) < (c)X(m} .This proves the only
critical part of (1). Likewise, the only critical part of (2) is to show `(d")B(n) <
SdB(n) for all n : N --> B in H . But since F is (Dn, D)-continuous, one has
Fd'UB(Un) < dFUB(FUn) , which implies the desired inequality when one takes the
respective direct images under B

5.14 External closure operators
In algebra one obtains the least subgroup generated by a subset M of a group G
by

(M)=n{H<G:MCH},
and similarly for any other algebraic structure. Formally this closure process is not
covered by the notion of closure operator of a category. In this section we briefly
mention the more general notion of external closure operator and how it relates to
the internal notion as given in 2.2.

We consider a functor U : A -> X and classes A(, M of monomorphisms
in A , X , respectively, both closed under composition, such that (for simplicity)
A is H-complete, X is M-complete, and UH C M . An external closure
operator D of A (with respect to U, A r, M ) is given by a family of maps
dA : M/UA H/A , A E A , such that

(i) (Extension) in < UdA(m) ,

(ii) (Monotonicity) m < m' implies dA(m) < dA(m')

(iii) (Continuity) f(dA(m)) <dB((Uf)(m)) ,

for all f :A-+ B in A and m, m'EM/UA.
Clearly, a closure operator (in the sense of 2.2) is an external closure operator

with respect to U = Idx , H = M . The question is to which extent the two
notions differ in general. In what follows we compare the conglomerate

CLe" `(U, H, M)
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of all external closure operators of A w.r.t. U , X, M with the conglomerate
CL(A, H) . The former conglomerate is, like the latter, preordered, and joins of
non-empty families of external closure operators exist and are formed "pointwise".
The largest (=trivial) external closure operator 7"' is defined by to t(m) = lA
for all m E M/UA , A E A . With regard to the least external closure operator
and the formation of meets one has:

LEMMA Let U transform H-intersections into M-intersections. Then there
is a least (=discrete) external closure operator Sect of A w.r.t. U , H , M
given by

s7t(m)!`{nEN/A:m<Un}

for all m E M/UA , A E A . All meets in CLeXt(U,M,H) exist and are formed
"pointwise ".

Proof Every external closure operator D satisfies m < UdA(m) , hence
se t(m) < dA(m) for all m E M/UA . Monotonicity for S+ext is trivial, and
extension follows from the hypothesis on U . For the continuity condition, one
observes that m < Un implies (Uf)(m) < (Uf)(Un) < U(f(n)) with Lemma
5.7, hence

f (sAt(m)) < A{f(n):nEN/A,m<Un}

< >\{k E H/B : (Uf)(m) < Uk}

sBt((Uf)(m)) .

Checking that meets can be formed pointwise requires a similar argumentation. 0

REMARK If U has a left adjoint F (so that U preserves limits and therefore
satisfies the hypothesis of the Lemma), then

sAt(m) ? m#(1FM) ,

with m# : FM -r A corresponding to m : M --> UA in M by adjunction.
In fact, m < U(m#(1FM)) , and if m < Un with n : N -r A in H, so that
Un j = m for a morphism j : M -+ UN , then n j# = m# and therefore
m#(1FM) < n .

The external closure operator SeXt can now be used to "externalize" every
(internal) closure operator C of A w.r.t. N, as follows:

cA t(m) :25 cA(sA t(m))

for all m E M/UA , A E A . In fact, since

m < UsAt(m) < UcA(8At(m)) t-- Uc7 t(m) ,
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f(CAt(m)) = f(CA(SAt(m)))

< CB(f($At(m)))

< cB(sat((Uf)(m))) t--- e;'((Uf)(M)),

extension and continuity hold for Cext , and similarly for monotonicity. Note that
for C = S the discrete closure operator, Cext is in fact the external closure
operator S" of the Lemma; similarly in case C = T . Since joins and meets are
formed pointwise, these are preserved when passing from C to Cext . This proves
the first part of:

PROPOSITION If U transforms 1V-intersections into M-intersections, then
the map (_)ext : CL(A,N) -r CLeXC(U,AI,M) preserves all meets and joins. The
map is an order-embedding if N C Initu . 0

Proof In case H C Initu one has (n < k t? Un < Uk) for all n, k E N/A ,
A E A , and therefore s7t(Un) - n . This implies C < D whenever Cext <
Dext , for all C, D E CL(A, Ji) . O

Under the hypothesis H C Initu we can describe the reflector of (-)ext quite
easily, i.e., every external closure operator D of A w.r.t. U, 1V , M can be
"internalized", by

d`At(n) := dA(Un)

for all it r= N/A . Extension for Dint follows from N C InitU , monotonicity is
trivial, and

f(diAt(n)) < dB((Uf)(Un)) < dB(U(f(n))) - dst(f(n))

shows that the continuity condition is satisfied.

THEOREM Let H C Initu and let U transform 1V-intersections into M-
intersections. Then the maps

(_)int -i (_)ext : CL(A,1V) - CL-'(U, JY,M)

are adjoint, with both maps preserving all meets and joins, and with (Ce"t)int = C
for all C E CL(A,H) . Moreover, if U is a faithful M-ftbration, with H =
MU(= U-IM n Initj) , then both maps are order-equivalences.

Proof Preservation of meets and joins of non-empty families by (-)In' is clear
since they are formed pointwise. Also, (Text)int = T and (Sext)int - S (see the
proof of the Proposition). The latter isomorphism gives

(Cext)At(n) - CA(SAL(Un)) = CA(n)

for all it E N/A , A E A , hence (Cext)int - C for all C E CL(A,IV)
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Furthermore,

dA(m) < dA(Usat(m)) = dint(sat(m)) a (dint)At(m)

for all m E M/UA , A E A , hence D < (Dint)et for all D E CLeXt(U,N,M)
Finally, if U is an M-fibration and N = MU , one has an order-equivalence

7A :N/A- M/UA, n'-4Un,

with right adjoint 6A , m i-+ U-initial lifting of m ; see 5.8. It is easy to see that
&A(m) = sAt(m) . Hence

cA t(m) CA(8A(m)) and d'At(n) - dA(7a(n))

for all m E M/UA, n E N/A, A E A, and C E CL(N,A), D E CLext(U,N,M).
Hence the order-equivalence 7A -1 6A induces the order-equivalence (-)tnt
(-)ext Q

The assignment D F-. Dint may be one-to-one without assuming U to be
an M-fibration, provided we restrict ourselves to special types of external closure
operators: D E CLext(U,N,M) is called idempotent if dA(UdA(m)) = dA(m)
for all m E MIA , A E A . If N C Initu and if D is idempotent, then also
Din, is idempotent; moreover, 0' < Dint implies

CA(m) < cA(UdA(m)) - c't(dA(m)) < diAt(dA(m)) - dA(m)

for all m E M/A , A E A , hence C < D . Consequently, one gets an order-
embedding

(-)'nt : IDCLext(U,N,M) -+ IDCL(A,N)

by restriction to the conglomerates of idempotent external and internal closure op-
erators.

COROLLARY If N C Initu and if U transforms N-intersections into M-
intersections, then (-)in' : IDCLext(U,N,M) -- IDCL(A,N) is an order-equiva-
lence. 0

EXAMPLES

(1) The least external closure operator Se7 t w.r.t. the forgetful functor U
Grp - Set assigns to a subset M of a group G the least subgroup (M)
generated by M . (Similarly for other algebraic structures.) For U the underlying
Set-functor of DCPO , one has

seXt(Z) = dirxZ

as defined in 3.7.
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(2) We give an example of an external closure operator D w.r.t. the forgetful
functor U : DCPO - Set which cannot be presented as the externalization of an
internal closure operator of DCPO. For a subset Z of a dcpo X , define D by

dx(Z) := dirx(convx(Z)) ,

cf. 3.6. Then D is not of the form Celt for some C since D < (Dint)ext
Indeed, for X given by

(5.35)

and Z := {z, w} , one has

dx(Z) _ {z,w,u} # X = dirx(convx(dirxZ)) _ (d'"t)jrt(Z) .

Exercises

5.A (Composition of (co-)pointed endofunctors) A pointed endofunctor (C,7)
of a category K with 7C = C7 is also called wellpointed.

(a) Show that for wellpointed endofunctors (C,7), (D,b) of K also their com-
posite

(D, b)(C,7) = (DC, b7)
with DC the composite of functors and 67 := bC .7 = D7 b is wellpointed,
and

Fix(DC , b7) = Fix(D, b) n Fix(C, 7)

(b) Suppose that for the pointed endofunctors (Ci, 7i) , i E I , the multiple
pushout

C;A

(5.36)

A 7a CA

exists for all A E K . Show that (C, 7) is a wellpointed endofunctor if every
(Ci , 7i) is wellpointed, and that

Fix(C, 7) = n Fix(Ci, 7i) .

iEI
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(c)

(d)

Verify that the correspondence of Theorem 5.2 transforms composites of closure
operators in the sense of 4.2 into composites of wellpointed endofunctors.
Define the composite of copointed endofunctors dually to (a) and dualize state-
ments (a) and (b). Show that the correspondence of the dual of Theorem 5.2
transforms cocomposites of closure operators in the sense of 4.3 into composites
of copointed endofunctors.

5.B (Orthogonal subcategories) A morphism f : X -> Y in a category
X is orthogonal to an object Z E X , written as f I Z , if the map X (f, Z)
X (Y, Z) -+ X (X, Z) is bijective (i.e., every g : X -+ Z factors uniquely as g =
h f ). For a class 7{ of morphism in X, let

7{1 = {Z : (Vf E 7{) f I Z} .

A full subcategory of X is orthogonal if its class objects is 7{l for some class 7{.

(a) For a full subcategory A of X, prove the implications (i) --> (ii) -+ (iii) -+
(iv), with

(i) A is reflective,
(ii) A = Fix(C, y) for a wellpointed (cf. 5.A) endofunctor (C, ry) of X,

(iii) A is orthogonal,
(iv) A is closed under all (existing) limits in X.

Hint for (ii) -+ (iii): consider 7{ = {ryx : X E X}

(b) Show that the intersection of any collection of orthogonal subcategories is or-
thogonal.

(c) Show that the category CBoo of complete Boolean algebras as a full subcate-
gory of the category Frm of frames (=complete lattices with aAV bi = v aAbi ,
with morphisms preserving arbitrary joins and finite meets) is orthogonal. Hint:
Show that complements exist in a frame B if and only if it is orthogonal to
the embedding

(5.37)

5.C (Factorization systems as functors)

(a) Consider the class Mo = MorX as a category (as in 5.2) and show that there
is a full embedding

E:X --.MorX



170 Chapter 5

which sends f : X -+ Y in X to (f, f) : lX -+ ly in MorX .

(b) Show that every factorization system F of X defines a functor F : MorX
X with FE =IdX , with

Ff = cod(df) = dom(cf)

for all f E MorX .
(c) Let F : MorX -+ X be any functor with FE IdX . Find a functor F'

with F'E = IdX and F F' .
(d) Let F : MorX -' X be a functor with FE = IdX , and for every f : X -+

Y , define

df := F(1j) (with (1j): 1--+f in MorX),
c f := F(f, l) (with (f, l) : f -+ 1 in MorX).

Show that f = cf d f holds, and that the Diagonalization Property 5.2 holds
"weakly", that is: the diagonal to of (5.11) exists but is not required to be
unique.

(e) Concluded that a factorization system F is fully determined by the assignment

f cod(df) = dom(cf) .

5.D (Comparing factorization systems) Prove:

(a) If X has both (£, M)- and (£', M')-factorizations, then £ C £' if and only
if M'CM .

(b) Let F and F' be factorization systems of X with induced functors F ,

F' : MorX - X (see 5.C). Then DF C VF' implies the existence of a natural
transformation a : F -+ F' with aE iso, provided F' is a left factorization
system.

(c) Dualize (b).

(d) For factorization systems F , F' of X, assume the existence of a natural
transformation a : F -+ F' with aE iso. Show VF C VF' and CF' C CF

(e) Does the converse proposition of (d) hold true?

5.E (Characterizing orthogonal factorization systems)

(a) Prove that the following statements for a factorization system F of X are
equivalent:

(i) F is orthogonal;
(ii) F is a left system, and DF is closed under composition

(iii) F is a right system, and C' is closed under composition.
Compare this result with Theorems 1.8 and 2.4.
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(b) (Cf. Korostenski and Tholen [1993]) Let F : MorX -. X be a functor with
FE = Idx and d1 E {h : Ch iso} and cj E {h : dh iso} for every morphism
f (cf. Exercise 5.C(d)). Prove that f i-+ (df,c1) defines an orthogonal
factorization of X.
Hint: In order to show uniqueness of diagonals, consider any to diagonals
wl , w2 in (5.11) and apply F to

dj d ,1 1 w , wi 1
1, c

co

5.F (Factorization systems of Set) Every category admits the factorization
systems f '-+ (f, ly) and f - (ix, f) for f : X -. Y . In Set one has, in
addition, the usual (Epi, Mono)-factorization system, and the system induced by
the indiscrete operator (w.r.t. the class of all monomorphisms), see Example (1) of
4.7. Prove that these are, up to isomorphisms, the only factorization systems of Set,
and that each of them is orthogonal.

Hint: First investigate the maps sX : 0 4 X and tX : X -+ 1 (with 1 a
singleton set) and prove for every factorization system F of Set: 1. If sl E CF ,
then sx E CF for all X ; 2. If sl ¢ CF , then F is isomorphic to (f ,-.
(f, ly)) ; 3. for X # 0 one has tX E DF U CF ; 4. if tX E CF for JXI > 1 ,

then F is isomorphic to ( f H (1X, f) ); 5. for all f , d f is epic or c1 is
monic. Finally apply 5. to f = tX to prove that F must be isomorphic to one
of the four factorization systems. (See also Lemma 4.7.) .

5.G (Rules for maximal closure operators induced by preradicals) Show that,
for preradicals r and s of R-modules, their cocomposite (r : s) as defined in
Definition 5.5 is described by

(r : s)(M) = p-'(r(M/s(M)))

for all M E ModR , with p : M -+ M/s(M) the projection. Verify (or revisit)
the following rules (see Exercise 4.G):

;(a) r = V r' C" - V Cr' ; same for A
iEI =EI

(b) CrCs = C(r:s) and Cr * Cs - Crs
(c) (Cr),,, C(r°) and (Cr)- - C(r°) for all a E OrdU {oo}

(d) Show that the second isomorphism of (c) may be verified in the general context
of 5.5, provided inverse images commute with directed joins.

5.H (Scarcity of preradicals in Set.) Prove that in the category Set.
of pointed sets (see Example(3) of 5.6), there are only two non-isomorphic M-
preradicals and only two non-isomorphic E-prerefiections.
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5.1 (Hereditariness of minimal closure operators) Recall that a lattice is
modular if the modular law

a>c==* aA(bVc)=(aAb)Vc

holds. Assuming that MIX is modular for all X E X , prove that Cr is
hereditary if and only if r is hereditary, for every r E PRAD(X, M) .

5.3 (Wielandt's radical, cf. Robinson [1976]) A subgroup S of a group
G is called subnormal if there exists a finite chain

S=N1 <N2 =G

such that each Nk is normal in Nk+j k = 1, 2,..., n - 1 . Wielandt's subgroup
is defined by

w(G) := n{NG(S) : S < G subnormal},

with NG(S) denoting the normalizer of S in G. Show that w is a radical of
the category Grp (and its monomorphisms). Investigate the induced minimal and
maximal closure operators and their properties.

5.K (Idempotent M-preradicals and M-coreflective subcategories) Show that
the coreflector of a full M-coreflective subcategory defines an idempotent M-
preradical of the category X (with M a class of monomorphisms of X). Prove
that this way one obtains a categorical equivalence of PRAD(X, M) and the par-
tially ordered conglomerate of all full and replete M-coreflective subcategories of
X.

5.L (Comparing initial topologies and initial closure operators) Let the
functor F : X -+ Y be given by a Set-map ip : A --+ B as in Example 5.7.

(a) For a topology on B , consider its closure operator D of Y (as defined in
5.7) and the closure operator C of X given by the initial (=weak) topology
on A w.r.t. . Show that, in general, one has C < D(F)

(b) Establish an analogous result regarding final structures.

5.M (Uniqueness of U-initial liftings, isomorphisms) Show for U : X --. S
faithful:

(a) An X-morphism f is an isomorphism if and only if f is U-initial and U f
is an isomorphism in S.

(b) Show that U-initial liftings of a morphism S UY in S with Y E X
are "unique up to isomorphisms in the U-fibre of S"; they are uniquely
determined if U is amnestic, i.e. any isomorphism i in X with Ui an
identity morphism in S must an identity morphism in X.
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5.N (Products in CS, non-preservation of products by C)

(a) Prove that direct products in the category CS are formed as follows: for closure
spaces (Si, ki) , provide the set S = fl Si with a CS-structure by putting

iEI

ks(M) = llki(pi(M))
iEI

(b)

(c)

for all M C S (pi is the i-th projection).
Show that PrTop is a full coreflective subcategory of CS, but that direct
products are not preserved by the embedding. Hint: For the coreflector, find
the "additive core" of a CS-structure.
For a faithful monofibration U : X - Set and a grounded, productive closure
operator C on X , C : X -- CS may not preserve products.

5.0 (The non-hereditariness syndrom) Use Example(1) of 4.4 to illustrate
that the functor 9 : Top -+ CS induced by the 0-closure of Top does not preserve
subspace embeddings. Hint: 8(F U {0}) -+ 8(X) is not an embedding in CS.

5.P (Topological functors) Let U : X -+ S be a faithful functor. A source
(= family of morphisms with common domain) u = (fi : X -- Yi)iEI in X
is called U-initial if, for every Z E X , an S-morphisms +Ji : UZ -+ UX is
an X-morphism whenever each U fi t : UZ -+ UY is an X-morphism. o-

is a (U-)lifting of a source r = (Vi : S - UYi)iEI in X (more precisely: of
a U-source (Yi , (pi S -+ UYi)iEI) if Ufi = rpi for all i E I . The indexing
system is allowed to be a proper class, or it may be empty, in which case o and
r have to be identified with the objects X and S , respectively. In case I is
a singleton set, ( U-initial) sources are just ( U-initial) morphisms. Trading U
for U°Q : X°p - S°p one obtains the notion dual to ( U-initial) source, namely
( U-final) sink. U is called a coftbration if U°Q is a fibration (see 5.8).

(a) Prove that the following statements are logically equivalent:

(i) every U-source in S has a U-initial lifting in X,
(ii) every U-sink in S has a U-final lifting in X,
(iii) U is both a fibration and a cofibration, and for every object S in S

the fibre U-'S has the. structure of a large-complete lattice (i.e., when
preordered by X < X' if is can be lifted to an X-morphism X
X' , then class-indexed infima and suprema exist in U-IS ).

U is called topological (also: X is a topological category over S ), if the
equivalent conditions is iii. hold. Note that U is topological if and only if
U°" is topological.

(b) Show that the U-initial lifting of a limit cone in S is a limit cone in X. For
U topological, conclude that if S has all (co)limits of a fixed diagram type,
then also X has all (co)limits of that type, and U preserves them.
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(c) Prove that a topological functor has both a left and a right adjoint (given by
"discrete" and "indiscrete structures").

(d) Prove that the following categories are topological over
FC, SGph, PrSet, CS, Unif (cf. Exercises 3.A, 3.C).

Set : Top, PrTop,

(e) Prove that the forgetful functor TopGrp --. Grp is topological.

5.Q (Idempotent hull of a ) Prove that the idempotent hull of the sequen-
tial closure operator in Top may be obtained as described in Example 5.10 (2). (See
also Exercise 4.F (c).)

5.R (Multiplicative structure for closure operators of Top) According to
Theorem 5.10, idempotent, grounded and additive closure operators of Top corre-
spond bijectively to endofunctors of Top that commute with the underlying Set-
functor. For such closure operators define a product COD that corresponds to the
composition of endofunctors. Show that this product is associative, and that the Ku-
ratowski closure operator is neutral w.r.t. O . Is COD hereditary if C and D
are?

5.S (Lifting of K' to TopGrp) According to Theorem 5.9, the closure
operator K* of Top of Example 4.2(3) can be lifted to TopGrp.

(a) Show that K and K* induce the same preradical a(K) of TopGrp, and
that K* is the minimal closure operator belonging to rr(K)

(b) With v the normal closure in TopGrp, show

C,r(K) = K* < v V K` = vK' = K'v < C*(K)

5.T (More on v in TopGrp) Prove that there is no finitely productive
closure operator C of Top such that Cv = vu (terminology of 5.9). Hint:
Assume that C exists and consider a subgroup H of S,,, as in Example 5.9 (4).
Then C < Q by Theorem 4.7, and H is both v-dense and v-closed in S,,, . -

5.U (The largest proper closure operator of Unif) Prove Proposition 5.11.

5.V - (Modified modifications) Let (T, rJ) and (S, e) be pointed and co-
pointed endofunctors of X, respectively. For a closure operator C E CL(X, M)
as in 2.1, show that the formulas

(TC`)x (m) = 17x1(cTx (T m)) and Sax (M) = m vex (CSX (Sm))

define closure operators TO and SC , respectively (cf. Remark 5.7). Furthermore,
prove:

(1) C<TC<TCand SC<SC<C.
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(2) TC = TC if nx E £ for all X E X X.

5.W (Recap of adjoint funciors) Prove Proposition 5.13.

5.X (Initial closure operator w.r.t. U : TopGrp.- Top) . Prove that the
following statements are equivalent for every closure operator C of Top w.r.t. the
class of embeddings:

(i)

(ii)

(iii)

U is (SC, C)-continuous (cf. Example 5.13(2)),

U is ('C, C)-preserving,

for every subgroup N of a topological group A , crA(UN) is a subgroup
of A .

Conclude that for C finitely productive, eC is the initial closure operator C(u)

5.Y (Idempoteni hull and additive core of modified closure operators) Let
A be an £-reflective subcategory of X with reflector R. Prove the formulas

(RC)°° = R(C°°) and (RC)+ = R(C+)

for any closure operator C of X in case X = Top and X = ModR. Find conditions
on the subobject lattices MIX under which these formulas remain valid for arbitrary
X. Hint: Consult Exercise 3.M and Section 4.8.

5.Z (Approach spaces; cf. Lowen (1993]) An approach space is a set X
provided with a family {te,x}eElo+x) of extensive maps te,x : 2x 2x (where 2x
is the power set of X), such that:

1. tc,x(0) _ 0;

2. te,x(A U B) = te,x(A) U ie,x(B) for all A, B C X;

3. te,x(t7,x(A)) <te+7,x(A) for every 7 E [0,+oo); and

4. te,x(A) = n{t7,x(A) : 7 > e} for every A C X.

A morphism between two approach spaces (X, {te,x}) and (Y, {te,y}) is a set-map
f : X -+ Y such that f (te,x (A)) C ie,y (f (A)) for each subset A of X and for each
e E [0, +oo). Denote by AS the category of approach spaces and by M the class of
all embeddings in AS. Show:

(a) AS is an M-complete category;

(b) taking for each e E [0, +oo) T. = (te,x)xeAs one obtains a grounded and
additive closure operator of AS;

(c) TTT7 < Te+7; in particular TL < T7 when e < ?';

(d) the forgetful functor U : AS -+ Set is {Te}eE[o,+.)-structured;
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(e) there is a functor 0 : Met -. AS such that with the forgetful functor V :
Met -r Set one has V = U oO. Hint: For a metric space (X, d) define O(X, d)
to be the approach space (X, {i ,x }) with t,,X (A) := {x E X : dist(x, A) < e}
for each s E [0, +oo).

Notes

A comprehensive study of pointed endofunctors and their applications was given by
Kelly [1980]. Prerefiections were introduced by Borger [1981] and studied by Tholen
[1987] and by Rosicky and Tholen [1988]. The functorial definition of closure op-
erator appears already in the paper by Dikranjan and Giuli [1987a], with the case
of no mono-assumption and the connection with generalized factorization systems
being presented by Dikranjan, Giuli and Tholen [1989]. The functorial views of fac-
torization systems can be traced back (at least) to Linton [1969] and culminates in
their presentation as Eilenberg-Moore algebras (see Korostenski and Tholen [1993]).
While maximal closure operators defined by preradicals of modules have been present
at least implicitly in the literature on torsion theories for some time, they appeared
in the formal setting of closure operators not before Dikranjan and Giuli [1987a],
and their study in the context of arbitrary categories is certainly new. Likewise,
the concept of continuity of functors between categories equipped with closure op-
erators, and the notion of mixed continuity of morphisms with respect to two given
closure operators were developed in the course of writing this book, in order to in-
terpret abstractly the various constructions for transporting closure operators along
functors. Of these, only the special, but fundamental case of a modification along
a refiexion appears in the literature (see the Notes of Chapter 6). External closure
operators were studied by Castellini [1986a]. The characterization of density classes
with respect to a closure operator was given and communicated to the authors by
Tonolo in 1992 and is due to appear in Tonolo [1995].



6 Regular Closure Operators

Regular closure operators provide the key instrument for attacking the epimor-
phism problem in a subcategory A of the given (and, in general, better behaved)
category X. Depending on A, one defines the A-regular closure operator of X in
such a way that its dense morphisms in A are exactly the epimorphisms of A. Now
everything depends on being able to "compute" the A-regular closure effectively.
The strong modification of a closure operator as introduced in 6.6 turns out to play
a major role in this, as we shall see in the following two chapters. It arises quite nat-
urally after we have provided two powerful criteria for closedness with respect to the
A-regular closure (6.4, 6.5). At least for additive categories this leads to a complete
characterization of regular closure operators as maximal closure operators. The rest
of the chapter is devoted to the (quite particular) case of weakly hereditary closure
operators which, roughly, characterize torsionfree classes in algebraic contexts and
give a general notion of disconnectedness in topological contexts.

6.1 A-epimorphisms and A-regular monomorphisms
One of the the main goals of this book is to develop techniques that allow for easy
characterizations of the class of A-epimorphisms in a category X , with A a full
and replete subcategory of X . First we give the most 'relevant definitions.

(1) A morphism f : X -> Y of X is an A-epimorphism if for all u, v : Y -+ A
with A E A , one has the implication (u f = v . f u = v) . The class of
all A-epimorphisms in X is denoted by Epix(A)

(2) f is an A-regular monomorphism if every morphism g : Z --r Y with
f 4 g factors through f by a unique morphism h: Z -* X ; here f 4 g
means that for all u, v : Y -+ A with A E A , one has the implication
(u . f = v f . u g = v g) . The class of all A-regular monomorphism in
X is denoted by RegX (A) .

Z

u

REMARKS

(1) In case A = X , an A-epimorphism ( A-regular monomorphism) of X
is simply an epimorphism (regular monomorphism, respectively) of X . We write
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Epi(X) = Epix(X) , Reg(X) = Regx(X) . For full subcategories A C 6 C X
one has the inclusions

Epi(X) C Epix(B) C EpiX(A) and Regx(A) C Regx(B) C Reg(X).

In particular, every epimorphism of X is A-epic, and every A-regular monomor-
phism is a regular monomorphism of X .

(2) An A-epimorphism is orthogonal to every A-regular monomorphism (cf. The-
orem 1.8). In particular, every regular monomorphism of X is a strong monomor-
phism of X (see Exercise 1.E), but not conversely (see Exercise 6.C).

(3) A morphism f is an A-epimorphism of X if f 4 1 . Consequently, f is
both an A-epimorphism and an A-regular monomorphism if f is an isomorphism
of X .

PROPOSITION For any diagram type V , the class RegX(A) is closed under
D-limits in X , and the class EpiX(A) 'is closed under D-colimits in X .

Proof Let p :'H -+ K be a natural transformation with H, K : V - X
and Pd E RegX (A) for all d E V , such that m : lim H - lim K exists in X X.

Indeed, for every g : Z -+ limK with m 4 g one has µa 4 xa 9 for all d
(with rca the limit projection) and therefore a unique factorization ad : Z - Hd
which must be natural in d . This then gives the unique morphism a : Z -+ lim H
with m a = g . Hence in E RegX(A) follows.

Closedness of Epix(A) under colimits is even easier to establish. 0

The following lemma is useful when testing A-regularity:

LEMMA Let the morphism m : M -> X of X have a cokernelpair in X (so
that the pushout diagram

in

exists in X ), and let K = X +M X admit an A-reflexion (so that there is a
morphism PK : K -+ RK with RK E A and the usual universal property; see
2.8). Then the following statements are equivalent:

(i) in is an A-regular monomorphism,

(ii) m is the equalizer of pK . i and pK j



Regular Closure Operators 179

(iii) m is the equalizer of some pair u, v : X -. A with A E A .

proof (i) = (ii) One uses the universal property of K and of RK to show
that any g : Z -f X with pK i g = pK j g must satisfy m 4 g and therefore
factors through m by hypothesis. (ii) = (iii) (i) is trivial. 0

We call m : M -. X in X an A-section if X E A and there is a morphism
t : X -+ M with t m = Im . Then m is the equalizer of m t and lX and
therefore an A-regular monomorphism. (Note that the implication (iii) = (i) of
the Lemma does not require any of its hypotheses.)

THEOREM Let X have (£,M)-factorizations (see 1.8). Then the statements

(i) £ C Epix (A) ,

(ii) Regx (A) C M
are equivalent if X has equalizers of pairs of morphisms with codomain in A , or
if direct products of type A x A with A E A exist in X . In the latter case, (i)
and (ii) are equivalent to (iii), and also to (iv) and (v) if the products A x A belong
to A .

(iii) the 'diagonal" bA : A -. A x A belongs to M for every A E A

(iv) every A-section belongs to M

(v) for all morphisms f : X --+A and g : A --+ Y with AEA , 9-f EM
implies f E M .

Proof The implications (i) = (ii) (iv) and (i) (v) = (iv) hold without
the assumptions on limits in X . For (i) = (ii) one forms the (£,M)-factorization
m- e= f of an A-regular monomorphism f and has f 4 m since e is A-epic.
Then m factors as m = f t , and it is easy to see that t is inverse to e (even
without assuming M to be a class of monomorphisms, just using the orthogonality
relation e 1 m). Hence f = in E M . The implication (ii) (iv) is trivial. For
(iv) . (v) one (E, M)-factors f as f = m e and uses the (£, M)-diagonalization
property to obtain from e 1 g f a morphism t with t e = 1 . Since e is
A-epic, from m e = f t e one concludes m = f t = m e t . Another application
of the (£, M)-diagonalization property gives e t = 1 since e 1 m . Consequently,
e is iso and therefore f E M . For (v) =:* (iv) one uses the fact that M contains
all isomorphisms, so that t in = 1 E M (with m the given A-section) implies
mEM.

If X has equalizers as stated, then one shows (ii) = (i) by factoring every
e : X --. Y in £ through the equalizer in of any given pair of morphisms
u,v:Y--.A with AEA and Now elm forces
m iso, hence u = v .

If X has products as stated, then (ii) (iii) holds since bA is the equalizer of
the projections pi, p2 : A x A - A . For (iii) (i), one again considers e : X -. Y
in £ and u, v : Y -} A with AEA and u e = v e . Then < u, v > e=
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bA u e , so that e 1 bA yields a morphism d : Y A with bA d =< u, v >
and therefore

Finally, if the products A x A belong to A for every A E A , then bA is
an A-section and the implication (iv) * (iii) follows trivially.

COROLLARY Let X have equalizers (or finite products) and (£, M) -factorizations
with M = Regx(A) . Then £ = Epix(A) .

Proof If one (£, M)-factors an A-epimorphism, then the M-part is A-epic as
well, hence an isomorphism when the M-part is A-regular. Hence Epix (A) C £ ,

and the reverse inclusion follows from the Theorem.

EXAMPLES (Only for A = X , others follow in subsequent sections.)

(1) In the category ModR of R-modules, every submodule is a kernel. Hence
Reg(ModR) is exactly the class of monomorphisms and Epi(ModR) is the class
of surjective homomorphisms.

(2) Schreier's [1927] Amalgamation Theorem shows that when forming the free
product G *u G with amalgamated subgroup U , then U is the equalizer of the
two injections i, j : G -+ G *u G (as in the Lemma). Hence Reg(Grp) is again
the class of all monomorphisms. An analogous result holds when Grp is traded for
the category CompGrp of all compact (Hausdorff) groups : see Poguntke [1973].
As a consequence, epimorphisms are surjective in both categories. For a direct proof
of the latter result in the case of groups, see Exercise 6.B.

(3) Let us consider the class M of all (subspace-) embeddings in each of the
categories Top, Topo, Top,, and Haus : in Top and Top, it coincides with
the class of all regular monomorphisms, but in Topo and Haus it does not. For
the positive result in Top, one simply shows that the amalgamated sum X +M X
formed in Top belongs to Top, if X does. For the negative result in Topo
Baron [1968] gave an example of a proper epimorphic embedding in the category
Topo . These categories will be considered in greater detail in 6.5 below.

6.2 A-epi closure and A-regular closure

We return to the standard setting of 2.1 and consider an M-complete category X
such that M is closed under composition. We say that M-unions are epic if for
m = Vier mi in MIX , the sink (ji : Mi -* M)iEJ with m ji = m; for all
i E I is epic, so that u ji = v ji f o r all i E I (with u, v : M -. Y in X)
implies u = v . Similarly to (ii) = (i) of Theorem 6.1 one proves:

LEMMA If X has equalizers and if M contains all regular monomorphisms,
then M-unions are epic in X .
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proof If u ji = v ji holds for all i E I , then every ji factors through the
equalizer k of u, v , hence mi < k in < in in MIX for all i E I . This forces
k to be an isomorphism. 11

THEOREM Assume Reg(X) C M . Then for every full subcategory A of X

(1) there is a uniquely determined idempotent closure operator regA of X w.r.t.
M such that Regx(A) is the class of regA-closed M-subobjects; furthermore,
Epix(A) is the class of regA-dense morphisms, provided X has equalizers. Under
this provision

(2) there is a uniquely determined weakly hereditary closure operator epiA of X
w.r.t. M such that Epix(A) is the class of epiA-dense morphisms. The epiA-
closed M-subobjects are exactly the A-extremal monomorphisms in M , i. C., the
morphisms in E M such that m= k- d with k E M and an A-epimorphism
d is possible only for d an isomorphism.

(3) epiA is idempotent and weakly hereditary, in fact the weakly hereditary core
of regA .

Proof . (1) Existence and uniqueness of regA follow from Propositions 5.4 and
6.1, in conjunction with Theorem 1.7. Explicitly, for m E MIX , one has

regX(m) = ! \{k E Regx(A)/X : k > m}. (*)

If u m = v m holds for u, v : X - A with A E A , then m factors through
the equalizer k of u and v (if it exists); hence regX(m) factors through k ,
and u . regX (m) = v regX (m) follows. Consequently, if in is regA-dense (so that
regX(m) is iso), then in is A-epic. Conversely, if in is A-epic, also regX(m)
is A-epic and therefore an isomorphism.

(2) We apply Theorem* of 5.4 to the class V = Epix(A) (1 M . Indeed, V is
right cancellable w.r.t. M and satisfies also conditions (b) and (c) of that Theorem
since, according to the Lemma, M-unions are epic in X . Explicitly, in order to
check (c) stability of V under M-unions, consider n < mi in MIX with
i E I # 0 such that each ji with mi.ji = n belongs to V , and for j with
m. j = n and in = \I1 ni assume u. j = v. j for u, v with codomain in A
Since each ji is A-epic one has u.ki = v.ki , for ki such that m.ki = rat
Since (ki)iEl is epic, u = v follows. When checking that (b) D has the A-V-
preservation property one relies on the same arguments.

Hence Theorem* of 5.4 gives a uniquely determined weakly hereditary closure
operator epiA such that Epix (A) f1 M is the class of epiA -dense M-subobjects.
But the latter condition is easily seen to be equivalent to saying that Epix (A) is the
class of epiA-dense morphisms (see Corollary* of 2.3). Explicitly, for M E MIX
one has
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epiX(m) = V{k E MIX : k d = m for some d E Epix(A)).

If epiX(m) is factored as epiX(m) = n e with n E M and e E £ , then
m = n e jm with e in E EpiX(A) . Hence (**) gives that e must be an
isomorphism. Consequently, every M-subobject is A-extremal. The
converse holds trivially since in E Epix (A) .

(3) follows from (1) and (2) with Theorem* 5.4 and Corollary 5.4.

DEFINITION Under the hypotheses of the Theorem, we call regA and epiA
the A-regular and the A-epi closure operator of X , respectively. Instead of reg&
closed (= A-regular) M-subobjects we often speak of A- closed M-subobjects, and
regA-dense (= A-epic) morphisms are often called A-dense. Any closure operator C
of X is called regular if it is the A-regular closure operator for some full subcategory
Aof X.

COROLLARY Under the hypotheses of the Theorem, the following statements are
equivalent:

(i) reg4 = epiA

(ii) regA is weakly hereditary,

(iii) Regx (A) is closed under composition,

(iv) every A-eztremal monomorphism in M is A-closed.

Proof From the Theorem, in conjunction with Theorem 2.4.

REMARKS We continue to operate under the hypotheses of the Theorem.

(1) One has m < epiX(m) < regX(m) for all m E MIX .

(2) If m : M -. X in M has a cokernelpair i, j : X -+ K in X and if K
has an A-reflexion PK (see Lemma 6.1), then the A-regular closure of m can
be computed as

regA(m) - equalizer(PK i,PK j)

Indeed, this equalizer is A-regular and factors through every k E RegX (A) f X
with k > m .

(3) We showed in the proof of the Theorem that m 4 regX(m) holds if X has
equalizers. Conversely, for any k E Regx(A) f X with k> m and m 4 k, one
necessarily has k - regX(m) .

(4) A -extremal morphisms m in M are characterized by the property that
m = f d with an A-epimorphism d is possible only if there is a morphism t
with f .
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(5) By Remark 6.1 (1), rege < reg4 if A C B .

(6) The trivial operator is regular: T = rege (since RegX(@) = Iso(X)). The
discrete operator S is regular if and only if M = Reg(X); in this case, S
regX. Every non-idempotent closure operator is non-regular. But also idempotent
operators may fail to be regular, the most famous example being K in Top, as we
shall see in Example 6.9(3).

When trying to characterize the epimorphisms of the subcategory A of a cat-
egory X , usually we shall choose M such that morphisms of £ are easily de-
scribed, as the surjective morphisms of X , say. Since the A-epimorphisms of X
which belong to A are precisely the epimorphisms of the category A , in order to
recognize them as morphisms belonging to £ one may just check condition (iv) of
the following proposition. Sufficient conditions for (iv) are given in Section 6.4.

PROPOSITION If X has equalizers with Reg(X) C M , and if A is a full
replete subcategory of X , then for the conditions (i)-(iv) below one has (i) p (ii)
and (i) & (iii) q (iv):

(i) every A-epimorphism of X with codomain in A belongs to £

(ii) m epiX (m) for all m E MIX , X E A

(iii) epiX(m) = regX(m) for all m E MIX , X E A ,

(iv) every morphism in M with codomain in A is A-closed.

Proof (i) & (iii) t* (iv) is trivial (see Remark (1)). For (i) (ii), since ep iA
is weakly hereditary, the morphism M -+ epiX (M) is A-epic and therefore in
£ 11 M under hypothesis (i), hence iso. Conversely, in the (£, M)-factorization
q = m e of an A-epimorphism q with codomain in A also m I epiX (m) is
A-epic, hence iso and therefore q E £ .

EXAMPLES

(1) Let X = AbGrp be the category of abelian groups, with the usual subobject
structure. For a subgroup M < X , the cokernelpair i, j : X -> X +M X may be
constructed as

< 1X, p>, < 1X, 0>: X -- X X (X/M),

with p : X -+ X/M the canonical projection, hence

X +M X e5 X X (X/M).

(This remains true in any additive category, see Exercise 6.0.) For A the subcat-
egory of torsion-free abelian groups, the A-reflexion of X is the projection

PX : X -* X/t(X),
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with t(X) the torsion subgroup of X (cf. Example 3.4(1)). With the formula
given in Remark (2) one obtains

red(M)={xEX :(3n> 1)nxEM},

hence regA is the maximal closure operator Ct . As a hereditary closure operator
it is in particular weakly hereditary, hence regA = epiA . Note, for example that
Q < R is A-closed, while Z < Q is A-dense. Hence Z -. Q is an epimorphism
in the category A . We note furthermore that for every n > 1 also nZ - 7G is
A-dense while 0 < Z is A-closed, so that 7L has no proper non-trivial A-closed
subgroup. In general, f : X -+ Y is an epimorphism of A if and only if for every
Y E Y there is n> 1 and xEX such that ny = f (x) .

(2) For a class A of universal algebras and for C < B E A, Isbell [1966] defined
the dominion of C in B as the subalgebra

{xEC:(Vf,g:B--.AEAhomom.) f1c=gc, f(x)=g(x)}

of B; this is simply the A-regular closure of C in B. He also considered the weakly
hereditary core (regA),, of the A-regular closure for universal algebras (using the
oo-subscript notation I), i.e., the closure operator epiA, in order to describe the
epimorphisms of A (cf. 8.9).

(3) For any class A of topological spaces (which contain a space with at least two
points) and any space X, Salbany [1976] considered the coarsest topology on X in
which A-closed sets are closed. The space obtained in this way, when presented as a
pretopological space, is simply (X, (regA)+). In fact, (regA)+.is the coarsest closure
operator C such that A-closed sets are C-closed (i.e., C < regA) and C-closed sets
are closed under binary union (i.e., C is additive). (Note that due to the existence
of a non-trivial space in A, regA is grounded; cf. Example 6.9(1) below.)

6.3 Computing the A-regular closure for reflective A
In an M-complete category X with equalizers, with M closed under composition
and containing all regular monomorphisms, we consider a full and replete reflective
subcategory A . In what follows we shall show that the A-regular closure operator
of X is completely determined by its behavior on A .

Hence for every X E X one has a universal map px : X -+ RX with RX E
A , which gives rise to a pointed endofunctor (R, p) as in Example (1) of 5.1. As in
5.12, we can then form the R modification R(regA) of the regular closure operator
regA of X , by

R(regA)X(m) - pXI(FegAhx(px(m)). (*)

Furthermore, if A is 6-reflective, with E determined by M as in 2.1, so that
A is closed under M-subobjects, then regA can be restricted to a closure operator
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of A (cf. 2.8). Since R may be considered the left adjoint of the inclusion functor
A X , with unit p , we can also form the initial closure operator induced by
regA IA and R (cf. 5.7), which may be computed by

(Teg'AIA)z(m) = pxi(regA (Rm))

(see Lemma 5.13).

THEOREM

(1) The regular closure operator regA is its own R-modification. It is there-
fore the largest closure operator D of X for which every A-reflexion px is
(D, regA)-continuous.

(2) If A is £-reflective, then regA is the initial closure operator induced by
its restriction regA(A and R . It is therefore the largest closure operator D of
X for which the A-reflector R : X -+ A is (D, reg' A)-continuous.

Proof In view of Theorems 5.12 and 5.7, it suffices to show formulas (*) and
(**) with the left-hand sides replaced by regX(m) in each case. For m : M -+ X
in M , we form the (E, M)-factorization n - e = px m of px - m , so that
n = px(m) : N - RX , and apply the Diagonalization Lemma 2.4 to obtain the
following commutative diagram:

M e N

regX(M) to regR1(N)

regX (m) regRX (n)

X Px ' RX

We must now show that the lower part of (6.3) forms a pullback diagram. Hence
we consider x, y with px x = regRx (n) y . Since regdx (n) is monic, it
suffices to show that x factors through regX (m) , and for that we just need to
show regX (m) 4 x . We therefore consider u, v : X -+ A with u - regX (m) _
v - regX (m) and A E A . Since u, v factor as u' - px = u and v' px = v ,
and since e E E is epic (due to the existence of equalizers, see Theorem 6.1), one
derives u' n = v' - n and then u' . regA'x (n) = v' - regRx (n) (with Remark (3) of
6.3). This implies

ux=u'.px.x=u'.regRx(n)y=v'regAAx(n)-y=v'-px-X=vx,
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as desired. This completes the proof of (1).
For (2) one considers an (£,M)-factorisation Rm of Rm : RM -+ RX

With e := d pyt one obtains again the commutative diagram (6.3) and shows that
its lower part is a pullback diagram as before. O

REMARK We note that £-reflectivity of A was assumed in (2) of the Theorem
only in order to be able to restrict regA to a closure operator of A . But the
formulas

regx('rn) - pxl(?egax(px(m))) = px'(regAxx(Rm))

actually hold for every reflective subcategory A .

A particularly useful consequence of formula (*) , of Proposition 6.1 and of
Exercise 1.K(d) is:

COROLLARY An mil-subobject m of X is A-closed if and only if there is
an A-closed M-subobject n of RX with m = pj1(n) . In this case necessarily
n = px(m) , provided that A is £-reflective and £ is stable under pullback. O

Of particular interest is the question whether the least subobject ox : Ox --> X
of an object X is A-closed. Formula (*) allows us to reduce this problem to the
case X E A :

PROPOSITION For an object X E X , ox is A-closed if oRx is A-closed
and pj'(oRX) - ox . Conversely, if ox is A-closed, then pjl(oRx) = ox
and also oRx is A-closed provided that A is 9-reflective and £ is stable under
pullback.

Proof The first assertion follows from Proposition 6.1. If regX (ox) - ox , then
px(ox) - oRX (cf. 1.11) and (*) gives:

pj'(oRx) < pXl(regRX(oJrx)) = pX'(iegRx(px(ox))) - regX(ox) - ox,

hence pX'(oAx) - ox . Furthermore, if px E £ with £ is stable under pullback,
with Exercise 1.K (d) and (*) one concludes:

regax(oRx) - px(pxl(reg'Rx(onx))) °-` px(regz(ox)) - px(ox) oRx

Conditions under which ox with XEA is A-closed will be described in 6.5.
The conditions in the above Proposition are not not necessary in general.

EXAMPLE In the category Fid of fields with M the class of all morphisms
(=monomorphisms), £ is the class of all isomorphisms, so that £ is stable un-
der pullback, and the only full replete £-reflective subcategory A is the whole
category Fid . However, Fld has many (non- £-)reflective subcategories, each of
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which is necessarily bireflective (cf. Exercise 3.L and 6.11). We claim that for every
reflective subcategory A , ox (=the embedding of the prime field of X into
X ) is A-closed. In fact, since FId has a least reflective subcategory, given by the
subcategory PerFld of perfect fields (cf. Proposition 8.10), it suffices to show that
ox is PerFld-closed (see Remark 6.1(1)). But it turns out that a perfect subfield
is always PerFld-closed (again, by Proposition 8:10), so it is enough to note that
the prime field of X is perfect.

6.4 The magic cube
Let X be M-complete, with M containing all regular monomorphisms and
being closed under composition. We assume X to be finitely complete and finitely
co-complete, and consider a full reflective and replete subcategory A of X . Our
goal is to find sufficient conditions for a given regular monomorphism m : M -. X
in X with X E A to be A-closed. As in Lemma 6.1, we form the cokernelpair
i, j : X -+ K = X -FM X of m in X , so that m is the equalizer of (i m, j m)
equivalently, diagram (6.2) is a pullback (since i - a = j b implies a = e i a =
e j b = b , with e : K -. X the common retraction of i and j ).

Let now PK : K - RK be the A-reflexion of K and consider the commuta-
tive diagram

M "` X

K pK

IX X

pK i (6.4)

RK

Calling m strongly A-closed if i is A-closed, we have :

PROPOSITION m is strongly A-closed if and only if the right square in (6.4)
is a pullback diagram, and then m is A-closed.

Proof Since the left square in (6.4) is a pullback diagram and since A-closedness
is stable under pullback (see Prop. 6.1), every strongly A-closed morphism is A-
closed. Since a factors as e' - pK = e (since X E A ), PK i is an A-section,
so that i must be A-closed if the right square in (6.4) is a pullback diagram.
Conversely, if i is A-closed, then i is the equalizer of a pair of morphisms u, v :
K -+ A with A E A , which factor through PK as u' PK = u and v- pK = v .

Now we can check the pullback property, as follows: from pK a = pK i b one has

so that the equalizer property gives c with i c = a , but when applying e' to
pK - i c = PK i b one gets c = b , hence i b = a , as desired.

In what follows we describe a different method of identifying the right square of
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(6.4) as a pullback, by forming the following diagram:

X b XxX 'r2 X

i 1 x (PK i) PK (6.5)

K W X x RK 72 - RK

Here (each) 72 is a product projection, and 5 =<lx, lx> and w =<e, pK>
are given by the product property. Note that the right square of (6.5) is always a
pullback diagram. Hence the left square of (6.5) is a pullback diagram if and only if
the whole diagram (6.5) is a pullback diagram, which is exactly the right square of
(6.4). With the Proposition, we have therefore proved

LEMMA m is strongly A-closed if and only if the left square in (6.5) is a
pullback diagram. O

Recall that the cokernelpair i, j : X -+ K of m can be constructed in two
stages, by first forming the coproduct k, I : X -. X + X in X and then the
coequalizer c : X + X -+ K of (k m, I m) in X . Hence we may assume
i = c . k, j = c I . Furthermore, let

q : R(X + X) -y L be the coequalizer of (p k m, p I . m) , with p = px+x
the A-reflexion of X + X ,

u : K -r L the morphism with u c = q,; p ,

v =<e", pL>: L -+ X x RL the induced morphism with PL the A-reflexion
of L and a":L--.X the morphismwith

Welet

a routine exercise to check that the "magic cube" (6.6) commutes. Fur-
thermore, let us note that Ru : RK -+ RL is an isomorphism. In fact, Rc :
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R(X + X) -+ K factors as x q = Rc , and z : L -, RK factors as y pL = x .
From oneobtains

Ru Ru is also an A-section, since
y Ru Rc = y - PL q = x q = Rc , with Rc A-epic (since the left adjoint
R : X -+ A preserves epimorphisms). We therefore have that the right face of (6.6)
is a pullback diagram, and so is the top face. Furthermore we note that all vertical
arrows are sections and therefore belong to M . We are now in a position to prove:

THEOREM (Magic Cube Theorem) For the statements (i)-(xi) below one has the
following implications:

(iii) (viii)

V (x)

V

(v vi) (xi)

In addition, (i) #- (ii) holds when A is epireflective.

(i) KEA,
(ii) L E A and w is monic,

(iii) L E A and u is monic,

(iv) w-1(a) = i and v-1(b) = u- i

(v) PK1(PK i) - : ,

(vi) m is strongly A-closed,

(vii) L E A and u-1(u i) = i,

(Viii) v is monic and p7c1(pK i) 25 i ,

(ix) v is monic and m is an equalizer of (q PK k, q . PK 1)

(x) w is monic,

(xi) m is A-closed.

Proof (ii) = (iii) Since the bottom face of (6.6) commutes, with 1 x Ru iso,
u is a monomorphism if w is one.
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(iii) = (iv) First we show that L E A implies that the back face of (6.6) is a
pullback diagram. Consider x, y with v x = b y . An application of the second
projection of X x RL gives

with ire the second projection of X x X , hence x = u i a2 y under the
assumption LEA . Furthermore, f r o m b y = v x = v u i a2 . y = b . S . ir2 y
with b monic one has y = 6 . ,r2 y , so that ire y(= 7r1 y) gives the desired
factorization. Now we have that the concatenation (top& back)=(front& bottom)
of (6.6) is a pullback, so that the front face must be a pullback diagram since u is
monic, by hypothesis.

(iv) (v) 4* (vi) (xi) follow from the Proposition and the Lemma.
(iii) (vii) We clearly showed that (iii) implies that the front face and therefore

the concatenation (front& right)=(left&back) of (6.6) is a pullback. Since 6 is
monic, this implies that the left face is a pullback diagram.

(vii) . (viii) Since 7r2 . v = pL (with 7r2 : X x RL pL monic implies
v monic. Furthermore, L E A also implies that the back face of (6.6) is a pullback
(as shown above). Hence if the left face is a pullback, also the front face must be
one, and this means pKl(pK i) = i by the Lemma and the Proposition.

(viii) * (ix) We show that if the right face of (6.6) is a pullback then m is an
equalizer of ifany z satisfies
since Ru pr . C = PL q p , then

Hence the pullback property shows that we must have c k z = c I z . But since
m is the equalizer of (i, j) , the equation i z:= j z makes z factor through
m , as desired.

(ix) . (xi) Under the assumption (ix), m is the equalizer of
with the codomain X x RL of v belonging to the reflective subcategory A
Hence m is A-closed by Lemma 6.1.

(ii) (x) is trivial, and for (x) = (xi) observe that since m is the equalizer of
(i, j) it is also the equalizer of (w i, w j) when w is monic, with the codomain
X x RK of w belonging to A .

(i) => (v) is trivial since PK is iso if K E A , and for (i) =:: (x) note that w
is monic if PK is monic, since 7r2 w = pK (with 7r2 : X x RK -+ RK ).

Finally we show (i) (ii) under the condition that A is epireflective. First
we note that 1r2 w = pK shows that w is a section if K E A . But then also
u is a section, since v u = (1 x Ru) w , with 1 x Ru iso. On the other hand,
u is epic since u c = q p is epic by hypothesis. Hence u is iso and v must
be a section. But this means that L is a retract of the A-object X x RL and
therefore in A itself.

COROLLARY If A is strongly epireflective in X , then conditions (i), (ii) and
(x) of the Theorem are equivalent and imply all other conditions of the Theorem.
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proof We need to show only (x) => (i), assuming that A is strongly epireflective.
But in this case A is closed under monomorphisms, so that w : K -+ X x RK
monic implies K E A since X x RK E A.

REMARKS

(1) Both the Theorem and Corollary can be simplified in case A satisfies the
condition

YEA Y+YEA (*)

for all objects YEX .Onethenhas X+X=R(X+X),hence
is an isomorphism, and the Magic Cube collapses to its front face, say. Only the
lower triangle in the scheme of implications in the Theorem does matter now, all
other conditions appearing in the Theorem are trivially equivalent to at least one
appearing in that triangle, provided that A is epireflective.

(2) Note that condition (*) follows necessarily from condition (i) of the Theorem,
provided that the least M-subobject oy of Y is A-closed (see Proposition 6.3
and Exercise 6.1).

EXAMPLES

(1) Let X be the category ModR , with its usual subobject structure. Since
we are in an additive category, we have Y + Y - Y x Y , so that condition (*) of
Remark (1) is satisfied. Furthermore, one has X +M X X x (X/M) for every
submodule M < X (see Example 6.2 and Exercise 6.0). Since there is a trivial
equalizer diagram

!x!
X/M - X X (X/M) o! X X (X/M)

one concludes'for every (full replete) reflective subcategory A and for every sub-
module M < X E A :

X+MX EA *X/MEA.
Hence the essential implications arising from the Magic Cube Theorem are as follows:

X/M E A M strongly A-closed in X = M A-closed in X.

Moreover, for A epireflective we have

X/M E A e* M strongly A-closed in X.

In fact, if M < X is strongly A-closed, then X x 0 < X x (X/M) is A-closed
(see the construction of i : X -+ X +M X in Example 6.2), hence its pullback
along < 0,1 >: X x (X/M) is A-closed, which is 0 < X/M . Proposition 6.3
gives pxiM(0) = 0 , i. e., X/M has an injective and therefore bijective A-reflexion
pxIM , and this shows X/M E A .
We shall show in 6.7 that in fact A-closedness implies strong A-closedness whenever
A is epireflective; in other words : all statements of the Magic Cube Theorem are
'equivalent, even without assuming X E A .
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(2) Let A = AbGrp be the (strongly) epireflective subcategory of Abelian
groups in X = Grp , with its usual subobject structure. A subgroup M of an
abelian group X is the kernel of the projection X -r X/M and therefore A-
closed. The sum X +X in Grp is the free product X *X , and K = X *M X is
the free product with amalgamated subgroup M ; clearly, K is not abelian unless
M = X . Under additive notation, the abelianization R(X * X) is the direct sum
X x X in AbGrp, hence L = X x X/M with M = E M} , so'
that we can take RK = RL = L . It is now easy to see that the right part of
(6.4) fails to be a pullback diagram, unless M = X . Hence, for M # X , M is
A-closed in X but not strongly A-closed. In terms of the conditions of the Magic
Cube Theorem, one has for M i6 X : none of the equivalent conditions (i), (ii),
(x) holds, and although L E A and the canonical map v : L -f A x L is monic,
conditions (iii)-(viii) do not hold either; however, (ix) and (xi) are satisfied.

6.5 FrolIIk's Lemma
In this section we provide a simple criterion for A-closedness under Set-like condi-
tions. These conditions are similar to those used in Section 4.9 where "points" were
simulated by V-prime subobjects. Here we work with V-prime subobjects instead,
calling p E MIX V-prime if p# ox and if p< m V n implies p< m or
p < n . We say that M is generated by its V-prime elements if the class P of
V-prime elements in M satisfies the following two conditions

(A) f (p) E P/Y for every f : X -+ Y and p E P/X ,
(B) m=VIP EP/X :p<m} for every in E MIX .

As in 6.4, we assume our M-complete category X (with M containing
all regular monomorphisms and being closed under composition) to have binary
products and equalizers as well as binary coproducts and coequalizers, and consider
a reflective and replete subcategory A of X .

We keep the notations of the Magic Cube Theorem and prove

THEOREM (Frolik's Lemma) Let M be generated by its V-prime elements.
Then for a regular monomorphism m : M -f X with X E A to be A-closed it is
necessary that the morphism <e, pK>: K -. X x RK be a monomorphism. Hence,
in case A is strongly epireftective, all conditions of the Magic Cube Theorem are
equivalent. In particular, in is A-closed if and only if K = X +M X belongs to
A.

Proof We must show only that when m is A-closed then necessarily w = <
e, PK> is monic. Hence we consider morphisms s, t : Z - K with w s = w t ,
and since the union 1Z . V P/Z is epic (see condition (B) and Lemma 6.2), it
suffices to show s p = t p for all p E P/Z . Both s p and t p can be (E, M)-
factored as s p = p, e, and t, p = pt et , respectively, with p, = p(s) E P and
pt = p(t) E P (see condition (A)). As injections of the cokernelpair of m , both i
and j are sections and therefore belong to M , and since the regular epimorphism
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c belongs to £ (Theorem 6.1, dual), one has 1K = i V j . Now V-primeness of
p, : P, -+ K and pt : Pt -+ K yields morphisms x : P. -+ X and y : Pt -+ X
with and and
with g, h E {i, j} . With ir, : X x RK -+ X the projection, one obtains

xl =x ea

and symmetrically, 7r1 w t p = y et , so that w s = w t implies x e, = y et
In case g = h , this gives immediately

=pt et
Otherwise one has to invoke the fact that the A-closed morphism m is an equalizer
of (PK . i, PK j) , as follows. Since

the morphism x e, = y et factors as x e, = m z . Therefore,

=pt et
which completes the proof.

REMARK For every topological category X over Set with its usual subobject
structure, given by the class M of all regular monomorphisms, the hypothesis that
M be generated by its V-prime elements (=actual points) trivially holds. This is
the context (actually for X = Top ) in which Frolic proved the Theorem. In the
examples below we give a number of applications in this context.

EXAMPLES Let X = Top and M = Reg(X) . For a subspace M of a space
X , the space K = X +M X has as its underlying set X x {1, 2}/ N , with

(x, v) - (y, y) x = y E M or (x, v) = (y, {t).

With the canonical injections i X -+ K , x i -+ c(x,1) , and j : X -+ K
x +-+ c(x, 2) , a subset U C K is open if

i-'(U) = {x E X : c(x,1) E U}, j-1(U) = {x E X : c(x,2) E U)

are open in X . Note that for V = i'1(U) and W = j-1(U) , V lM = WIIM
holds. Conversely, for every pair V, W of open subsets of X with V fl M =
W fl M , the subset U = 1(V) U 3(W) of K is open. For some familiar reflective
subcategories A we check whether K E A whenever X E A:

(1) A = Top, , the category of T,-spaces. In this case we have K E A . Indeed,
the critical pairs of points to be T1-separated are of the form c(x, 1) , c(x, 2) , with
x V M . But in this case W = K \ c(x, 2) is an open neighbourhood of c(x, 1)
since i-1(W) = X and j-1(W) = X \ {x} are both open in X . Consequently,
the regular monomorphisms in Top, are exactly the subspace embeddings, and
the epimorphisms in Top, are surjective.
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(2) A = Tope = Haus , the category of Hausdorff spaces. For X = R and
M = Q , the space K fails to be Hausdorff since c(z, 1) and c(x, 2) with x V Q
cannot be T2-separated, since any two open neighbourhoods of c(x, 1) , c(x, 2)
contain common rational points. However, in general, for M C X (Kuratowski-)
closed, one has K E Haus , and conversely. Consequently, the regular monomor-
phisms in Haus are exactly the (Kuratowski-) closed subspace embeddings, and
the epimorphisms in Haus are exactly the (Kuratowski-) dense maps.

(3) A = Topo , the category of To-spaces. In this case we have K E A if
and only if the subspace M of X is b-closed. Indeed, assume M to be b-closed.
Again the critical pairs of points to be To-separated are of the form c(x, 1) , c(x, 2) ,

with x V M . Since M is b-closed, there exists an open neighborhood V of x
such that kx({x}) does not meet V fl M . Hence the open set W = V \ kx({x})
satisfies V fl M = W fl M . Thus U = i(V) U j(W) is an open neighbourhood of
c(x, 1) (since i-1(U) = V and j-1(W) = W are both open in X ) which misses
c(z,2) . On the other hand, if K E A , then for z ¢ M one can find an open
neighbourhood of c(x,1) missing c(x, 2) . Then U misses also kK({c(x, 2)}) .
Hence, from j(kx({x})) C kK({c(x,2)}) , V is an open neighbourhood of x
such that V fl M fl kx({x}) = 0 . This yields x V bx(M) . Consequently, the
regular monomorphisms in Topo are precisely the b-closed subspace embeddings,
and the epimorphisms in Topo are precisely the b-dense maps, hence not surjective
in general.

Without assuming that X satisfies the hypothesis of Frolik's Lemma, we say
that a category X satisfies Frolik's Lemma if for every A-closed M-subobject
m E MIX with X E A also X +M X belongs to A., i.e., if conditions (i)
and (xi) of the Magic Cube Theorem are equivalent. In this case every A-closed
m E MIX with X E A is strongly A-closed. We shall see next that the restriction
to subobjects in A can be avoided and first show the following useful formula:

LEMMA For every m : M X in M , there is a canonical isomorphism

R(X+MX)-RX+NRX

with n - reg'(px(m)) : N -+ X

Proof As usual, let i, j : X -+ K = X +M X be the cokernelpair of m in
X , and let i', j' : RX -+ K' = RX +N RX be the cokernelpair of n in X .
Since n is A-closed, K' E A by assumption on X . Hence the unique morphism
s : K --+ K' with s i = i' px and s j = j' px factors through PK by a
morphism u : RK -+ K' . Since px 4 n by definition of n , and since

Ri n n . Now the cokernel property of K' gives a morphism
v : K' -+ RK with v i' = Ri and v j' = Rj . It is easy to check that v is
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inverse to u . 0

COROLLARY If X satisfies Froilk's Lemma and if A is strongly epireflective
in X , then every A-closed M-subobject in X is strongly A-closed.

0

proof With the notation of the Lemma, we have a commutative diagram

ZM
m

P

N n + RX

nRX

Rj

The Lemma gives that the back face is a pullback diagram since n is A-closed.
With the A-closedness of in and the definition of n one checks very similarly to
the proof given for Proposition 6.4, that the left face is a pullback diagram. Hence
the concatenation of the front and the right face is a pullback diagram. Using the
common retraction a of i and j , one easily checks that the right face must be
a pullback diagram. But since n is strongly A-closed, so that Ri is A-closed
(by the Lemma), also its pullback i along PK is A-closed. Hence in is strongly
A-closed. 0

We have seen that every topological category over Set satisfies Flolik's Lemma,
and we shall show the same for ModR in Theorem 6.7. Example 6.4 (2) shows
that Grp does not satisfy Frolic's Lemma. A useful application of the Lemma is
given in Exercise 6.U.

6.6 The strong modification of a closure operator
We have seen in the preceding,sections that the notion of strong A-closedness is
a useful tool in order to recognize a given regular monomorphism as being A-
closed. Here we revisit this theme from a different perspective. Starting with an
arbitrary closure operator C , we modify the C-closure of each subobject "along
its cokernelpair", similarly to the modification procedure used in Section 5.12. The
closure operator C obtained this way will lead not only to a characterization of
additive regular closure operators in 7.5 but turns out to be useful also for various
examples (see below).

Let X have cokernelpairs and be M-complete, with M g Reg(X) closed
under composition, and let C be a closure operator w.r.t. M .
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DEFINITION

(1) An M-subobject m : M - X in X is called strongly C-closed if (at least
one of) the canonical injections i, j : X -+ K = X +M X of the cokernelpair of
in are C-closed. (Note that, as sections, i and j belong to M .)

(2) C is called strong if every C-closed M-subobject is strongly C-closed.

(3) The strong modification C of C is defined by

ex(m) := j-1(cx(i))-

PROPOSITION C is a closure operator of X with C _< C , and C t-.
defines an endofunctor of CL(X,M) .

Proof Since j m < i , the C-continuity of j gives j(ex(m)) < cx(j - m) <
CK(i) and therefore cx(m) < j-1(cK(i)) = ax (m) ; in particular, m < ax(m) . If
m1 < m2 E MIX , in self-explaining notation one considers the unique morphism
t : K1 -+ K2 with t - i1 = i2 and t - j1 = j2 and obtains

h(Cx(m1)) t(j1(j11(cx.(z1))})

< t(cx,(i ))
< CK2(t(ii))

< Cx2(i2),

hence

EX(m1)

< j2 1(cx2(i2)) = cx(m2) .
For the continuity condition for C , consider f : X -r Y in X and m1 E

MIX , and let m2 = f (Ml) . Again, in self-explanatory notation, one now has a
unique morphism g : K1 - K2 with g . i1 = i2 - f and g jl = j2 f and obtains

32(f(cx(m1))) = g(51(j11(cK,(ii))})

< g(cK,(i1))
< cx2(g(i1))

< Cx2 (i )

hence f(c"x(m)) <ja 1(cx2(i2)) - Ey(f(mi))
<If C < D in CL(X,M) , then cx(m) < dx(m) trivially implies EX (m)

dx(m) . 0,

REMARKS

(1) The definition of 6x(m) does not depend on the order in which the injections'
of the cokernelpair of in are used, i. e.

ex(m) - i`1(cx(j))-
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Indeed, with s : K --i K the isomorphism such that s i = j and s j = i one
has CK(j) = CK{S i) S(CK(i)) , hence i-1(cK(j)) = j-1{CK(i}}

(2) The hypothesis M C Reg(X) guarantees that for every m E M diagram
(6.2) is a pullback. Hence every strongly C-closed M-closed subobject is C-closed.

We now use the hypotheses used in Frolik's Lemma in order to describe the
C-closed subobjects. First we prove:

LEMMA Under condition (B) of 6.5, a morphism f : X --r Y in X with the
property that every y E P/Y factors as y = f x must belong to E .

Proof Consider the (£, M)-factorization f = m e . By hypothesis, the sink
p/Y factors through m . From the defining property of the M-union ly =
V(P/Y) one obtains a morphism w with m w = ly , so that m must be an
isomorphism and f must belong to £ . O

THEOREM Let M be generated by its V-prime elements (see 6.5). Then m E
MIX is C-closed if and only if m is strongly C-closed.

Proof Trivially, strong C-closedness of m implies its C-closedness: ax(m)
j-1(cK(i)) 95 j-1(i) = m . Conversely, if m j-'(cK(i)) , we must show that
the morphism k : X cK(X) with cK(i) k = i belongs to £ and is therefore
an isomorphism. For this it suffices to show that every V-prime M-subobject
y of cK(X) factors through X . But since 1K = i V j , the V-prime M-
subobject CK(i) y factors through i or j . In the latter case, one has z such
that j z = cK(i) y , so that the pullback property of m = j-1(cK(i)) gives an
x with k m x = y , while in the former case y trivially factors through k . 0

COROLLARY Let M be generated by its V-prime elements. Then C is strong
if and only if C and C have isomorphic idempotent hulls. If C is the regular
closure operator of a strongly epirefiective subcategory, then C is strong.

Proof According to the Theorem, every C-closed M-subobject is C-closed.
Since C < C , this means that C and C have the same closed M-subobjects;
equivalently, C and C have isomorphic idempotent hulls (see Corollary 5.4).
The regular closure operator of a strongly epirefiective subcategory is strong, by
Corollary 6.5. 0

EXAMPLES

'(1) Using the explicit description of the adjunction space X +M X given in Ex-
ample 6.5, one easily verifies that the Kuratowski closure operator coincides with its
strong modification. It is therefore strong. (A more general result is proved in 8.4.)

'(2) The strongly epirefiective subcategory AbGrp of Grp provides a regular



198 Chapter 6

closure operator which is not strong (see Example 6.4(2)). Hence the assumption
that M be generated by its V-prime elements is essential for the validity of the
Theorem and its Corollary. On the other hand, the assumption is by no means a
necessary condition, as we shall see next.

(3) For every closure operator C of ModR and every submodule M < X
one has

M < X is C-closed q r(X/M) = 0 q M < X is strongly C-closed,

with r = ir(C) the preradical induced by C (cf. 5.5). In fact, these equivalences
follow easily once we have shown: C is the maximal closure operator Cr , and
maximal closure operators are strong. In fact, if we construct K = X +M X =
X + (X/M) as in 6.2 and 6.4, with canonical injections i =< 1, 0 > j =< 1, p>
and p : X --r X/M the projection, then

cK(i(X)) = cK(X x 0) = cx(X) x cX/M(O) = X x r(X/M)

since C is finitely productive (cf. Exercise 2.J). Therefore

ax (M) = j-1(X x r(X/M)) = P 1(r(X/M)),

and for M < X to be C''-closed means exactly r(X/M) = 0 (cf. Prop. 3.4).
Hence, if M < X is Cr-closed, one has

CK(i(X)) = X x 0 = i(X).

(4) We are now able to name a closure operator of ModR that fails to be
strong. Simply consider any preradical r which fails to be a radical. (For instance,
consider soc ; cf. Example 4.3(1).) Then the minimal closure operator C = Cr
is not strong: although r(X) is C-closed in X , i(r(X)) fails to be C-closed in
K whenever r(X/r(X)) # 0 .

6.7 Regular closure in pointed and in additive categories
In this section we provide a simple formula for the computation of the A-regular
closure in an additive category when A is £-reflective. This will then lead us to
a characterization of the idempotent maximal closure operators.

First we consider an arbitrary M-complete category X with M closed under
composition and revisit the adjunctions

C(_) -17r -1 C(-) : PRAD(X,M) -> CL(X,M)

of 5.5, which assign to every preradical r the minimal and maximal closure oper-
ators Cr and Cr and to every closure operator C the induced M-preradical
ar(C) = r , with rx = cx(ox) . Recall that r is an M-radical iff (r : r) = r ;
according to Theorem 5.5(2), this means exactly that Cr is idempotent. We call
a closure operator C E CL(X, M) radical if a(C) is a radical, that is, if its
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maximal hull C*(c) is idempotent. By restriction we then have adjunctions

C(_) -1 r -I C(-) : RAD(X,M) RCL(X,M) (*)

with RAD(X, M) denoting the conglomerate of M-radicals in X and RCL(X, M)
the conglomerate of radical closure operators of X .

Let us now move to the setting of 5.6 where X is a pointed category (so that
X has a zero object) with kernels and cokernels; also, E is assumed to be a class
of epimorphisms. Then we have another adjunction

coker -i ker : PREF(X,£) - PRAD(X,M).

We denote by
REF(X, £)

the subconglomerate of idempotent £-prereflections, which we also call 6-reflections.
In fact, by Proposition 5.1(3), every .6-reflection (R, p) induces the E-reflective
subcategory Fix(R, p) , and trivially, every (full and replete) £-reflective subcat-
egory of X arises in this way. Hence we can think of REF(X, £) as of the
conglomerate of all E-reflective subcategories of X , but since

(R, p) < (R', p') q Fix(R', p') C Fix (R, p)

we must remember that the preorder of REF(X,E) is opposite to "C".
For an E-reflective subcategory A = Fix(R, p) of X , we call

rA := ker(R, p)

the A-regular M-preradical of X . We want to show that rA is actually a
radical. For that we first state:

LEMMA An M-preradical r is a radical if and only if

r(X) -!-(Ex) r(RX)

rxI IrRx

X px RX
is a pullback diagram for every X E X (with px = coker(rx) ). If E is stable
under pullback, then r(RX) = 0 is a necessary condition for r to be a riadical; it
is also sufficient whenever r = ker(coker r) .

Proof The first assertion follows immediately from the definition of radical and
from Theorem 5.6. For the second assertion, if r is a radical, then in the pullback
diagram (6.8) r(px) belongs to E , hence

rRx = px(rx) = px rx(lr(x)) = 0(1,.(x)) = off.
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Viceversa, if rRx - oRx and ker(coker rx) , then

rx - Px-1(oRx) = Px-1(rRx)

(cf. diagram (5.19)).

PROPOSITION

(1) For a full and replete £-reflective subcategory A of X , the A-regular M_
preradical rA is a radical. If each A-refiexion px satisfies coker(kerpx) = Px
then A = {X E X : r'1(X) - 0} .

(2) For an M-radical r of X coker r = (R, p) is an 9-reflection, provided
£ is stable under pullback.

Proof

(1) We write rx = ker(px) and Px = coker(rx) : X -* RX . There is
then a unique morphism p : RX --r RX with p px = px , and p factors as
p = t pAx with t : R(RX) - RX . Furthermore, there is s : RX - R(RX)
with s px = PRx Fx One easily checks that s and t are inverse to each
other, hence ker(phx) - ker(p) . Therefore

rx = ker(p' Px) - (Px)-1(ker(p)) = (Px)-1(ker(pfIx)) - (Fx)-1(r x),

so that r = r 4 is a radical by the Lemma. Furthermore, for every X E A one has
px iso and therefore r'4 - ker(px) - ox . Conversely, ker(px) - ox implies
coker(ker(px)) - lx , hence px - lx under the given hypothesis; consequently,
XEA.
(2) By the Lemma, for a radical r one has ker(rpx) - ox , hence

PRx = coker(rRx) - lx

is an isomorphism for every X E X .

0

For £ stable under pullback, the Proposition gives an adjunction

coker -I ker : REF(X, 6) - RAD(X, M) (**)

The 9-reflective subcategories closed under this correspondence are exactly the
subcategories A of the form

A = IX EX:r(X)-0}
for some radical r with ker(coker r) - r , i. e. the torsionfree classes of radicals
closed under the correspondence.
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Getting back to our original goal of describing the regular closure, we consider
the monotone function that assigns to every £-reflective subcategory A its regular
closure operator regA and show for additive X that reg(-) is (up to isomor-
phism) the composite of (*), (**).

REF(X, £) reg{-} .RCL(X, M)

RAD(X, M)

Since irC(-) = Id , this implies ker - arreg(-) , and the latter fact remains
true even without the assumption of additivity:

THEOREM Let A be a full and replete 6-reflective subcategory of an M-
complete category X with kernels and cokernels. Then the A-regular closure op-
erator regA induces the A-regular radical rA - a(regA) , hence regA < C°A .

If X is additive, then regA is isomorphic to the maximal closure operator of
rA in particular, if the A-reflexion p : 1 -+ R satisfies coker(ker p) - p , then
m : M --' X is A-closed if and only if X/M - Coker(m) E A , and m is
A-dense if and only if R(X/M) = 0 .

Proof In order to verify the first statement, we must show that ker(px) is the
A-regular closure of ox for every X E X , with px the A-reflexion of X
As an equalizer of px, 0 : X -+ RX , ker(px) is A-closed. Furthermore, every
pair of morphisms u, v : X A E A factors through px as u = u* px, v =
v* px , hence u ker(px) = 0 = v ker(px) . This shows ox 4 ker(px) , hence
regd(m) - ker(px) (see Exercise 6.A(1)).

Let X be additive. Hence each horn-set has the structure of an abelian group,
with the zero-morphism being its neutral element and with the composition of the
category distributing over addition from either side. According to Theorem 5.6 we
must show

regAr(m) = ker(px/M . q,,) = qm-1(ker(px/M)),

with q,,, = coker(m) : X -+ X/M := Coker(m) , m : M X in M . Again as
an equalizer of a pair of-morphisms with codomain in A , k := ker(px/M q,,,) is

A-closed, with k > m . It therefore suffices to show m 4 k (again, see Exercise
6.A(1)). Indeed, for u, v : X -> A with A E A and u m = v in , one has
d m = 0 for d:= u - v , hence d factors as t q,,, =d . But then t : X/M -* A
`factors as s - px/M = t , hence d k = s px/M q,,, k = s . 0 = 0 , and this means

k .
Finally, in is A-closed if and only if m is C®A-closed, that is:

in = q '(rx/M), ox/M = qm(m) = gm(gm'(rx/M)) = rx/M.
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According to the Proposition, this means X f M E A under the hypothesis coker(ker p)
p. The argumentation for A-denseness is similar.

Since both C(-) and ker have adjoints, also their composite has a left adjoint.
For additive X this means:

coker r -1 reg" : REF(X,E) - RCL(X,M)

If coker ker = Id F(x,e) , then every E-reflection is closed under this correspon-
dence. Furthermore,

COROLLARY If ker coker = IdD(x,M) , then the regular closure operators
induced by the E-reflective subcategories are exactly the idempotent maximal closure
operators of the additive category X .

REMARK In an abelian category, every monomorphism is a kernel and every
epimorphism is a cokernel, hence coker ker L IdREF(X,E) and ker . coker 25
IdRAD(x,M) holds true trivially. However, we note that these equalities are also
available in the pointed but non-additive category Grp (cf. Example 5.6(2)). We
note further that we have used additivity for the sole purpose of making sure that
every A-regular monomorphism is A-normal (i. e., the kernel of a morphism with
codomain in A ). Hence the assumption of additivity could be avoided, by working
with A-normal monomorphisms instead of A-regular ones and with the A-normal
closure instead of the A-regular one. We prefer not to do so in order not to lose the
immediate contact with the epimorphism problem.

EXAMPLES

(1) The abelian category ModR satisfies all hypotheses appearing in this sec-
tion. The adjunction (**) gives a bijective correspondence between epireflective
subcategories of ModR and radicals of ModR , representing every epireflective
subcategory A as the torsionfree class of the A-regular closure rA . The A-
regular radical regA is the maximal closure operator given by rA .

Here is a list of radicals of AbGrp (= Mody ) and their corresponding torsionfree
classes (cf. Examples 3.4 and 4.6).

t (torsion subgroup) : torsion-free abelian groups

tp (p-torsion subgroup) : p-torsion-free abelian groups

d (maximal divisible subgroup) : reduced abelian groups

dp (maximal p-divisible subgroup) : abelian groups without p-divisible sub-
groups except 0

f (Frattini subgroup) : the subcategory cogenerated by simple cyclic abelian
groups

0 p (p-radical) : abelian groups of exponent p .
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(2) The bijective correspondence between epireflective subcategories (=quasiva-
rieties) and radicals remains true in the pointed category Grp , for the reason
given in the Remark. (Recall that a quasivariety of groups is a full and replete
subcategory of Grp which is closed under subobjects and direct products; it is
a variety if it is also closed under homomorphic images.) The preradical k given
by the commutator subgroup is (according to the Lemma) actually a radical, with
corresponding variety AbGrp . Descending further along the derived series of a
group, the powers k' (n > 1) give the varieties S"Grp of soluble groups of class
n . With the lower central series (instead of the derived series) one produces in a
similar fashion the varieties N"Grp of nilpotent groups of class n . Finally, for
the radical n (for any n > 1 )

n(G) :=<g" : 9 E G>

one obtains the Burnside variety B"Grp of groups of exponent n . (Note that
the question of whether the finitely generated objects of B"Grp are finite is known
as the Burnside Problem; it is still open for small n , i. e., for 5 < n < 665.)

(3) If X is not additive, then the regular closure operator regA of an 6-
reflective subcategory A may be strictly smaller than the maximal closure operator
of rA . Again, consider X = Grp and let A = X . Then rA = 0 , with
corresponding maximal closure operator v (cf. Example 5.6(2)). However, since
every monomorphism in Grp is regular (cf. Example 6.1(2) and Exercise 6.B),
the A-regular closure is the discrete operator S < v .

In general, with an arbitrary epireflective category A of Grp , for the formula
regA = C°A to hold it is necessary that

C°<C''A

=regA;

equivalently, that every A-closed subgroup of a group is normal. In fact, an easy
adoption of the proof of the Theorem shows, that this condition is also sufficient. In
particular, if A is contained in the variety AbGrp , so that A-closed subgroups
are necessarily normal (just check that the equalizer of two homomorphisms into an
abelian group is normal in their domain), then the A-regular closure operator is
maximal. For example, the regular closure operator w.r.t. AbGrp is the maximal
closure operator of the radical k .

6.8 Clementino's Theorem
In this section we provide necessary and sufficient conditions for the A-regular
closure operator to be weakly hereditary; equivalently, for A-closed subobjects to
be closed under composition. Our category X is assumed to be finitely com-
plete and M-complete, with M closed under composition and containing all
regular monomorphisms. Consequently, the class E such that X has (£,M)-
factorizations is a class of epimorphisms in X , and our crucial additional hypothe-
sis throughout this section is that £ is a surjectivity class in X . This means that
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there is a class P of objects in X such that for every morphism f : X --+ Y in
X one has f E E if and only if the following condition holds :

foreveryy: P-+Y in X with PEP

there is an x : P -+ X in X with f z = y.
In other words, E contains exactly those morphisms f for which every PEP
is projective with respect to f . It is easy to check that the surjectivity class £ is
necessarily stable under pullback (cf. Exercise 1.L, where the case of a single-object
class P is considered).

The full replete subcategory A of X is assumed to be E-reflective, hence
closed under M-subobjects. Recall that the A-regular closure of m : M -+ X in
M maybe computed as

reg4Z (m) = Pxl (1eg'.tAx (Px (m)), (*)

with px : X --+ RX denoting the A-reflexion of X (see Theorem 6.3). Conse-
quently, an M-subobject in of X is A-closed if and only if there is an A-closed
M-subobject n of RX with in = pj'(n) (see Corollary 6.3).

For such m : M -+ X and n : N . -+ RX the pullback projection M --+ N
factors through pM by a unique E-morphism in,, since N belongs to A
Hence we have a pullback diagram

M PM RM

Px

MP N

in

RX

(6.10)

We call mP the p-defect of in and note that mP belongs to E (since
M -+ N belongs to E , as a pullback of px ).

A morphism f : X --+ Y is said to preserve A-closedness if for every A-closed
M-subobject in of X also f (m) is A-closed. Corollary 6.3 implies that each
A-reflexion preserves A-closedness. It turns out that preservation of A-closedness
by mP is a crucial condition for regA to be weakly hereditary.

PROPOSITION Let the p-defects of A-closed M-subobjects be monic. Then
regA is weakly hereditary in X if and only if its restriction to A is weakly
hereditary and the p-defects of A-closed M-subobjects preserve A-closedness.

Proof First we show that the given conditions are sufficient for regA to be
weakly hereditary. Hence we must show that Regx (A) is closed under composition
and consider A-closed M-subobjects in : M --+ X and m' : M' -+ M . According
to Corollary 6.3, let n : N -+ RX be A-closed such that (6.10) is a pullback
diagram, and let k : K -+ RM be A-closed such that the left square in
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M' e K d -

jmi

M PM

k

RM MP

205

N'

in, (6.11)

is a pullback diagram. In the right square, we let n' S5 m,(k) , hence d E E . By
hypothesis, n n' is A-closed, hence also pi' (n n') is A-closed. Now it suffices to
show unique morphism j : M' --+ L = pj'(N') with

p j = d p : L --- N' the pullback projection) belongs to E , in
order to conclude that m m' = pX'(n n') is A-closed.

Hence we must show that every P E P is projective with respect to j , and we
consider a morphism y : P --+ L . Since d e E E , the morphism w = p y factors
as d e x = w . The pullback property of (6.10) gives a morphism v : L M
with m v = pji(n n') and in,, pM v = n' p , hence

and therefore pM v y = k e x , by hypothesis on mP . The pullback diagram

ii:
(6.12)

can be glued to the left part of (6.11), and from the composite pullback diagram one
obtains amorphism b:P-Q with and Now

hence j (a b) = y , as desired.
Conversely, we must prove that the given conditions are necessary. This is triv-

ially true for the restriction of regA to A to be weakly hereditary. In order to
show that the defect m, of m E RegX(A)/X preserves A-closedness, we consider
an A-closed subobject k : K --r RM and let m' = pM (k) and n' m,(k) .
Then m' is A-closed, and in order to show that n' is A-closed, it suffices to
verify that n n' A-closed (see Corollary 2.3). But since px (m m') = n n' , with
m m' A-closed by hypothesis, this follows since px preserves A-closedness, as
remarked before the Proposition.

P

Clementino's Theorem deals with the case that £ is the surjectivity class be-
longing to P = {T} , with T the terminal object of A (so that f E E holds if
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T is projective with respect to f ). Then the monic condition of the Proposition
turns out to be necessary as well:

THEOREM Suppose that £ is the surjectivity class belonging to the terminal
object. Then the A-regular closure operator of X is weakly hereditary if and only
if its restriction to A is weakly hereditary and the p-defects of A-closed M.
subobjects are monic and preserve A-closedness.

Proof We are left with having to show that the p-defects of A-closed M-
subobjects are monic if regA4 is weakly hereditary in X . First we prove two
auxiliary claims.

CLAIM 1 For every pullback diagram (6.10) with N = T , mp is an isomor
phism.

Proof 1 First we observe that any morphism n : T -> RX is an A-section and
therefore an A-closed M-subobject (see the remark before Theorem 6.1), hence
also m is A-closed. Since mp E £ , the assumption on £ gives a morphism
k : T - RM with mp - k = 1 . As before, k is A-closed, and so is its pullback
m' S, pM (k) , hence m - m' is A-closed by hypothesis. Since pX(m - m') - n ,

with Corollary 6.3 one has

m - m'=regx(m-m') 25 Px1(n) a- in,

hence m' is iso. But then k must be in £ and therefore be iso as well, and this
finally means that my must be an isomorphism.

CLAIM 2 For m : M -X A-closed, mp s = mp t with s,t : T --> RM
implies s = t .

Proof 2 According to Claim 1, the p-defect of m ?' pj1(n) with n := n - mp
s = n - mp t is an isomorphism. With j : M -+ M arising from rn G m , the
morphism pM j : M --+ RM therefore factors through pM , as a - pM = pM - j
One now concludes

s PM((Pns (s)) :5 PM (9) = a,

t = Pnr((PM (t)) S PM (j) a,

which implies s = a = t as claimed, since T is a terminal object.

If we finally consider arbitrary morphisms u, v : U -* RM with mp u = mp -v ,
then the equalizer w : W -> U of (u, v) must belong to £ and therefore be an
isomorphism: indeed, for every z : T -> U one has uz = vz according to Claim
2, so that z factors through w. fl

REMARKS

(1) The assumption of finite completeness of X , in addition to M-completeness,
is not used to its fullest, neither in the Proposition nor in the Theorem. In the
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proposition we used it only when forming the pullback (6.11), and even that can
be avoided when the arrow e x is in M , as is the case when P contains the
terminal object only, i. e., under the hypothesis of the Theorem. In the Theorem,
we use the terminal object and equalizers.

(2) Note that in Claim 1 of the Proof of the Theorem, we have shown (under the
assumption that £ be the surjectivity class of {T} and that regA be weakly
hereditary) that for the pullback in = pXl (n) : M - X of any m : T -> RX , the
A-reflexion of M is (isomorphic) to M - T . We say that fibres of A-refiezions
have trivial A-reflezions in this case. Since in the proof of the Theorem we showed
that p-defects are monic based solely on the validity of Claim 1, we finally obtain
Clementino's Theorem [1993] as originally stated.

COROLLARY Under the assumptions of the Theorem, the A-regular closure
operator of X is weakly hereditary if and only if

(1) its restriction to A is weakly hereditary,

(2) fibres of A-refiexions have trivial A-reflexions,

(3) p-defects of A-closed subobjects preserve A-closedness.

0

The hypotheses of the Theorem are tailored for applications in Topology which
we discuss in the next section. However, the Proposition as well as parts of the proof
of the Theorem remain valid in algebraic categories, as we shall see next.

EXAMPLES

(1) We have shown in 6.7 that, for X = Mods , one has a bijective correspon-
dence between epireflective subcategories and radicals, given by A' -* r'4 , and that
the A-regular closure is just the maximal closure operator of r 4 . According to
Theorem 3.4 then, regA is weakly hereditary if and only if r 4 is idempotent.
Hence full and replete epireflective subcategories with weakly hereditary regular clo-
sure operator correspond bijectively to idempotent radicals. Such radicals are also
called torsion theories, and the corresponding epireflective subcategories are pre-
cisely the torsionfree classes. For example, the radicals t and d are torsion
theories of AbGrp = Modz , but f is not (see Examples 3.4).

Let us now compare these consequences of 6.7 with the results presented in this
section. First of all, £ = Epi(Mods) is in fact a surjectivity class, since S is
(free and therefore) projective in Mods , and £ is simply the surjectivity class
belonging to P = {S} . Hence the general assumption of this section is satisfied,
although the hypothesis of the Theorem is not. However, an adaption of its proof
allows us to show that the following conditions are equivalent for a full and replete
epireflective subcategory A with A-reflezions pX : X --. RX and induced radical

r=r,A
.
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(i) the regular closure operator regA is weakly hereditary,

(ii) r is idempotent,

(iii) R(r(X)) = 0 for every S-module X

(iv) the restriction px'(N) -* N of px is an A-refiexion of pjl(N) for every
submodule N < RX ,

(v) A is closed under extensions, that is: for every M < X , if M and X/M E,
A, then X E A .

In fact, we already know that (i) is equivalent to (ii), and (iii) is simply a re-
formulation of (ii). For (iii) q (iv), first note that (iii) means that the p-defect of
r(X) X is the map 0 -+ 0 , while (iv) means that the p-defect of M := pXl(N)
is an isomorphism for every N < RX (not only when N is A-closed !). Hence
(iv) trivially implies (iii) while (iii) = (iv) can be shown analogously to Claim
2 in the proof of the Theorem (although the hypotheses of the Theorem are not.
satisfied here), as follows. In the notation of diagram (6.10), since mp E E , it
suffices to show that ker(ma) = 0 . But this is obvious in the presence of (iii):
since (6.10) is a pullback, we have r(X) < M , and since r(X) 0 is an A-
reflexion, PM kr(X) = 0 , hence ker(px) = r(X) < ker(p yt) = r(M) ; therefore,
ker(mp pyt) = ker(px) = ker(pM) , which implies ker(mp) = 0 . To prove the
equivalence of (v) with the other conditions is left as Exercise 6.P.

In summary we see that for X = Mods , the Corollary remains valid, but that of
the necessary and sufficient conditions (1)-(3) given, (2) is the same as (iii) above
while (1) and (3) have become redundant.

(2) Quite surprisingly, conditions (i)-(v) of (1) remain equivalent in case X
Grp , for any full and replete epireflective subcategory A . In addition, they imply

(vi) the restriction of regA to A is discrete.
The proof of (v) = (vi) uses the powerful tool of Kurosh's Subgroup Theorem; for a
complete proof we must refer the reader to Fay [1995]. The proof that conditions (ii1-
(v) of (1) remain equivalent can proceed as in the module case, as well as implication
(i) (ii). For (ii) = (i) one argues as follows. Since (ii) implies (iv), so that p-
defects of A-closed subobjects are monic, the Proposition gives (i) since the discrete
(!) restriction of regA to A is weakly hereditary, and since p-defects of A-closed
subobjects preserve A-closedness, by (iv).

As in the case of modules, the Corollary remains valid for X = Grp , but with
conditions (1) and (3) having become redundant. However, even for "good" subcat-
egories of A , the A-regular closure operator may fail to be weakly hereditary . Fox
example, for A = AbGrp one has regA = Ck (see Example 6.7 (3)). Then every
subgroup of an abelian group is A-closed, hence the restriction of regA to A is
discrete and therefore trivially weakly hereditary (more generally, see Exercise 6.Q).
However, since k is not idempotent, reg4 is not weakly hereditary in Grp .
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6.9 Regular closure for topological spaces
In this section we wish to apply Clementino's Theorem to the category Top and
determine which strongly epireflective subcategories A have the property that ev-
ery subobject of an object in A is A-closed, so that then every epimorphism in A
must be surjective. We show that this never happens for A C Haus (unless every
space in A has at most one point). Nevertheless, "outside Haus " this property
is quite frequent (with the prominent exception of A = Topo , see Example 6.5(3)),
and it allows for a perfect characterization in terms of weak hereditariness and of
full additivity of the A-regular closure operator.

First let A be any full replete subcategory of Top . If A is non-trivial, that
is, if A contains a space A with at least two points, then regA is grounded. (In
fact, any two (constant) maps X -. A must agree on regAr(0) since they agree
on 0 , which is possible only if regAx(0) = 0 .) On the other hand, if A does not
contain a two-point space (including the case A = 0 ), then its regular closure is
the only non-grounded closure operator of Top , namely the trivial operator T

Exercise 2.11). Hence, A is non-trivial if and only if its regular closure operator
is non-trivial. In what follows we always assume A to be non-trivial.

LEMMA For any space X and the conditions below, one has (z) (ii} (iii)
(iv), while all are equivalent if A is strongly epireflective.

(i) X E A ;

(ii) for all x E X , {x} is A-closed in X

(iii) the fully additive core of regA is discrete on X , that is: (regA)' = sx

(iv) (if A is reflective) the A-refiexion of X is monic.

Proof (i) (ii) For every x E X , {x) is the equalizer of the identity map on
X and the map constant x . (ii) . (iii) For 0 # M C X , one has

(regA)'(M) = U regA({x}) = M
rEX

(see 4.9), hence (iii) holds since regA is non-trivial. (iii) = (iv) From Theorem 6.3
one has the formula

regA({x}) = pxl(regRx(px({x}))),

and (iii) implies
regA({x}) _ (regA)'({x}) = {x},

which then gives the injectivity of the map px . (iv) = (i) As a monic strong
epimorphism, px is an isomorphism. 0

PROPOSITION Every subspace embedding in an epireflective subcategory A
of Top is a regular monomorphism of the category A if and only if the A-
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regular closure operator of Top is fully additive. In this case, epimorphisms of the
category A are surfective.

Proof To say that all subobjects of objects in A are regular monomorphisms
of A , hence A-closed, is the same as to say that regAJ,, is discrete. In this case,
formula (*) of 6.3 gives

regz(M) = pj'(regRx(px(M))) = pxl(px(M)),

which shows that regA must be fully additive. Conversely, if regA = (regA)a , im-
plication (i) = (iii) of the Lemma gives that regA fA is discrete. For the additional
statement see Corollary 6.1. O

We remark that the Lemma and the Proposition remain valid for any topological
category over Set (see Exercise 5.P) such that constant maps are morphisms in
the category. Hence Top may be traded for PrSet , FC , Gph , SGph ,

Unif , etc. The following Theorem, however, makes essential use of the specific
structure of Top .

THEOREM The regular closure operator of a strongly epirefiective subcategory A
of Top with A C Top, is weakly hereditary if and only if every subspace em-
bedding in A is A-closed and fibres of A-refiexions have trivial A-reflexions. In
this case the A-regular closure operator is fully additive.

Proof 'if" If regA 1A is discrete, then it is trivially weakly hereditary. Fur-
thermore, the p-defects, as maps in A , trivially preserve A-closedness in this case.
Hence, if fibres of A-reflexions have trivial A.reflexions, Corollary 6.8 gives weak
hereditariness of regA .

only if" Let regA be weakly hereditary. By Corollary 6.8, fibres of A-
reflexions have trivial A-refiexions. We must show that regA is discrete and
consider 0 54 M C X E A. In order to see that M is A-closed in X, by
Rolls Lemma we must actually show that X +M X belongs to A , and for that
it suffices to show that every point in X +M X is A-closed, according to the
Lemma.

Indeed, for every x E X , {x} is A-closed in X , hence also its fibre c-lx
(along the canonical map e : X +M X - X ) in X +M X is A-closed. But since
A C Top, , the subspace c -lx = {c(x,1),c(--,2)} of the Ti-space X +M X is
discrete and therefore belongs to A . (Note that the non-trivial subcategory A
contains a space A with at least two points; hence the 2-point discrete space is
a subspace of A and belongs to A .) By the Lemma, {c(x, 1)} is A-closed in
e-Fx , hence A-closed in X +M X , since A-closedness is transitive when regA
is weakly hereditary.

By the Proposition , the condition that subspace-embeddings be A-closed may
equivalently be replaced by the condition that regA be fully additive. 0

COROLLARY For a (non-trivial) strongly epireflective subcategory A of Top ,
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one has A C Haus if and only if every A-closed embedding in A is Kuratowski-
closed. In this case the A-regular closure operator fails to be weakly hereditary.

proof To say that every A-closed subobject embedding in A is Kuratowski-
closed means equivalently regAJA > KJA (which is equivalent to regA > K ,
by Theorem 6.3; see Exercise 6.G). Under this condition, for every X E A , the
diagonal bX : X --. X x X is A-closed (see Theorem 6.1(iii)), hence (Kuratowski-)
closed, so that X must be Hausdorff. Conversely, A C Haus implies regA >

regHau9 > epiHaus = K on A (see Example 6.5(2)). If we would ask regA to
be weakly hereditary, by the Theorem then every space X E A would have to be
discrete. But since A contains a space with at least two points and all its infinite
products, this would lead to a contradiction.

REMARKS

(1) The assumption A C Top, in the Theorem can be relaxed to A # Topo
In other words, necessity and sufficiency of the given conditions for weak heredi-
tariness of regA remain valid for every strongly epireflective A , with the only
exception of A = Topo (see Example (2) below). In fact, the statement of the
Theorem is trivially true for A = Top (in which case regA = S ) and also for
A = T {X : IX 1 < 1} (see Example (1) below). Hence we only need to show:

Every strongly epireflective proper subcategory A of Top different from Topo
is contained in Top,

Proof If A contains a non-To space, then that space has an indiscrete 2-
element subspace 12 in A , and A must be Top (since every space allows for
a continuous injective map to a power of 12 ). Hence we can assume that we have
proper inclusions T C A C Topo . Since every To-space is homeomorphic to a
subspace of a power of the Sierpinski dyad, we conclude that 2-element spaces in
A must be discrete. But then every space in A must be T, (since T,-separation
can be detected on 2-element subspaces).

(2) The Corollary remains valid for every (not necessarily strongly) epireflective
subcategory A of Top. In fact, in 7.1 we shall state (the easy fact) that Aand its
strongly epireflective hull B in Top have the same regular closure. Since Haus is
strongly epireflective, one may therefore just apply the Corollary to B and obtain
it for A as well.

(3) The Corollary indicates a certain scarcity of weakly hereditary regular closure
operators. Nevertheless, it is quite easy to produce for every cardinal number a
a distinct strongly epireflective subcategory It. with Haus C W. C Top, , and
'with weakly hereditary regular closure operator: see Example (5) below.

EXAMPLES

(1) As mentioned at the beginning of this section, the trivial closure operator T
Is the regular closure operator of the strongly epireflective subcategory T = {X
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JXJ < 1} of Top . For any other strongly epireflective subcategory A we have
regA < Q (the largest proper closure operator of Top ; see Theorem 4.7). Indeed,
if we had regA = G (the indiscrete closure operator), since G is fully additive,
from the Lemma we would have A = {X : gx = sx } C T .. The operator Q is the
regular closure operator of the least strongly epireflective subcategory which contains
a two-point space (this is the category of spaces with trivial quasi-components), as
well as of the least epireflective subcategory which contains a two-point discrete
space (this is the smaller category 0-Top of zero-dimensional spaces, see Exercise
6.R).

(2) The regular closure operator of Topo in Top is the b-closure. We already
showed in Example 6.5 (3) that its restriction to Topo coincides with b . In light
of Theorem 6.3 it suffices to show the formula

bx(M) = PXI(bxx(Px(M))), (*)

in order to conclude the validity of b = regTePo for the whole category Top . For
this recall that the Topo-reflexion Px : X -r RX = X/ - of a space X is given
by the equivalence relation ( x - y . {x} = {y} ) on X . Hence both closed sets
and open sets are -saturated. Consequently, the map px is both open and closed.
Assume that x E X \bx(M) . Then there exists an open neighbourhood U of x
such that for the closed set A = {x} , U fl A fl M = 0 . By the above-mentioned
properties of px , the set px (U) is an open neighbourhood of y = px (a) , and
px(A) is closed in RX , hence it is the closure of {y} . Moreover, by the -
saturatedness of U and A we have px(U) fl px(A) fl px(M) = 0 . This shows
that If 0 bRx(px(M)) and consequently the inclusion "p" in (*). The other
inclusion follows from the continuity property applied to b.

As a hereditary closure operator, b is in particular weakly hereditary. Also, fibres
of Topo-reflexions have trivial Topo-reflexion, but not every subspace of a To-space
is b-closed. Hence the assertion of the Theorem is not valid for A = Topo .

(3) The regular closure operator of Haus in Top coincides with the Kura-
towski closure K on Haus (cf. Example 6.5 (2)). But since K is (weakly)
hereditary, according to the Corollary, the Haus-regular closure cannot coincide with
K on the whole category Top . In fact, K is not regular: if we had K = regA, we
could assume A to be strongly epireflective, with A C Top, (by Remark (1), since
regT0Po = b and regTOP = S); but then K would have to be fully additive, by the
Theorem.

(4) The regular closure operator of the category Tych of Tychonoff spaces in
Top and the regular closure operator of the category FHaus of functionally Hans-
dorff spaces in Top (spaces in which every pair of distinct points can be separated
by real-valued continuous functions) coincide with the zero operator Z defined by

zx(M) = fl{ f-1(0) : f : X -+ [0,1] continuous, f 1m = 0}.

To prove reg'' ' = Z , it suffices, as in (2), to show that regTyc' coincides
with Z on Tych and the counterpart of (*) for Z and the Tych-reflexion
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px : X -+ RX . For the first property note that both Z and regTYt coincide
with K on Tych (see Exercise 6.T for the latter coincidence). A proof for

regFxau' = Z is given in Example 7.5(1).

(5) (Hoffmann's [1979] categories 7{, ) For an infinite cardinal a denote by
X, the (unique up to homeomorphism) space of cardinality a having the co-
finite topology. Then the full subcategory 7{, of Top consisting of spaces Y
such that every continuous map f : X,. -+ Y is constant, is strongly epireflective
and satisfies Haus C 7{, C Top, . Moreover, for a < /3 , 71, is properly
contained in 7fp since X, E 7{p but X. ¢ W. . Since fibres of 7{.-reflexions
have trivial 7{« reflexion, and since every subspace embedding in 7{, is 7{, closed
(see Exercise 6.T), the Theorem yields that ree* is weakly hereditary.

6.10 Pointed topological spaces
In this section we show how the results of 6.7 when applied to the pointed category
Top, yield useful results also for the non-pointed category Top . In particular, we
obtain a characterization of epiprereflections of Top in terms of closure operators.

The category Top, of pointed topological spaces is provided with its natural
embedding-subobject structure M. , hence M. = U-'M , with the forgetful
functor U : Top, --. Top , (X, z) ' -. X , and with M the class of embeddings
in Top . The functor U has a left adjoint F which adds to a space X a new
discrete point; we shall write

)(X, x)) = U(X, x) and X, = FX = (X +

According to Theorem 5.13, this leads to an adjunction

) -) -i (-) * : CL(Top.,M.) CL(Top,M),

which may be described as follows: for C E CL(Top,M) , )C) is defined by

Ict(x,x)(M, x) := (cx (M), x), (*)

and for D E CL(Top M.) , D* is defined by

dX(M) := Idx.(M.))nX. (**)

(In the terminology of 5.13, one has )C) = `C and D* = D" .) Somewhat
surprisingly, the map ) -) not only has a right but also a left adjoint; for D E
CL(Top M.) , define D by

dx(M) U )d(xx)(M,x))
=EM

PROPOSITION For C E CL(Top, M) and D E CL(Top M.) , the formulas
above define closure operators )C) E CL(Top M.) and D*, D E CL(Top, M)
respectively, with

IC) < C < )C)* and )D*) < D:5 IDI;
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in fact, Cl I, C , ICI' coincide on non-empty subspaces.

Proof The inequalities not involving () follow from Theorem 5.13. To show
that D as defined above is a closure operator of Top is an easy exercise. For
every M C X E Top and C E CL(Top, M) one has

iclx(M) = U 1(cx(M),x)I c cx(M),
zEM

with the inclusion being proper only for C = T and M = 0 . Furthermore, for
M00,onehas

clx.I(IM.I) = cx(M) U {*}

(just exploit the continuity condition for f : X + {*} X with f Ix = idx and
f (*) = a , for some a E M ). This gives

Icl'x(M) = nX = cx(M),

while the last equality sign must be relaxed to "2" in case M = 0 . Similarly
one shows ID*I < D for D E CL(Top., M.) . Finally, for (M, xo) c (X, xo) E
Top* one has

Idl(X,=o)(M,xo) = (dx(M),xo) = U (Id(x,z)(M,x)I,xo),
zEM

which contains the pointed set d(x zp)(M, xo) since xo E M 0

In complete analogy to the adjunctions

(i) -1(_)* : CL(Top., M.) -+ CL(Top, M)

we can define adjunction

(ii) () (- I -I PREF(Top., £.) - PREF(Top, E),
with £, T. denoting the class of quotient maps (=strong epimorphisms) in the
categories Top, Top* respectively. For (R, P) E PREF(Top, £) one defines
(IRI, IPl) E PREF(Top.,£.) by

IPI(x,zo) := Px : (X, xo) -' IRI(X, xo) :_ (RX, PX(xo))

For (S, a) E PREF(Top., E*) , one defines (S*, u*) E PREF(Top, £) as a fam-
ily of quotient maps

aX:=ax.Ix

note that S*X is not required to be a subspace of SX. . Finally, (S,ir) is, for
every X E Top , defined by the multiple pushout diagram
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X rx

IS(X, x)I

- SX

p= (z E X) (6.13)

Hence 3X = Xf - , with -' the equivalence relation such that a - b for
every pair a, b E X for which ' o,(x,s)(a) = v(x,Z)(b) for some x E X . The proof
of the following Proposition* must be left as an exercise:

PROPOSITION* For (R, P) E PREF(Top, E) and (S, o) E PREF(Top*, T.)
one has

(IRI, Ipl) = (R, p) S (IRI*, IpI*) and (ISI*, IoI*) <_ (S, a) < (ISI,1o-1).

Furthermore,

Fix(IRI, Ipl) = {(X, xo) E Top* : X E Fix(R, p)},

Fix(-S, ir) = {X E Top : (Vu E X)(X, X) E Fix(S, v)},

and (JRI, Ipl) is an T.-reflection if (R, p) is an E-reflection.

Consequently, for an £-(pre)reflection (R, p) and A := Fix(R, p) , IAI =
{(X,zo) E Top* : X E A} is the subcategory belonging to the a*-(pre)reflection
(IRI, JpJ) . For the regular closures belonging to A and IAI one can prove:

LEMMA
JAIreg(X,zo)(M,xo) = (regx(M),xo)

Proof Since xo E M , with i, j : X -. X +M X the cokernel pair of M C X
in Top and TO = i(xo) = j(xo) ,

i, j : (X, xo) =:- (X +M X, xo)

is the cokernel pair of (M, zo) C (X, xo) in Top* . Hence the formula of the
-Lemma follows from the formula given in Remark 6.2(2). CI

We call a closure operator C E CL(Top, M) pointedly radical if ICI E CL(Top*,
M.) is radical and denote by R*CL(Top,M) the conglomerate of all pointedly
radical closure operators of Top . Now the Lemma gives the following commutative
diagram:
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(P)REF(Top41 E)

I - I

(P)REF(Top, £)

reg(-)

reg(-)

(R)CL(Top M.)

II-I
(R*)CL(Top, M)

(6.14)

As in 6.7 one has that E.-(pre)reflections and radical closure operators of Top*
are related to (pre)radicals of Top. via the adjunctions

(iii) C(_) - ar -i C(-) : (P)RAD(Top.,M.) , (R)CL(Top.,M.)

(iv) coker -I ker : (P)REF(Top.,T.) -i (P)RAD(Top.,M.).

(Note that, in general, it is not guaranteed that coker maps a radical to a reflection
since E. is not stable under pullback; see Proposition 6.7(2).) Composing of a
and ker with the functors I - I of (i) and (ii), respectively, leads to functors

Iarl : (R*)CL(Top,M) -- (P)RAD(Top.,M.),

Ikerl : (P)REF(Top,E) (P)RAD(Top.,M.),
which are described explicitly by

IirI(C)(X, xo) = (ex({xo}), xo),

Ikerl(R, p)(X, xo) = (p
1(p(xo)), xo).

As in (the non-additive part of) Theorem 6.7 one obtains with the Lemma

IirpLeg(-) = Ikerl,

for 'E-reflections, hence
regz({xo}) = p 1(p(xo))

for A E-reflective and xo E X E Top . This suggests to consider, for every
(R, p) E PREF(Top, £) , the p-saturation operator sat(R,o) E CL(Top,M) de-
fined by

sat('a)(M) := p-1(p(M)).

THEOREM

(1) IirI establishes a bijection between fully additive (and weakly hereditary) clo-
sure operators of Top and (idempotent) preradicals of Top. . Its inverse assigns
to a preradical r the closure operator Cr with

(cr)x(M) = U Ir(X,x)I.
rEM
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(2) Ikerl embeds PREF(Top,E)/ - reflectively into PRAD(Top.,M.)
Its reflector coker assigns to a preradical r the prereflection (R, p) , with px
X -- RX = X/ -r the canonical projection with respect to the equivalence relation

a ^'r b q (3x1,...,z, E X)(a E lr(X,xl)l,b E lr(X,xn)l, and

Ir(X, x;) l n Ir(X, z;+i) l 0 0 for i= 1,...,n- 1).

Hence Ikerl establishes a bijection between isomorphism classes of E-prereflections
of Top and those preradicals r of Top. for which {r(X,z) : x E X} gives a
partition for every X E Top .

(3) For every E-reflection (R,p) and r = lkerl(R, p)

sat(R, = Cr.

If (R, p) is an E-reflection with A = Fix(R, p) non-trivial, then regA < (Cr)*
and

sat(Rjv) = (fegA)l _ ((CT)*)O.

(4) sate-) establishes a bijection between isomorphisms classes ofE-prereflections
and closure operators C E CL(Top, M) which are fully additive, idempotent and
symmetric, so that (y E cx({x}) s z E cx({y})) for all z, y E X E Top .

PRAD(Top., M. )

PREF(Top, E) sat

CL(Top, M)

(-)19

11

incl.

FACL(Top, M)

(6.15)

Diagram (6.15) illustrates the situation, its inner arrows commute, and the outer
arrows denote the left adjoints.

Proof (1) The adjunctions (i) and (iii) give the adjunction C(_) -i lil , and
for all r E PRAD(Top., M.) , C E CL(Top, M) , and zo E X E Top one has

kI (Cr)(x, So) = ((r)x({-:o}), So) = r(X, xo),

(cIxuc))X({xo}) = I(cx({xo}),xo)l = cx({xo}).

Hence lar((Cr) = r and CI,,I(c) = C® , which proves the claim.

(2) The adjunctions (ii) and (iv) give the adjunction coker -t Ikerl . The given
description for (R, p) = coker(r) arises from an explicit construction of the multiple
pushout (6.12) in case (S, o) = coker(r) : the equivalence relation induced by ax
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is simply the transitive hull of the union of the equivalence relations induced by the
maps o(x,x) , x E X . We are left with having to show

coker(Ikerl(R,p)) = (R,p).

But with r = Ikerl(R,p) one has Ir(X,xo)I = pX'(p(xo)) for all xo E X E Top ,

hence the explicit description of ^'r shows immediately that this is exactly the
equivalence relation induced by px , and this proves the claim.

(3) Clearly,

(cr)x(M) = U Ir(X, x) I = U Pxl(Px(x)) = satXR'P)(M)
xEM aEM

for all M C X E Top . Furthermore, with qM, = coker(M*) : X. --r X. IM.

(cr)x(M) = IqM.-'(r(X./M.))InX = {x E X : px./M.(gM.(x)) =Px./M.(qM.(*)))

is the equalizer of (px./M, qs,)I x : X R(X./M.) and a constant map. Hence,
when (R, p) is a reflection with A = Fix(R,p) , then (cr)X(M) is A-closed,
hence regX(M) C (cr)X(M)

If M = {xo} is a singleton set, and if we consider any continuous maps f, g
X - A E A with f(xo) = g(xo) = ao , then there are extensions f.,g.: IX.I -
A with f. (*) = g. (*) = ao . Since f. and g* coincide on {*, xo} = J M* I , they
both factor through qM, and then (since A E A) through px,/M, . Hence there
are continuous maps f #, g# : R(X./M.) - A with

f = f# Px./M. ' qM., g. = g# ' PX./M. ' qM.

Therefore f and g coincide on (cr)X({xo}) which then must coincide with
regX({xo}) = pjl(px(xo)) = satX'P)({xo}) . Since obviously sat(R,) is fully
additive, this shows that sat is the fully additive core of both reg' and (C)*

(4) From identities established above we obtain

coker IarI incl sat(-) = coker . IirI IkerI = id.

We are left with having to show

sat(-) coker Iarl(C) = C

for every fully additive, idempotent and symmetric closure operator C of Top .
But with r = I rl(C) and (R, p) = coker(r) one has

satXR'°)({xo}) = Pxi(Px(xfl)) _ {a E X : a -r xo}

for all xo E X E Top . The description of ^'r given in (2) shows

a -r xo f* cx({a}) = cx({xo})
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whenever C is idempotent and symmetric. Hence sat(RA and C coincide on
singletons, hence are equal if C is fully additive.

COROLLARY A closure operator C of Top is the fully additive core of the
regular closure of a strongly epireflective subcategory A of Top if and only if

(1) C is fully additive, idempotent and symmetric,

(2) for every X E Top , the projection X -' X/ -c with (x -c y q
cx({x}) = cx({y}) ) preserves C-closedness.

In this case, A contains exactly those spaces in which every point is C-closed.

proof if C = (regA)e for an E-reflective subcategory A of Top , then C =
sat(RMM) according to Theorem (3), which satisfies condition (1). Up to isomorphism
X --r X/ - coincides with px : X - RX , which preserves sat(R,o)-closedness.

Conversely, for C with (1) and (2), let (R,p) = coker(t,I(C) ), so that px
X -* RX = X/ is the projection. Then

A = Fix(R,p) = {X : px is monic} = {X : (Vx E X){x} is C-closed in X}.

Now it suffices to show that (R, p) is a reflection, i.e., that RX E A for all X
But (2) implies

cxx({px(x)}) = px(cx({x})) = px({x})
for all x E X , so that points in RX are C-closed.

EXAMPLE The following M.-radicals of Top. give partitions for every space
X and therefore correspond to £ -prereflections of Top (see Theorem (2)):

c(X, x) = connected component of x in X

q(X,x) = quasi-component of x in X = Iar(Q)I (cf. 4.7),

a(X, x) = arccomponent of x in X ,

Of these prereflections, c and q lead to reflections, but a does not. (Consider
the Topologist's Sine Curve (cf. Example 5.1 (2)).)

Exercises

6.A (Characterizing A-regular closure and A-epimorphisms)

(a) Under the hypotheses of Theorem 6.2 show that n is (isomorphic to) the A-
regular closure of m E M if and only if n' > m is A-regular and in 4 n .

(b) Under the hypothesis of Lemma 6.1 show that a morphism m : M -. X in
X is A-epic if and only if pK - i = OK j .
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6.B (Surjectivity of epimorphisms in Grp) Show that all monomorphisms
in Grp and in the category Grpfi of finite groups are regular, and conclude
that the epimorphisms in Grp and Grp fin are precisely the surjective homomor-
phisms. Hint (cf. Adamek-Herrlich-Strecker [1990], p. 117): Let M be a subgroup
of a (finite) group G. Consider the (finite) permutation group S of the (finite) set
X obtained from the set of all left M-cosets of G by adjoining a single new el-
ement k , and denote by p E S the transposition of the elements M (which
is the coset eM ) and M of X . Now the inclusion M G is the equalizer
of the homomorphisms fl, f2 : G -+ S defined as follows: fl(g)(g'M) = gg'M ,

fi(g)(M) = M , f2(g) = P - h(g) p .

6.C (Strong monomorphisms need not be regular)

(a) Prove that if the composite j i is a regular monomorphism with j monic,
then also i is a regular monomorphism.

(b) Let S be a semigroup with 0 (hence 0 x = z 0 = 0 for all x E S ), and
let I be a two-sided ideal of S (hence IS U SI C I ). Then the inclusion
I -+ S is a regular monomorphism in the category SGrp of semigroups. If
S is commutative and the subset B = {0} U S \ I is a subsemigroup of S
with BBI = {0} then also the inclusion B --+ S is a regular monomorphism.
Hint: Let the "quotient" Sf I have underlying set B and a multiplication
* defined by a * b = ab if ab E S \ I and a * b = 0 otherwise.

(c) (Cf. Adamek-Herrlich-Strecker [1990], p. 117) Define a multiplication on
S = {0, a, b, c, d, e} such that B = {0, a, b, c} is a subsemigroup with zero
multiplication, d2 = e , da = ad = b , db = bd = c and do = cd = 0 .
Consider the subsemigroups A = {0, a, b} J D = {0, d, 'e} and E _ {0, b, c}
Then the inclusions m : A --+ B and n : B -+ S are regular monos, while
n m : A -+ S is a strong monomorphism, but not regular. Check also the
inclusionmaps i:D-+S, i:E-+B and j:B-+S and j:E--+S
for regularity. Hint: Use the equalities b = da and c = bd to conclude that
for each pair of morphisms f,g : S -+ S' in SGrp coinciding on A also
f (c) = g(c) holds.

6.D (A-epi closure versus A-regular closure) Find examples such that (1)
epiA = regA is not discrete on X and (2) epiA is discrete but regA is not.

6.E (Productivity of regular closure operators) Let A be a reflective sub-
category of a complete and M-complete category X with cokernelpairs. Then the
A-regular closure operator is productive. Hint: If mi = equalizer(fi, gi) for every
i E I , then 11iEt mi = equalizer(RiEt fiI fl gi)

6.F (When A-regular monos nre iso) An object T of X is preterminal
if every hom-set X(X,T) has at most one element. Show that for the statements
below, one has (a) =: (b) = (c), while (b) =:: (a) holds when A has an initial
object, and (c) =:: (a) holds when A has equalizers.
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(a)

(b)

(c)

Every object in A is preterminal,
every morphism in A is A-epic.
every A-regular morphism in X is iso.

6.G (Restricting the A-regular closure to A ) In the context of 6.3, let A
be S-reflective in X . Show that the restriction of regA to A is weakly hereditary
if and only if the class of regular monomorphisms in the category A is closed under
composition. Furthermore, show regA > C whenever regd IA > CIA , for any
C E CL(X, M) .

6,$ (Birefiective subcategories) Let A be a full replete reflective subcate-
gory of a category X , such that every reflexion morphism is monic. Show that then
each reflexion is also epic, hence a bimorphism. Prove that every regular monomor-
phism of X is A-closed and every A-epimorphism is epic in X . Furthermore,
in the context and in the notation of the Magic Cube Theorem, show that each of
u, v, w is a monomorphism. Simplify the Magic Cube Theorem accordingly.

6.1 ( A-closedness of least subobjects) Prove in the context of Frolik's
Lemma for every object X E X : the least M-subobject ox is A-closed if
and only if the sum X + X belongs to A .

6.J (Strong modification) Prove under the hypothesis of Theorem 6.6 that
C < D with D idempotent and strong implies C < D .

6.K (p-defects and preservation of A-closedness) Prove in the setting of 6.7
that p-defects of A-closed M-subobjects preserve A-closedness if and only if for
every A-closed M-subobject n : N -+ RX , the "restriction" pX'(N) - N of
pX preserves A-closedness.

6.L (Computing the A-regular closure in ModR ) Show that for every
full subcategory A of ModR the A-regular closure of M _< X E ModR can
be computed as regX(M) = n{ker f If : M -. A E A R-linear & f (M) = 0)
Does a similar formula hold true in Grp ?

6.M (Additivity of regular closure operators in ModR ) Prove that the
regular closure operator of an epireflective subcategory A of ModR is additive
if and only if the A-regular radical is cohereditary.

6.N (Epimorphisms in subcategories of R-modules) Prove that the A-epi-
closure of an epireflective subcategory A of ModR is maximal; more precisely,
it is the maximal closure operator of the idempotent core s = (r'4) 0 of the A-
regular radical if and only if Cg9A is discrete; that is, if s(X/M) = 0 for all
M<XEA.
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6.0 (Cokernelpairs in additive categories) Extend the formula

X +M X =X xX/M

from modules to additive categories. More precisely, show that in an additive cate-
gory with cokernelpairs and binary (co)products, the cokernelpair of rn : M -+ X
can be constructed as

M M X

< 1, coker(m) >

<1,0> XxX/M

(6.16)

6.P (Torsion free classes of R-modules and groups)

(a) Prove that a full and replete epireflective subcategory A of ModR has a
weakly hereditary regular closure operator if and only if A is closed under
extensions (see condition (v) of Example 6.8(1)).

(b) Prove the same statement for the category Grp in lieu of ModR

6.Q (Regular closure of varieties of abelian groups in Grp ) For a variety
A in Grp with A C AbGrp , prove that the restriction of regA to A is
discrete.

6.R ( Q as a regular closure operator) % Confirm the claims on the largest
proper closure operator Q of Top (see 4.7) made in Example 6.9 (1). Hint: Let
A denote the category of spaces with trivial quasicomponent. As noted in Example
6.9 (1), regA < rego-Toy < Q. To prove regA > Q, note that for M C X E Top
regAX(M) is the intersection of equalizers of pairs u, v : X -r A E A, coinciding
on M (cf. Theorem 6.2 and Lemma 6.1). Since each A E A admits a continuous
injection into a power of the discrete dyad D = {0,1}, actually only pairs u, v : X -
D suffice. It remains to note that such equalizers are clopen.

6.S (When regular monomorphisms in A coincide with the closed embeddings)

Show that the regular monomorphisms in an epireflective subcategory A of Top
are exactly the (Kuratowski-) closed subspace embeddings, when A is one of the
following subcategories: Tych , 0-Top (0-dimensional spaces), Reg (regular
spaces), DHaus (totally disconnected Hausdorff spaces), SHaus (strongly Haus-
dorf spaces, i.e., spaces X such that for every infinite subset M C X there is a
sequence {U : n E N} of pointwise disjoint open sets such that M fl U # 0 for
each n E N, cf. A. Hajnal and I. Juhasz [1969]) . Conclude that in these categories
epimorphisms are dense maps. Hint: As in Corollary 6.9, the A-closed embeddings
are (Kuratowski-) closed. To prove the converse, apply Frolilcl 's Lemma.
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6.T (Disconnectedness) (Cf. Arhangel'skii and Wiegandt [1975])

(a) Let A be a strongly epireflective subcategory of Top with weakly hereditary
regular closure operator. Show that, with C the full subcategory of topological
spaces with trivial A-reflexion, a space X E Top belongs to A if and only
if every map C -+ X with C E C , is constant.

(b)

(c)

A disconnectedness of Top is a full subcategory A with the property de-
scribed in (a), i.e., for some full subcategory of topological spaces C , a space
X E Top belongs to A if and only if every map C -' X , with C E C , is
constant. Show that every disconnectedness of Top is a strongly epireflective
subcategory of Top with weakly hereditary regular, closure operator.

Show that regTOP, is weakly hereditary. Hint: Top, is a disconnectedness
of Top w.r.t. the class C formed by Sierpinski dyad as its only member.

6.U (Recovering regA from (reg'A)9 in Top ) For A strongly epire-
flective in Top , show

((regA)ly = regA.

Hint: In the notation of Lemma 6.5, first show (regA)K(j(X)) = j(X)Ui(regX(M))
using the discreteness of {regA)q on A (see Lemma 6.9).

6.V (Recovering regA from (regA)q in ModR
Hint: Use Exercise 3.M (b) to show (regA)® = Cr with r the A-regular radical.
Then use Example 6.6 (2) and Theorem 6.7.

6.W (Regular closure for non-abelian torsionfree groups) (Cf. Fay and Walls
[1994])

(a) Show that the full subcategory A of Grp having as objects all torsionfree
groups, is closed under extension (that is: if N 4 G with N E A, GIN E A,
then G E A). Conclude that regA is discrete on A.

(b) For a subgroup H of a group G one says that H is isolated if for all x E G
and n > 0, x' E H yields x E H. Show that the class of isolated subgroup
embeddings is closed under intersection and pullback, so that it determines an
idempotent closure operator I = {iG}GEGp; explicitly, for H < G, iG(H) =
n{N : H < N < G isolated}. Prove that the preradical r(I) corresponds to
the reflection onto torsionfree groups. Check that r(I) is a hereditary radical.
Then compute regA for A as in (a).

(c) Let R denote the full subcategory A of Grp having as objects all R-groups,
i.e., groups G such that x" = y" with n > 0 always implies z = y in G.
Show that for H < G E R, reg'(H) = iG(H) and conclude that R is not
closed under extension. Give an example of a torsionfree group which is not an
R-group.
Hints: (a) Apply Example 6.8 (2). (b) For H < G E Grp, regAG(H) = H
iG({1}). (c) Show that for H < G E R, the cokernelpair (=amalgamated free
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product) G *H G belongs to R if H is isolated. Moreover, if x" E H for some
n > 0, then the R-reflexion p : G *H G - R(G *H G) sends i(x) and j(z) to
the same element since i(x)" = i(y)n. This proves regR = I when restricted
to R. Finally, consider Z *2$ Z.

Notes

The regular closure and epi-closure have been defined for categories of algebras by
Isbell [1966] and for categories of topological spaces by Salbany [1976] and Cagliari
and Cicchese [1983]. The modification formula 6.3 was given by Dikranjan and
Giuli [1984] in topological contexts and by Dikranjan, Giuli and Tholen [1989] for
general categories. Frolik communicated a proof of Theorem 6.5 in the context
of subcategories of Top to Dikranjan and Giuli in 1983 (see Dikranjan and Giuli
[1983)). A categorical version (but more restrictive than the one given in 6.5) was
given by Dikranjan, Giuli and Tholen [1989]. Strong modifications were defined
by Dikranjan [1992], and the characterization of weakly hereditary regular closure
operators (see 6.8) was given by Clementino [1992], [1993]. The correspondences of
6.10 concerning pointed topological spaces are new.



7 Subcategories Defined by Closure Operators

A Hausdorlf space X is characterized by the property that its diagonal AX C
X x X is (Kuratowski-) closed. In this way, every closure operator C of a category X
defines the Delta-subcategory A(C) of objects with C-closed diagonal, and subcate-
gories appearing as Delta-subcategories are in any "good" category X characterized
as the strongly epireflective ones. What then is the regular closure operator induced
by A(C)? Under quite "topological" conditions on X, we show for additive C that
this closure can be computed as the idempotent hull of the strong modification of C,
at least where it matters: for subobjects in 0(C) (see Theorem 7.4). This leads to a
complete characterization of additive regular closure operators in the given context.

Another approach of learning about the epimorphisms of a subcategory A of X
is to embed A into larger subcategories B with potentially better epi-behaviour,
such that epimorphisms of A are still epimorphisms of B. Two such extensions
are discussed in this chapter, the epi-closure Ex(A) and the maximal epi-preserving
extension Dx(A). Both are described in terms of closure operators, with epi-closures
being characterized as those Delta-subcategories induced by weakly hereditary clo-
sure operators.

7.1 The Salbany correspondence
Our first goal in this chapter is to solve the problem whether a subcategory can be
recovered from its regular closure operator. As in 6.2, we work with a full subcate-
gory A of an M-complete category X with equalizers such that Reg(X) C M
and M is closed under composition. We recall that the regA-closed M-subobjects
are then given by the A-regular monomorphisms, and the regA-dense morphisms
are exactly the A-epimorphisms.

We observe first that in order to recover A from regA, the subcategory A
should be closed under mono-sources. Recall that a source is simply a (possibly
large) family (p; : B -. A;);EI of morphisms in X with common domain B ;
in case I = 0 , the source is identified with B . The source is monic if for all
x,y:T-*B with for all iEI one has x=y. For every full
subcategory A of X ,

S(A) := Sx(A) = {B E X : B is the domain of some
mono-source with codomain in A}

is the closure of A under mono-sources in X. We note that, if A is reflective in
X (with A-reflexion p : I --r R ), then Sx (A) has a simplified description as

Sx(A) = {B E X : pg is monic}.

LEMMA For every full subcategory A of X, A and Sx(A) give the same
regular closure in X.
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Proof Since regular closure operators are idempotent, it suffices to show Regx (A)

Regx(S(A)) , and for that it suffices to show that f 4 g holds if and only if

f S:) g (see 6.1). But this follows immediately from the definition of S(A) . D

Each object A E A satisfies m 4 regr(m) for every in E MIX , X E X
(see Remark 6.2 (3)); here m 4 k means m 441 k as defined in 6.1, that is :
u m = v m with u, v : X --> A always implies u k = v k . Replacing regA
by an arbitrary closure operator we arrive at the following general definition.

DEFINITION For every closure operator C of X, the Delta-subcategory 0(C)
induced by C is the full subcategory of X with object class

JA EX:(dmEM)m4c(m)}

Before comparing the subcategories A and A(regA) in detail, we must justify
the notation A (C) .

PROPOSITION For every closure operator C of X, A(C) is closed under
mono-sources. If X has finite products, then the object class of 0(C) is given by

{A E X : SA =<'A,1A >: A -. A x A is C-closed}.

Proof Let (p; : B -+ A;);EI be a mono-source with all A; E A(C) , assume
for iEM and u,v:X--+B. Then

p; u p; (m) since A; E A(C) ,for all i E I . This implies
u cx(rn) = v cx(m) .

For every object A, bA is the equalizer of the projections pi, p2 : A x A -+ A,
hence bA E Reg(X) C M . For A E A(C) one therefore has pI CAXA(5A) =
P2' CAxA(6A) , hence CAxA(bA) < bA by the equalizer property. Conversely, if bA
is C-closed, u- m= v- m with m E M and u, v : X-' A gives a commutative
diagram

M um A

M bA

X<u'v>AxA

and therefore a morphism t : cx(M) -r A with

bA t =< u, v > CX (m),
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by the Diagonalization Lemma 2.4. Hence

0

EXAMPLES

(1) For any closure operator C of ModR , A(C) contains precisely those R-
modules A in which the trivial submodule 0 is C-closed. In fact, the definition
of A(C) shows immediately CA(0) = 0 for A E A(C) (just consider the zero
endomorphism of X and idA for u and v ). On the other hand, there is a
pullback diagram

A
for the map d(x, y) = x - y , which shows that C-closedness of 0 in A implies
C-closedness of bA , hence A E A(C) .

Obviously the statement remains true in any additive category with finite products.

(2) A group G is abelian if and only if (the image of) the diagonal bG is
normal in G x G , i.e. closed w.r.t. the normal closure v in Grp . Hence
A(v) = AbGrp .

(3) A topological space X satisfies the Hausdorff separation axiom if and only
if its diagonal bx is (K-) closed in X x X , hence A(K) = Haus , with K the
Kuratowski closure operator of Top . For the fully additive core K® of K and
for the inverse Kuratowski closure operator K' (cf. Example 4.2 (3)), one easily
shows A(K9) = A(K') = Top, . Note that nevertheless K and K' are not
comparable by the preorder of closure operators.

(4) For the b-closure of Top one has A(b) = Tope . Recall that b is the
additive core of K A K' (cf. Example 4.8 (1)). Although the additive core of
K19 A K' is strictly smaller than b , its Delta-subcategory is also Top,

(5) A(8) is the category Ury of Urysohn spaces, i.e. the full subcategory of
Top containing those spaces X in which any two distinct points can be separated
by disjoint closed neighbourhoods.

(6) In the category PoSet , the Delta-subcategory induced by each 1, j and
cony is the category of (discrete partially ordered) sets.

The assignment C i-4 A(C) is the counterpart of the assignment A --4 regA
in the following sense:



228 Chapter 7

THEOREM There is an adjunction

A - reg(-) : SUB(X)°p -+CL(X,M),

called the Salbany correspondence, with SUB(X) denoting the conglomerate of
all full subcategories of X , ordered by inclusion. Hence a subcategory A is the
Delta-subcategory of some closure operator if and only if A = z (regA) , and a
closure operator C is the regular closure operator of some subcategory if and only
if C - regn(C)

Proof The inclusion A C A(reg4) for every subcategory A follows from the
relation in 4 reg' (m) for all ME M (cf. Remark 6.2 (3)). Furthermore, A
is like reg(-) order-preserving. Hence we need to show only C < reg°(c) for

all C E CL(X,M) . But for all k > m E M one has k °) m by definition
of A(C) , hence c(m) < k whenever k is A(C)-closed; consequently, c(m) <
reg°(c)(m) . 0

COROLLARY For any families of subcategories and of closure operators, one has
the rules

regUA' = A regAi and A(VG) =
I I

i\(Co.

11

In the next section we shall give sufficient conditions for A to be a Delta
category and thereby solve the problem of recovering A from its regular closure.

7.2 Two diagonal theorems
Our general hypotheses are as in 7.1. We shall give two sets of conditions leading
to a characterization of Delta-sub categories, one suitable for applications in algebra
and the other applicable also in topology.

We first assume X to be pointed with kernels and cokernels.

PROPOSITION (Pointed Diagonal Theorem) Let A be a full and replete E-
reflective subcategory of X such that each reflerion px satisfies coker(kerpx)

px. Then A is a Delta-subcategory of X

Proof With rB = kerpB : r(B) -+ B the A-regular radical of B = A(regA)
according to Proposition 6.7 it suffices to show r(B) - 0 in order to obtain B F
A . From Theorem 6.7 we know that rB is the A-regular closure of oB : 0 -+ B
With iB the zero endomorphism of B (which factors through 0), from B E
A(regA) and 1B oB = tB oB one derives 1B rB = tB rB , i.e. rB is a zero
morphism, which is possible only if rB = oB .

If X is not pointed, we have to mimic "points" in a different manner. Recall
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that a class P of objects of X is generating if the sink

X(P, X) := U X(P, X)
PEP

is epic for every X E X . If X has finite products, we may consider, for every
P E P and B E X , the canonical morphism

with q1, q2 the projections of P x B . To say that kp,B is monic is the same as
to say that the pair (Rql, Rq2) is monic as a source.

THEOREM (Generating Diagonal Theorem) Let the category X with finite prod-
ucts contain a generating class P such that each morphism kP,B (P E P , B E
X ) is monic. Then

A(regA) = S(A)

holds for every full reflective subcategory A of X . In particular, if A is strongly
epireflective, then A is a Delta-subcategory.

Proof Since A(regA) is closed under mono-sources, from A C i(regA) one
actually has S(A) C L1(regA) . We must now show that for every B E A(regA) ,
the A-reflexion pB is monic (cf. Lemma 7.1). Since P is a generating class, it
suffices to verify that pB x = pB - y with x, y : P --+ B and P E P implies
x = y . To this end we first show SA 4< x, y >: P -+ B x B . In fact, if
u . SB = v bB with u, v : B x B -+ A E A , then we may form the induced
morphisms ux, vs : R(P x B) -+ A with

and first obtain

Rq1

hence ppxB < 1, x >= ppxB < 14 > under the assumption on P . This gives

with the last identity to be obtained as in the previous steps. This completes the
proof of SB 4< x, y > which, by hypothesis on B , yields a morphism z : P -+ B
with SB z =< x, y > . When applying the product projections to this identity we
obtain z = x = y , as desired. C!

COROLLARY Let A be a full and replete strongly epirefiective subcategory of
the category X with finite products. Then A is a Delta-subcategory of X under
each of the following two conditions:
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(a) the A-reflector R : X -+ X preserves finite products, or

(b) the terminal object of X forms a (single-object) generating class of X

Proof First note that strong epireflectivity makes A closed under mono-sources,
hence A = S(A) . Under condition (a), in the Theorem, simply choose P = X .

Under condition (b), note that for the terminal object P of X and for every
object B E X , the product projection q2 : P x B B is an isomorphism, hence
(Rqt, Rq2) is trivially monic.

REMARK The hypothesis of the Theorem and the Corollary that A be reflec-
tive can be avoided, provided that every source in X has a (strong epi, mono-
source)-factorization (cf. Exercise 7.A). In this case S(A) is always (strongly epi-)
reflective, so one can apply the Theorem to S(A) rather than to A itself and
obtains with the Lemma the same result for any full subcategory A of X :

A(regA) = A(regs(A)) = S(S(A)) = S(A).

EXAMPLES

(1) The Proposition (as well as the Theorem) applies to the category Grp of
groups. From Example 6.7 (3) we know that for A = AbGrp , regA = k , hence
A(Ck) = A . Since v = Co , we also have A (CI) = A (cf. Example 7.1(1)).
Hence the Delta-subcategories of distinct maximal closure operators may coincide.

(2) The Theorem (more precisely: its Corollary) is applicable to the category.
Top and its strongly strongly epireflective subcategories, for instance to Topo ,
Top, , Haus and Ury . Since the regular closure of Topo is b , the Theorem
reproduces the equality 0(b) = Topo (cf. Example 7.1(2)).

(3) The following example shows that the hypothesis of the existence of a generat-
ing class P in X such that each kP B is monic (P E P, B E X) , is by no means
a necessary condition for A(regA) = S(A) . Let X be the category (Set x Set)°P
with the subobject structure given by monomorphisms (i.e., pairs of surjective
maps in Set ), and consider the (strongly) epireflective subcategory A of ob-
jects (A, B) with (A = 0 . B = 0) .. It is easy to check that the A-regular
closure is discrete on A but trivial outside A , which implies A(regA) = A . On
the other hand, each generating class P of X must contain an object (P, Q)
with Q not empty and P having at least two elements, but k(pQ) (pO) is not
monic in in X . that

PROBLEM Is every full and replete strongly epireflective subcategory of a category
satisfying the general hypotheses of this section a Delta-subcategory ?
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7.3 Essentially equivalent closure operators
When trying to characterize the epimorphisms of a strongly epireflective subcategory
A of X , it should be helpful to find an easily described closure operator C of
X whose idempotent hull coincides with regA on A . The following definition
and theorem describe this situation more precisely. We continue to work under the
hypotheses of 7.1.

DEFINITON Two closure operators are called essentially equivalent if and only
if they define the same Delta-subcategory A = A(C) = A(D) and they are iso-
morphic on A , i.e., CIA = DIA

A closure operator C and its idempotent hull C always induce the same Delta,
subcategory (cf. Exercise 7.D), but may fail to be essentially equivalent (see Example
7.1 (4)).

THEOREM Let A be a Delta-subcategory of X , and let C be a closure
operator of X . Then the conditions (i), (ii), (iii) below are equivalent and imply
(iv):

(i) regA and C are essentially equivalent,

(ii) A = A(C) , and an M-subobject in A is A-regular if and only if it is
C-closed,

(iii) A = A(C) , and every C-closed M-subobject in A is A-regular,

(iv) A= ©(C) , and a morphism in A is A-epic if and only if it is 0-dense.
All four conditions are equivalent if regA is weakly hereditary on A .

Proof (i) = (ii) By hypothesis one has

A = A(regA) = A(C) = A(C).

Furthermore, since CIA = regAIA and Mc = Mc (cf. Corollary 5.4), M-
subobjects in A are A-regular if and only if they are C-closed.

(ii) (iii) is trivial.
(iii) . (i) From A = A(C) one has C < rega( ) = regA from Theorem 7.1,

hence A-regular M-subobjects are C-closed. With the hypothesis of (iii), this
means Reg(A)- = Mc fl MorA = Mc fl MorA , which implies regAIA = CIA
with Proposition 5.4 since both operators are idempotent.

(i) . (iv) is shown as (i) = (ii).
(iv) (iii) If epimorphisms of the category A are C-dense, then every C-closed

M-subobject in A is an extremal monomorphism of A , i.e., epiA-closed (cf.
Theorem 6.2(2)). But under the additional hypothesis, epiAlA = regAIA (cf.
Corollary 6.2).

EXAMPLE (Epimorphisms of Ury ) We want to show that the epimorphisms of
Ury are exactly the B°°-dense maps. From Example 7.1 (4) we have Ury = A(9) ,
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so that according to the Theorem, it suffices to show that every 0-closed subset
M C X E Ury is Ury-regular. We prove K = X +M X E Ury and consider
x, y E K . If e(x) = e(y) with the common retraction e of the canonical injections
i, j , then e(x), e(y) can be separated in X by disjoint closed neighbourhoods
U,V , respectively, and a-1(U) = e-1(V) are disjoint closed neighbourhoods of
x, y in K , respectively. If e(x) = e(y) , we may assume z = i(a),y = j(a)
and a E M . The 0-closedness of M produces an open neighbourhood W of a
in X with W fl M = 0 . Now i(W) is an open neighbourhood of z in K
with i(W) C i(X \ M) since for every z E X , there is a neighbourhood Z of
j(z) which misses i(W) : for z E M one has a neighbourhood N of z with
Nf1M=l0,andonecantake Z :=i(N)Uj(N) ;for
Z = 5(X) . Similarly j(W) C j(X \ M) . Hence we have produced disjoint closed
neighbourhoods of x and y in K .

7.4 Regular hull and essentially strong closure operators
We continue to work under the hypotheses of 7.1 on X. Then Theorem 7.1 tells us
that every closure operator C of X has a regular hull

Creg = regn(c).

In fact, for every full subcategory A of X with C < regA one has (by adjunction)
AC A(C), hence reg°(c) < regA . The gap between C and its regular hull may be
substantial, even for "good" operators C, as the following example shows.

EXAMPLE In the category Grp, the regular hull of the normal closure v (that
is the maximal closure operator C° ), is the maximal closure operator Ck . Indeed,
with Example 7.1 (1) and 6.7(3) one has

vTeg = reg' (") = regA = Ck,

with A = AbGrp . Even when we replace v by its idempotent hull v°O , these
equalities remain valid, although v°O < Ck (as evaluation on the trivial subgroup
shows).

Essentially strong closure operators as defined below are designed in order to
gain further insight in the gap between C and its regular hull. Recall first that
a closure operator C is strong if every C-closed M-subobject m : M -r X is
strongly C-closed, i.e., if the canonical injections i, j : X -} K = X +M X of its
cokernelpair are C-closed. Obviously, in order to determine the epimorphisms of
A = A(C) , it is sufficient to have this property whenever X E A . Assuming that
X has cokernelpairs, we therefore define:

DEFINITION A closure operator is essentially strong if every C-closed subobject
m : M - X , with X E A(C) , is strongly C-closed.
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Clearly, every strong closure operator is essentially strong. Hence, whenever
regular closure operators are strong (in particular, if M is generated by its V-prime
elements, see Frolic's Lemma 6.5), then they are a fortiori essentially strong.

On the other hand, we have seen that the regular closure operator of A =
AbGrp in Grp is not strong (cf. Example 6.6(1)); however, since regAIA is
discrete and A = A(regA) , regA is still essentially strong.

We are now able to take advantage of the strong modification C of C as con-
structed in 6.6, as follows.

PROPOSITION Let M be generated by its V-prime elements. Then every clo-
sure operator C of the category X with cokernelpairs such that A(C) is strongly
epireflective in X, satisfies the inequalities

C<C<C`eg,

and C and C induce the same Delta-subcategory of X.

Proof C < C was shown in Proposition 6.6. For -0 < C`eg = regA(C) it suffices
to show that every A(C)-closed M-subobject m is C-closed. But by Corollary 6.5,
every A(C)-closed subobject m is even strongly A(C)-closed, i.e., its cokernelpair
injections i, j are A(C)-closed, hence C-closed (since C < regA(c)), and this means
that m is strongly C-closed, which trivially implies that m is C-closed.

Since A(C) = A(reg°(°)), the equality A(C) = A(C) follows trivially. 0

Recall from Corollary 6.6 that if M is generated by its V-prime elements, then
C is strong if and only if C and C have isomorphic idempotent hulls. Here is an
"essential version" of this fact:

COROLLARY. Under the assumption of the Proposition, a closure operator C is
essentially strong if and only if C and C have essentially equivalent idempotent
hulls. In particular, if C - C then C is essentially strong.

Proof From the Proposition we obtain (with Exercise 7.D)

Hence C and C have essentially equivalent idempotent hulls if and only if they
coincide on A(C). But the latter property means equivalently that in A(C), C and
C give the same notion of closedness. However, by Theorem 6.6, C-closedness means
strong C-closedness. 0

In Theorem 7.3 we described the situation when C°° and C`eg are essentially
equivalent (consider A = A(C) in the Theorem). With the Proposition we see that
a finer approach would be to compare C and C'eg. In fact, we shall show below that
for additive C, the latter two closure operators are already essentially equivalent,
under the following hypotheses on X:
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X is M-complete, with M closed under composition and containing all
regular monomorphisms of X,

X is finitely M-complete and has cokernelpairs,

M is generated by its V-prime elements, and each subobject lattice MIX is
distributive.

THEOREM Let C be an additive closure operator of a category X satisfying the hy-
potheses listed above, such that t>(C) is strongly epireflective in X. Then:

(1) Creg and C are essentially equivalent.

(2) C is essentially strong.

(3) C is essentially strong if and only if C`eg and C are essentially equivalent; in
this case, the epimorphisms of A (C) are precisely the C-dense morphisms in .(C).

Proof Once we have shown (1), then (2) and (3) follow with the Corollary. Hence

we have to prove only (1). But since C'"g and C induce the same Delta-subcategory

and since always C < C"'eg by the Proposition (note that C`eg is idempotent), it
suffices to show that every C-closed M-subobject m : M -+ X with X E n(C) is
A(C)-closed, and according to FrolIk's Lemma 6.5 this means that we must show
K E A(C), with i, j : X --. K = X +ar X the cokernelpair of m. But since m is
C-closed, i and j are C-closed (cf. Theorem 6.6) and then also z := i2 V j2, since
C is additive (cf. Proposition 2.6). Since i V j S5 1K, we obtain for the diagonal
&K:K--*KxK

&K = (&K . i) V (&K . j) °` (i2. 6X) V (j2. &X) < i2 V j2 = z,

hence d := CKXK(&K) < z.
For the common retraction e : K --4 X of i and j, one has e2(6K) - &x. Since

cxxx(&x) °_5 &x by hypothesis on X, C-continuity of e2 gives

e2(d) < c(e2(&K)) 25 c(&x) C--- bx,

hence d < (e2)-1(&x). In addition one easily establishes the inequalities

i2 A (e2)-1(&x) < &K and j2 A (e2)-1(&x) < 8K.

(With u:= (e2)-1(&x) : U - K x K and v : U -+ X the morphism with &x v = e2.u,
just confirm the equation &K i v = u.) Now the distributivity of M/K x K allows
to conclude d < z A (e2)-1(&x) < (i2 A(62)-1(&X)) V (j2 A (__2)-l (bX)) < &K, which
means that &K - c(&K) must be C-closed, hence K E 0(C) by Proposition 7.1. 0

REMARKS

(1) If X permits the construction of the additive core C+ as in 4.8, then statement
(1) of the Theorem can be slightly generalized , as follows:
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(C+)reg < OJ (C+) < Ctefln(C+)

The proof can remain essentially unchanged; just observe that the morphism z is
C+-closed, and it suffices to consider X E A(C+).

(2) In Exercise 7.H it is shown that the sequential closure o of Top is not essen-
tially strong. With the Theorem, this shows that there is an additive, hereditary
closure operator which does not coincide with its strong modification.

(3) The Theorem remains valid in the category ModR (more generally in suitable
additive categories), although in ModR the subobject lattices fail to be distributive:
see Exercise 7.1.

7.5 Characterization of additive regular closure operators
For simplicity, we assume the hypotheses of Theorem 7.4 throughout this section. In
addition we need that £ is stable under pullback and that f'i (-) preserves arbitrary
joins for every morphism f, which, in particular gives every subobject lattice the
structure of a frame. A regular closure operator C of X (one that is of the form
C = regA or, equivalently, C - C'9) is certainly idempotent (Theorem 6.2) and
essentially strong (as remarked after Definition 7.4). Furthermore, C is determined
by its values in A(C), according to the formula

cx(m) °-` pxl(cRx(Px(m)))

established in 6.3, with px : X -+ RX the A(C)-reflexion of X E X. For conve-
nience, we call initial any closure operator C satisfying this formula for all X E X
(cf. Exercise 7.J). Idempotency, essential strength and initiality are therefore nec-
essary conditions for a closure operator to be regular. We shall show that they are
also sufficient, provided that C is additive. First we must prove:

LEMMA The idempotent hull of an initial closure operator is initial.

Proof Since C - CO° is constructed as in 4.6, it suffices to show that

the composite DC of two initial closure operators with the same A-subcategory
is initial,

the join Vte j Ci of any non-empty family of initial closure operators with the
same Delta-subcategory is initial.

For the first assertion we observe that the strong epimorphism px : X -+ RX (the
reflexion of the common Delta-subcategory) belongs to £ (since every M-morphism
is monic), so that pullback stability of £ gives px(Pxi(k)) - k for all k E M/RX.
One therefore has

d(c(m)) - pz'(d(px(c(m)))) - pX1((d(c(px(m))))
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for all m E M/RX, so that DC is initial.
For the second assertion, simply use the fact that px(-) preserves arbitrary joins

as a left adjoint and that pxl(-) does so by hypothesis.

THEOREM Let C be an additive closure operator of X. Then:

(1) If C is initial and essentially strong, then e is regular.

(2) C is regular if and only if C is idempotent, initial and essentially strong.

Proof (1) By Theorem 7.4 (3), C and C' are essentially equivalent. But
according to the Lemma and to Theorem 6.3, both operators are initial. Hence
coincidence on the common Delta-subcategory implies global coincidence (up to
isomorphism). (2) follows from (1) and the initial remark of this section.

PROBLEM Does the Theorem remain true without the assumption of additivity?

In trying not to use additivity a priori, one is tempted to replace a potentially
non-additive regular closure operator by its additive core. We shall show next in
the context of a topological category X over Set with its usual subobject structure
(which automatically satisfies all hypotheses of this section !), that the passage from
regA to (regA)+ does not affect the validity of the Generating Diagonal Theorem
7.2, but that the important property of essential strength will be lost, unless regA
was already additive. (We assume the topological category to have the property
that constant Set-maps between X-objects lift to X-morphisms.)

PROPOSITION (Additive Diagonal Theorem) Every strongly epirefiective subcat-
egory A of a topological category X over Set is the Delta-subcategory of an additive
closure operator of X; more precisely,

A = A((regA)+),

Proof Since (regA)+ < regA, trivially A C A((regA)+). Conversely, let X E
A (C) with C = (regA)+. We denote the underlying set of the object X again by
X and prove that for every x E X, the set {x) is C-closed. With Lemma 4.11, for
every y E cx({x}) we have

(x, y) E {x} x cx({x}) C cxxx({(x,x)}) C cxxx(Ax) _ Ax,

with dx := dx (X ), hence x = y. According to the construction of the additive
core, the C-closed set {x} is an intersection of sets F; each of which is a non-empty
finite union of A-closed sets. Since x must belong to at least one member of this
union, one may assume F; to be A-closed, so that also {x} is A-closed. Now we
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can apply Lemma 6.9 (which holds true not only for Top, but for every topological
category over Set - see the remark after Proposition 6.9) and conclude X E A. 0

COROLLARY For a regular closure operator C of a topological category X over
Set, the following are equivalent:

(i) C+ is essentially strong,

(ii) C+ is regular,

(iii) C is additive.

proof (i) (ii) With C also C+ is idempotent. Likewise, initiality is inherited
from C by C+ (see Exercise 7.J). Hence one may apply the Theorem to conclude
that C+ must be regular.

(ii) . (iii) With A = A(C) one obtains from the Proposition

C = regA = regn(c+) = (C+)-g,

hence (ii) implies that C = C+ must be additive.
(iii) = (i) is trivial. Cl

The Corollary provides a device for constructing an additive, idempotent and
initial closure operator C which fails to be essentially strong: simply take the additive
core of a non-additive regular closure operator. That such closure operators exist
is shown in Example (2) below.

EXAMPLES

(1) Let Z be the closure operator in Top which to every subset M of a topological
space X assigns the intersection of all zero-sets containing M (cf. Example 6.9(4)).
It is easy to see that Z is an idempotent, additive and initial closure operator with
`L1(Z) = FHaus, the category of functionally Hausdorff spaces, i.e., of spaces X
in which distinct points may be separated by real-valued continuous functions on
X. Furthermore, it is not difficult to show Z = Z, hence Z is essentially strong by
Corollary 7.4. Consequently, by the Theorem, Z is the regular closure operator of
FHaus.

(2) (Cagliari and Cicchese [1982]) Let A be a proper rigid class of topological
spaces, i. e., a large full subcategory of Top in which all morphisms are constant
or identity morphisms. (For existence of A, see Kannan and Ftajagopalan [1978].)
According to Lemma 6.9, singleton subsets of spaces in A are A-closed. However,
any two-element subset {x, y} of a space X E A is A-dense in X. In fact,-its A-
closure is an intersection of equalizers of pairs fi, gi : X --+ Yi E A with fi(x) = gi(x),
A (Y) = gi(y); if Y,, = X, then fi = gi = 1, and if Y; # X, then fi = gi is constant,
so that each equalizer gives X. Hence reg'4 is not additive.
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7.6 The Pumplin-Rohrl correspondence
We return to the setting of 6.2/7.1 and consider an M-complete category X with
equalizers which belong to M, with M closed under composition.

Delta-subcategories may be thought of as categories of separated objects. A
slightly more special notion of separation arises when one considers the relation

d41

between morphisms d and objects A in X, i.e., for all morphisms u, v with codomain
A and composable with d from the right one has

u= v.

For a full subcategory A of X we defined in 6.1 the morphism class

Epix(A)={d:(VAEA)d4 1}.

"Conversely", for a class V of morphisms in X, let

Sepx(D) := {A : (Vd E D) d 4 1}

be the class of D-separated objects in X, considered as a full subcategory of X. It
is elementary to verify that for every A and V one has

V C Epix(A) - A C Sepx(V).

Since EpiX(-) is order preserving, this proves the first part of:

PROPOSITION There is an adjunction

Sepx. -i Epix : SUB(X)°p -+ MOR(X),

called the PR correspondence, with MOR(X) denoting the conglomerate of all
subclasses of morphisms of X . If X has finite products, the following assertions
are equivalent for every morphism class V and every object A in X:

(i) A E Sepx(D);

(ii) bA : A -+ A x A belongs to Dl;

(iii) for all f : X -* A in X, < 1, f >: X -. X x A belongs to Dl;

(iv) for all f, g : X --. A in X, the equalizer of f, g belongs to Dl,

with Dl = {n : (`dd E D) din} defined as in Theorem 1.8.

Proof We sketch the proof of (iv) = (iii) (ii) = (i) (iv). In (ii)<1,

f> is the equalizer of pi f and p2, with pi, p2 the product projections, and in (ii,
bA =<lA,1A>, so that the first two implications are clear. For (ii) = (i), consider
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m : M -+ X in D and u, v : X -.+ A with u m = v v. Then the commutative
diagram (7.1) gives a morphism s with 6A s =< U, v >, hence u = v. Finally, for (i)

. (iv), whenever one has t a = b B. m with t the equalizer of f,g and with m E V,
then f b = g b by hypothesis on A. Hence b factors through the equalizer t, which
gives the desired diagonal. o

REMARKS

(1) The equivalence of conditions (i) and (iv) remains valid without the existence
of finite products in X, since the given proof does not use them, and also (i) =: (iv)
can be shown directly without the use of products.

(2) For every class D, Sepx(D) is closed under mono-sources. Since also Epix(A) _
Epix(S(A)), with S(A) the closure of A under mono-sources in X (see 7.1), no
generality is lost when restricting the PR-correspondence to subclasses A closed
under mono-sources.

(3) For every class V, we may assume V C M when determining the V-separated
objects. Indeed, since Reg(X) C Mand therefore S C Epi(X), one easily shows
Sepx(V) = Sepx(DM), with

inD}CM.

Note that VM is a subclass of V whenever V is right cancellable.

(4) For every class D, the class Dl fl M is stable under pullback and under
M-intersections. According to Proposition 5.4 it is therefore the class of C-closed
subobjects for a uniquely determined idempotent closure operator TD. Hence the
Proposition together with Proposition 7.1 gives that

Sepx(D)= A(TD)

is a particular Delta-subcategory, in case X has finite products.

(5) In the category X = Top one may in fact find Delta-subcategories A which
cannot be presented in the form Sepx(D). Cagliari and Cicchese [1982] showed
that the category A = S({D2}) with D2 the two-point discrete space is such a
subcategory, by confirming that the Tychonoff corkscrew (see Steen and Seebach
[1978], #90) belongs to

E(A) = Ex(A) := Sepx(Epix(A),

but not to A = A(regA) itself.

In general, from reasons which become clear by the Corollary below, we call
Ex(A) the epi-closure of A in X. The true reason for the statement of Remark
(4) is given by:
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THEOREM The PR-correspondence factors through the Salbany-correspondence:

SUB(X)°P
Epix

MOR(X)

Here the outer arrows denote the right adjoints, with £(-) assigning to each closure
operator the class £c of C-dense maps and T() denoting its left adjoint.

Proof After the Proposition and Theorem 7.1, we just need to show that 8t-)
does in fact have a left adjoint (-) and that the right adjoints (and therefore the
left adjoints) in (7.3) commute. But the latter statement follows from Theorem
6.2(1), while the former may be concluded immediately with Theorem 1.3(1) from
the preservation of meets by £(-) (see Proposition 4.4(3)). But we may also give
a somewhat more concrete description of the operator TD (for any morphism class
D), as follows: given D C Mor X, pass to DM as in Remark (3), consider the least
subclass DM of M containing DM satisfying properties (a), (b), (c) of Theorem!
of 5.4, and then let rD be the weakly hereditary closure operator whose dense maps
are given by DM. In fact, in case V = £c for a closure operator C of X, we already
know that DM = DnM satisfies properties (a), (b), (c), hence DM = £c, and TD is
the weakly hereditary core of C (cf. Corollary 5.4). Consequently, one has rc < C.
For arbitrary D, we must show V C £'D; but this is clear since £TD = DM, so that

0

We remark that since regular closure operators are idempotent, the left diagonal
adjunction of (7.3) factors through the conglomerate IDCL(X,M) of idempotent
operators. Note that the idempotent hull TD of TD for any V induces the same Delta-
subcategory as TD and has the simple description given by Remark (4) in case X has
finite products. We remark further that rD is always weakly hereditary, so that the
right diagonal adjunction of (7.3) factors through the conglomerate WHCL(X,M)
of weakly hereditary operators. Its idempotent hull TD is therefore both, idempotent
and weakly hereditary (see Corollary 5.4).

This leads to the following refinement of diagram (7.3), and to a complete char-
acterization of categories of separated objects as Delta-sub categories, as given by
the Corollary below.
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SUB(X)°P Epix ' MOR(X)
Sepx

reg(-) d r(-) £(-) (7.4)

i
IDCL(X, M) i- CL(X, M)- WHCL(X,M)

(-)
Here the inner arrows are left adjoints to the outer arrows. For the epi-closure of a
subcategory (as defined after Remark (5)), we conclude:

COROLLARY For any full subcategory A of X, Ex(A) = ©(epiA), and the
following assertions are equivalent:

(i) A = Ex(A);

(ii) A = Sepx(D) for some class V of morphisms;

(iii) A = A(epiA);

(iv) A = A(C) for some idempotent and weakly hereditary closure operator C of
X;

(v) A = A(C) for some weakly hereditary closure operator C of X.

Proof First we note that for a weakly hereditary closure operator C one has
C 25 -rEc,'hence A(C) = Sepx(£c) by the commutativity of diagram (7.3). In case
C = epiA = (regAy (cf. Theorem 6.2), this shows Ex(A) = A(epiA).

(i) q (ii) holds since we have a Galois correspondence, and (ii) . (iii) = (iv)
(v) are trivial since epiA is both weakly hereditary and idempotent. Finally,

for (v) = (i) and C weakly hereditary, one has C < epi°(c) < reg°(c), hence
A(C) = A(epi°(c)) = Ex(0(C)). 0

EXAMPLES

(1) Since Hans = A(K) with K (weakly) hereditary, Hans is epi-closed. Sim-
ilarly, 0(o-) = US is the category of spaces in which convergent sequences have
uniquely determined limits, hence (weak) hereditariness of the sequential closure
yields epi-closedness of US.

(2) Every disconnectedness of Top in the sense of Exercise 6.T has a weakly
hereditary regular closure operator and is therefore epi-closed.

(3) For every full and replete epireflective subcategory A of ModR and the A-
regular radical r, one has A = {X E ModR : r(X) = 0) (cf. Proposition 6.7) and
regA = Cr. Since epiA = (regA)., with the Corollary and Exercise 4.G(d) one
computes

E(A) = A(C(1'°°)) = {X E ModR : r°°(X) = 0}.
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Since with r also rO° is a radical, r°° is the E(A)-regular radical. Hence with
regE(A) = C('°) and regA = Cr one concludes that A is epi-closed if and only
if r is idempotent, and this is the case exactly when A is closed under extensions
(see Example 6.8(1)).

(4) The criterion of (3) can be used to detect failure of epi-closedness, as in the
following two examples where R = Z, i.e., ModR = AbGrp. For A = (A: f(A) _
O} the subcategory of groups with trivial Frattini subgroup, since f,,. = d (see
Example 3.4(3)), E(A) = {A : d(A) = O} is the category of reduced groups. For
A = {A : p(A) = Q} with a fixed prime p, since p., = dp (see Example 4.6(2)),
E(A) = {A : dp(A) = Q} is the category of groups without p-divisible subgroups.

PROBLEM For a regular closure operator C, the identity EX(A(C)) = A(C)
holds true. Does it hold true for every closure operator? For the B-closure in Top?

7.7 The maximal epi-preserving extension
The general hypotheses in this section are as in 7.6. For any subcategory A of X,
the inclusion functor of A into its epi-closure Ex (A) surely preserves epimorphisms,
i.e., an epimorphism of the category A is also an epimorphism in EX(A), just by the
definition of Ex(A) = Sep(Epix(A)). Furthermore, if A is reflective in X, then
it is actually epireflective in EX(A) since the A-reflexions are A-epimorphisms
of X. Actually, they are A-epimorphisms with the additional property that their
codomains belong to A. Hence, the argumentation for epi-preservation and epire-
flectivity is still valid if we replace EX(A) by the larger subcategory

D(A) = Dx(A) := Sepx(Epix(A) f1Codx(A)),

with Codx(A) denoting the class of those morphisms in X with codomain in A.
This proves the first part of the following Proposition. Its second part describes a
maximality property of DX(A).

PROPOSITION Let A be a full subcategory of X. Then:

(1) The inclusion functor.4 -r Dx(A) preserves epimorphisms, and A is epire-
fiective in DX(A) if A is reflective in X.

(2) For every full and replete reflective subcategory B of X containing A such
that A is epireflective in B and the inclusion functor A -+ B preserves epimor-
phisms, one has B C Dx(A).

Proof We still have to prove (2). Let B E B and consider any A-epimorphism
d : X -+ A in X with A E A and morphisms f, g : A - B with f d = g d. Then
d factors as

with a B-reflexion vx and an A-reflexion psx. Since ax is B-epic, one has
f d' psx = g d' Psx, and this implies f . d' = g - d' since psx is an epimorphism
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of B. But d is an epimorphism of A since d is A-epic, so that d is also an
epimorphism of B, by hypothesis. Therefore f = g, as desired. 0

REMARKS

(1) Note that Dx(A) is closed under mono-sources (see Remark 7.6(1)) and there-
fore (strongly epi-) reflective in X, under mild assumptions-on -X (see Exercise 7.A).
If A and Dx(A) are reflective in X, then the Proposition characterizes Dx(A) as
the largest (strongly epi-) reflective subcategory B of X containing A such that
A B preserves epimorphisms and A is epireflective in B.

(2) One always has the inclusions

A C Sx(A) C Ex(A) C Dx(A).

But as an operator on SUB(X), D behaves very differently from S and E, which
are monotone while D is not. For instance, for X = Top, Proposition (2) shows
D(Top,) = Top (since epimorphisms are surjective in Top,, so that Top, c+ Top
preserves them; see Example 6.5(1)), while D(Topo) = Topo (since epimorphisms
are not surjective in Topo, so that D(Topo) cannot be Top, and any proper strongly
epireflective subcategory of Top is already contained in Topo; see Remark 6.9).

(3) Dx is in fact order reversing for those full and replete epireflective subcate-
gories A C B of X for which Dx (B) is reflective in X and A - B preserves epimor-
phisms. In fact, since then also A 4 Dx(B) preserves epimorphisms, the Proposition
gives Dx(B) C Dx(A). When applying this property in case B = Dx(A), we see
that

Dx(A) = Dx(Dx(A))
holds whenever A and each full subcategory of X closed under monosources is
epireflective in X.

Despite its rather unpredictable size, membership in the subcategory Dx(A) can
be tested reasonably easily.

COROLLARY The following three conditions are equivalent for a full subcategory
A of X and every object B of X, if X has finite products:

(i) B E Dx(A);

(ii) bB : B -. B x B belongs to D := (Epix(A) fl Codx(A))l;

(iii) for all f,g : X -+ B in X, the equalizer equ(f, g) of f,g belongs to D.

If A is reflective in X or if X is closed under M-subobjects in X, these conditions
are also equivalent to

(iv) for all f, g : A -+ B in X with A E A, equ(f, g) is an A-eztremal monomor-
phism (cf. Theorem 6.2).

Proof The equivalence (i) q (iii) follows from Proposition 7.6. For (iv)
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(ii), assume bB - k= h- d with d : U -> A E A an A-epimorphism. Then d
factors through t := h-'(6B), so that also t is A-epic. On the other hand, t is
the equalizer of plhl,p2h : A -+ B with p1,p2 : B x B -+ B the projections, hence
an A-extremal monomorphism and therefore iso. Composition of its inverse with a
pullback projection yields the desired "diagonal".

Only for (iii) . (iv) we need the additional hypotheses on A. For f, g : A -+ B
and t = equ(f,g), we already have that t belongs to (Epix (A) fl Codx(A))t and
must show that t is actually A-extremal. Consider a factorization t = k - e with
k : X -+ A in M and e A-epic. If A is closed under M-subobjects, then
X E A, hence e E (Epix(A)flCodx(A))t, and orthogonality gives that a must be an
isomorphism. If A is reflective, the k factors through the A-reflexion px : X -+ RX
as k = V. px, and px -e is an A-epimorphism with codomain in A, which therefore
must be orthogonal to t. Hence there is a morphism s with s - px - e = 1 and t - s = V.
This implies k - e - s - px = t s px = k' . px = k, hence e - s pX = 1 since k is
monic. Consequently, a is an isomorphism. 0

We wish to describe objects of Dx(A) in terms of a closure operator. Of course,
one approach would be to take the idempotent closure operator that has the class
(Epix(A)flCodx(A))i as its closed M-subobjects. But this operator would hardly
be computationally accessible. Since the A-extremal monomorphisms in M are
exactly the epiA-closed subobjects, condition (iv) of the Theorem suggests to con-
sider

aX (m) := m V V{h(epiAA (h-' (m))) : A E A, h : A -+ X }

for all m E MIX. Of course, we may take a more general approach and consider
any closure operator C of X in lieu of epiA. Hence we define the A-comodification
of C by

Acx(m) mVv{h(cA(h-I(m))):AEA,h:A-+X}

for all m E MIX. This gives indeed a closure operator, and the terminology fits
with the one introduced in 5.12:

LEMMA For any closure 'operator C of X and every subcategory A of X, AC
is a closure operator of X whose closed subobjects are precisely those m E MIX for
which h-I (m) is C-closed in A for all h : A - X, A E A. If A is coreflective in X,
with corefiezion e : S -+ Idx, then AC is the (S, c)-comodification of C in the sense
of 5.12, i.e., .

Acx(m) L mV ex(cSX(eXI(m))) = ScX(m).

Proof The continuity condition for AC follows from preservation of joins by f (-)
for every f : X -+ Y, as follows:

f(Acx(m)) = f(m)Vv{(f-h)(CA(h'I(m))):AEA,h:A--+X},

< f(m)VV{(f-h)(cA((f -h)-'(f(m))):AEA,h:A-+X},



Subcategories Defined by Closure Operators 245

< f(m) V V{k(cA(k'1(f(m))) : A E A, k : A -Y} ,

< Acy(f(m)),
since h-1(m) <h-1(f-1(f(m))) = (f h)'1(f(m)) for all h : A X.

If m is AC-closed, then h(cA(h-1(m))) < m and therefore cA(h-1(m)) < h-1(m)
for all h : A -+ X, i.e., h-1(m) is C-closed. Conversely, the C-closedness of each
h-1(m) gives

'lcx(m)- f(m)VV{h(h-1(m)):AEA,h:A-+X} <m

so that m must be AC-closed.
In case X has an A-coreflexion ex : SX --. X, then ex can take the place of h

and we have
mVex(csx(exl(m))) <_ Acx(m)-

On the other hand, each h factors as h = ex ha, hence C-continuity of ho : A -+ SX
gives

h(cA(h-1(m))) <ex(csx(ho(h-1(m)))) < ex(csx(eX'(m)))
and therefore

Acx(m) < m V ex(csx(eX'(m))).

With
0A = A(epiA),

the Corollary and the Lemma provide an effective description of the category Dx (A):

THEOREM If the full and replete subcategory A of the finitely complete X is
reflective or closed under M-subobjects, then

Dx(A) = A(rA).

Proof Since pairs f, g : A -. B correspond bijectively to morphisms h : A -
B x B, with the equalizer of f, g corresponding to h-1(bB), the equivalence (i) <7 (ii)
of the Corollary tells us that B E Dx(A) if and only if bB is epiA-closed. According
to the Lemma, this means that B E Dx(A) if and only if SB is

DA-closed. Hence
the assertion of the Theorem follows from Proposition 7.1

In many cases, the A-comodification of a closure operator can be described
effectively, as the following examples show.

EXAMPLES

(1) If X is a topological category over Set such that constant maps are X-
morphisms and if A contains a non-empty space, the formula for AC can be simplified
as

Acx (M) = U{h(CA(h-1(M))) : A E A, h : A - X).
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For X = Top and A = {No.,} the one-point Alexandroff compactification of the
discrete space N (i.e., the converging sequence n -+ oo with each n isolated), and
for C = K the Kuratowski closure operator,

{N-}K = o

is the sequential closure operator. For A = CompTop the subcategory of compact
topological spaces (not necessarily Hausdorff!), which is closed under images, we
obtain the t-closure:

ComPToPkX(M) = U{kB(M U B) : B C X compact } = 1x(M).

(2) Let A be epireflective in X = ModE, with A-regular radical r. We wish
to describe the A-comodification of a maximal closure operator C = C', for some
preradical s.

First we consider the submodule (in fact: two-sided ideal) I := r(R) and observe
that every object A E A is a quotient of a copower of RfI E A, i.e., RfI is a
generator of A. With the help of I one defines the preradical

r#(X) := {x E X : Iz = O} = {x E X : (3h: R/I --, X) h(1) = z} = h(A
h:A-»X,AEA

which is easily seen to be hereditary. For every surjective R -linear map f : A -+ X
and M < X, since A/f-1(M) = X/M, the maximal closure operator C satisfies
f(cA(f-1(M))) = cX(M). Therefore,

AcX(M) = M+>2h(cA(h-1(M)),

= M + E h(ch(A)(h(A) n (M)) ,

= M + c,.#(X)(r#(X) n M)

(since always h(A) C r#(X), and there are enough such maps h - just consider
for A the lr#(X)I-th copower of R/I). This shows immediately that the preradical
induced by AC is

rr(AC) = s r# .

(If I = 0, hence r# = 1, then this formula gives ir(AC) = s.) For C = epiA =
(Cr),,, = C(r-), so that s = r°O, we obtain

r(a'A) = r°Or#.

Consequently, with Example 7.1(1) one concludes

X E D(A) . X E A(DA)
. 0 is DA-closed in X

q V(OA)(X) = 0 4* r°°({x E X : Ix = 0}) = 0.

(If I = 0, the last condition just means r°O(X) = 0.)
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(3) We apply the characterization of D(A)-objects of (2) in the case R = 7L and
prove that for A epirefiective in AbGrp, either D(A) = E(A) or D(A) = AbGrp.
In fact, for the subgroup I < Z as in (2), either I = 0 or I = nZ for positive n. The
first case gives with (2) and Example 7.6 (3)

X E D(A) . r°O(X) = 0 g X E E(A).

In case I = nZ one has nX C r(X) for all X (since, in general, IX C r(X))
and r(Z/nZ) = 0. This implies r(X/nX) = 0 for every abelian group X since, by
Prufer's Theorem on bounded torsion abelian groups, there is an embedding

X/nX -+ (7L/n7L)'

into some power of the cyclic group Z/nZ. Consequently, r(X) = nX for every X,
and

A={X:r(X)=0}={X:(VxEX)nx=0}
is the category of abelian groups of exponent n. In this category, being closed under
quotients in AbGrp, epimorphisms are surjective, which, by the Proposition, means
D(A) = AbGrp.

7.8 Nabla categories
In the setting of 7.1, we assume in addition that X has finite products. As usual,
£ denotes the class for which X has (6,M)-factorizations. We have seen in the
preceding section that the Delta-sub categories

©(C) = {X E X : 6x : X XZ is C-closed}

give notions of separation or disconnectedness, depending on the given closure op-
erator C of X. It seems natural to introduce the category

V(C) = {X E X : bX : X -+ XZ is C-dense},

which we call the Nabla-subcategory of C, and to associate with it a notion of con-
nectedness. The following examples confirm this:

EXAMPLES

(1) In the category PoSet, V(j) contains exactly those posets in which any two
points have upper an bound. V(conv) = V(j) n V(j) contains those posets in which
any two points have an upper bound and a lower bound.

(2) In the category Top, V(K) = IrrTop is the category of irreducible spaces
(i.e., those spaces X in which X = F U G with (K-) closed subsets is possible only
for X = F or X = G). In fact, to say that AX := 6(X) is dense in X x X is the
same as to say that any non-empty set is dense in X .
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(3) For the largest proper closure operator Q of Top, V(Q) = CTop is the
category of connected spaces. In fact, if we assume gxxx(LX) # X x X for a space
X, then we could find a non-empty proper clopen subset of X x X, that means X x X
is not connected, hence X is not connected. On the other hand, for a non-connected
space X = AU B with disjoint non-empty clopen sets A, B, the set (A x A) U (B x B)
would be a proper clopen subset of X x X containing AX, hence X V V(Q). (See
also Exercise 7.L.)

(4) For a preradical r of ModR, a submodule M < X is Q, -dense if and only if
r(X) + M = X. Since r(X x X) = r(X) x r(X), the R -module X belongs to V (Cr)
if and only if r(X) = X, so that V(Cr) is the radical class (torsion class, I think)
associated with r.

The following properties of Nabla-subcategories are also typical for categories of
"connected" objects.

PROPOSITION Let C be a closure operator of X. Then

(1) V(C) is closed under 9-images, so that for e : X -- Y in £ with X E V(C)
also Y E V(C), provided that £ is closed under finite direct products.

(2) V(C) is closed under C-dense extensions, so that for m : M --. X in £c fl
M with M E V(C) also X E V(C) , provided that C is finitely productive and
idempotent.

(3) V(C) is closed under (finite) direct products in X, provided that C is (finitely)
productive .

Proof For e : X -. Y in X, consider the commutative diagram

X bX xX

Y by * x Y

Under the hypotheses of (1), one has by E £c and e x e E £, hence (e x e) bX =
by e E £c and therefore by E £c (see Exercise 2.F(b) and Corollary* of 2.3). In
the situation of (2), one has e x e E £c fl M by the finite productivity of C (see
Theorem 2.7) and

(3) follows with Theorem 2.7. 0

Recall that if finite products of M-subobjects in X are covered by their sections,
then an idempotent closure operator is already finitely productive (see Proposition
4.11; the sufficient condition is certainly satisfied if X is a topological category over
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Set such that any constant map between (the underlying sets of) two X-objects
lift to a morphism of X. Recall further that in this situation the idempotent
closure operator C is even productive, if there exists a closure operator D < C with
the finite structure property of products (like K in Top; see Theorem 4.11). We
therefore obtain from the Proposition:

THEOREM Let finite products of M-subobjects in X be covered by their sections,
and let C be an idempotent closure operator of X. Then V(C) is closed under E-
images, C-dense extensions, and under finite products. It is even closed under non-
trivial direct products if there is a closure operator D < C with the finite structure
property of products.

COROLLARY For every idempotent closure operator C of Top, V(C) is closed
under E-images, C-dense extensions, and under finite products. In case C > K, it
is even closed under arbitrary direct products.

The Corollary gives in particular all closedness properties for V W = IrrTop
and V(Q) = CTop mentioned at the beginning (see (Examples (2) and (3)).

REMARKS

(1) V(C) does not change when passing to the weakly hereditary core of C, which
is idempotent whenever C is idempotent (see Theorem* of 5.4). Hence, when deal-
ing with V(C), one may always assume C to be weakly hereditary,also when C is
supposed to be idempotent.

(2) For D = Ai Ci one has ED = ni EC1 (see Proposition 4.4), hence V(D) _
ni V(Ci). In other words, the functor

V : CL(X,M) -r SUB(X)

preserves arbitrary meets. It therefore has a left adjoint which assigns to a full
subcategory A its (let's call it) coregular closure operator coregA. We do not have
.a good description of this operator, other than the one given by Theorem 1.3, i.e.,
by the characteristic property

A C V(C) . coregA < C.

(3) "Dually" to Theorem 7.6 one can construct a right adjoint a(-) to the functor
C '-, Mc : CL(X, M) - MOR(X)°P and then consider the composite adjunctions

SUB(X)
c
gCL(X,M) a } MOR(X)°P (7.6)

M(-)
which represents a kind of dual of the PR-correspondence. But again, we do not
have a good explicit description of it.
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7.9 Companions of A (C) in topological categories
For a topological category X over Set such that constant Set-maps between X-
objects are morphisms in X, we provide "bounds"

T2(C) C A(C) C TI(C)

for additive closure operators C of X which may help to characterize the objects of
0(C) in concrete cases. Notationally we do not distinguish between objects in X
and their underlying sets. Recall from 5.10 that every closure operator C of X is
equivalently described by a concrete functor

C:X-CS, X-.(X,cx),
which takes values in PrTop if and only if C is grounded and additive. We re-
mind the reader of the intricacies of the functor C: it does not preserve subobjects
unless C is hereditary (see Proposition 5.10), and even for productive closure oper-
ators, C may not preserve products ! Nevertheless, to some extent C is useful in
"transporting" properties back and forth between X and PrTop.

As in PrTop, for any closure operator C of X and every x E X E X, one calls
M C X a C-neighbourhood of x if z V cx(X \ M). Now the full subcategory T2(C)
of X contains, by definition, all objects X in which distinct points can be separated
by disjoint C-neighbourhoods. TI(C) contains those objects X in which singleton
subsets are C-closed.

PROPOSITION Let C be a closure operator of X. Then:

(1) All T2(C), L(C) and TI(C) are strongly epireflective in X;

(2) A(C) C A(C11) = TI (C);

(3) T2(C) C A(C) holds for additive C, and both categories coincide if C : X -
PrTop preserves finite products.

Proof (1) Only closedness under mono-sources needs to be checked (cf. Exercise
7.A), and this only for T2(C) and TI(C) (cf. Proposition 7.1). Mono-sources are
point-separating families pi : X -r Xi (i E I) of morphisms in X. Hence, if all
X; lie in T2(C), for z # y in X we have an i E I with pi(z) i4 pi(y) and therefore
disjoint C-neighbourhoods in X; which separate these points. Their inverse images
along pi give disjoint C-neighbourhoods of z and y, due to the C-continuity of pi.
Hence X E T2(C).

If all X; E TI(C), and if we assume y E ex({x}) C X, then p; (y) E p;(cx({x})) C
cx;({p=(x)}) = {p; (x)} for all i E I, hence x = y, and therefore X E TI(C).

(2) We first show t(C) C TI(C) and consider x E X E A(C). Our category X
satisfies the hypotheses of Lemma 4.11, which gives us

cx({x}) x {x} C cxxx({x} x {x}) C cxxx(ax) = Ox,

hence cx({z}) = {x}. Consequently X E TI(C).
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Next we show A(C) C T1(C) for fully additive C. In fact, in that case we have

cxxx(dx) = U cxxx({x} x {x}),
zEX

and since for X E Ti (C) also X X X E Tt (C) (by (1)), C-closedness of the diagonal
follows.

Since trivially T1(C) = Ti (CO), and since A is order-reversing, this completes
the proof of (2).

(3) Without loss of generality we may assume C to be grounded. (As in Top,
the trivial operator T is the only non-grounded closure operator of X - see Example
2.11, and for C = T, T2(C) = A(C) is the full subcategory of objects of cardinality
at most 1- see Exercise 7.B.) We then have a concrete functor C : X --+ PrTop. As
in the case of Top, also in PrTop one has A(K) = T2(C), with K the Cech closure
operator (cf. Example (1) below). Furthermore, by definition of T2(C),

T2(C) = C-;(T2(K)),

hence it suffices to show C-2(A(K)) A(C) in X. But by the functoriality of C,

idxxx : C(X x X) -+C(X) x C(X)

is a map in PrTop, hence K-closedness of AX in C(X) x C(X) implies C-closedness
of AX in X x X, as desired. The converse statement holds true if idxxx is iso in
PrTop, i. e., if C preserves the product X x X. 0

REMARKS

(1) In case X = Top, Corollary 6.10 provides an explicit description of the T1(C)-
reflexion for every idempotent and symmetric closure operator C of Top (since
T1(C) = Ti(C'9), and since the passage C u - CO preserves idempotency and sym-
metry). This description remains valid for arbitrary topological categories over Set
in which constant maps are morphisms.

(2) Lemma 6.9 gives immediately for every (full and replete) strongly epireflec-
tive subcategory of Top (or any other topological category over Set with constant
morphisms) the identity A = Ti (regA). Hence every such A can be written as
A = T1(C). From the Generating Diagonal Theorem 7.2, we already know that A
can be presented in the form A(C). But we do not know the answer to:

PROBLEM Can every strongly epireflective subcategory of Top be presented in
the form T2(C)? As T2(regA)? What about the case A = US?

EXAMPLES

(1) The category Haus can be presented via operators Ti and T2 in Top:

T2(K) = A(K) = Haus = TI(0).
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However,
T2(8) = A(B) = Ury (cf. Example 7.1(5))

is properly smaller.

(2) The o--closure in Top provides an example, that in general, the inclusion
T2(C) C n(C) may be proper, which is shown by the following example due to
1. Gotchev. For an uncountable set Z and a # b outside Z X Z, topologize X =
{a} U {b} U Z x Z by declaring points of Z x Z to be isolated, and by taking as basic
neighbourhoods of a and b the sets

Ua={a}U(U{{z}xAZ:zEZ,AZCZcofinite}),

Vb = {b} U (U{Bz x {z} : z E Z, BZ C Z cofinite}).

Then a-neighbourhoods of a and b contain open neighbourhoods, but X is not
Hausdorff, hence X V T2(u). On the other hand, X clearly belongs to A (o-) = US;
see Example 7.6(1).

The Proposition provides the possibility of computing the regular closure oper-
ator of T2(C), as follows:

LEMMA Every closure operator C of X satisfies

(C+)°° < regT'(e) and regT3(C)JT,(c) < (C)°°IT,(C).

In case C is additive, the second inequality becomes an equality.

Proof Since T2 is order-reversing (see Exercise 7.M), Proposition (3) gives T2 (C) C
T2(C+) C A (C+), hence C+ < regT3(C) and then even (C+)°O < regT2(C). For the
second inequality, we must show that every C-closed M C X E T2(C) is T2(C)-
closed, i.e., we must prove K = X +M X E T2(C). In the notation of Frolik's
Lemma (Theorem 6.5), for every a E X \ M, the points i(a), j(a) have the disjoint
C-neighbourhoods K \ j(X ), K \ i(X) respectively. For x, y E K which are mapped
to distinct points in X by the common retraction e : K -+ X, these points have
disjoint C-neighbourhoods in X, the preimages of which along a provide disjoint
C-neighbourhoods of x, y in K. Hence K E T2(C).

For additive C one has T2(C) CA(C) by the Proposition, hence C`eg'< regT,(C)
which, by Proposition 7.4, implies (C)°O < regT,(C) 0

The impact of the Lemma on epimorphisms is as follows.

THEOREM Let C be a closure operator of X. Then:

(1) the epimorphisms of each T2(C) and A(C+) are (C)°°-dense maps;

(2) the (C)°O-dense maps in A(C) are epimorphisms of /.(C);
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(3) if C is additive, then the epimorphisms of T2(C) and A(C) are precisely the
(C)°°-dense maps.

Proof (1) The second inequality of the Lemma gives that epimorphisms of T2(C)
are (C)°°-dense maps. For A(C+) , the corresponding statement follows from the
first inequality given in Remark 7.4 (1).

(2) By Proposition 7.4, (C)' < C1eg, so that (C)°°-dense maps are A(C)-dense.
(3) follows from Theorem 7.4(1) and from the Lemma.

COROLLARY For C additive, the inclusion functor T2(C) --+ L(C) preserves
epimorphisms. If, in addition, C is essentially strong, then regT'(c) and C°° are
essentially equivalent, and the epimorphisms in each T2(C) and A(C) are precisely
the C°°-dense maps.

Applications of the Theorem and its Corollary will be given in Chapter 8.

Exercises

7.A (Strongly epirefiective hulls) Let A be a full subcategory of a category
X. Prove:

(a) If every source (f= : X -> Y; )iE j in X has a (strong epi, mono-source)-
factorization (so that f; = mf e for all i E I with a strong epimorphism e
and a mono-source (m;)$EI; cf. Exercise 1.E), then the closure S(A) of A
under mono-sources is strongly epireflective in X; moreover, S(A) is contained
in any strongly epireflective full and replete subcategory of X that contains A.
(Hint: For every object X, consider the source of all morphisms with domain
X and codomain in A.)

(b) The hypothesis of (a) is satisfied if and only if the category X has coequalizers
and is £-cocomplete with £ the class of strong epimorphisms.

(c) If A is reflective in X, then A is bireflective in S(A) (so that the reflexions
are both monic and epic in S(A)), and the existence of (strong epi, mono)-
factorization (for morphisms) in X suffices to conclude that S(A) is the least
strongly epireflective subcategory of X containing A (cf. Exercise 3.L).

(d) Let X have direct products and be £-cowellpowered for £ as in (b). Then
the existence of (strong epi, mono)-factorizations for morphisms implies the
existence of the same type of factorizations for all sources of X.

7.B (Preterminal object) Recall that an object A of a category X is preter-
minal if each hom-set X(X, A) contains at most one morphism (cf. Exercise 6.F).
Prove:
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(a) Every preterminal object of a finitely M-complete category X belongs to
A(T), with T the trivial closure operator (cf. Exercise 2.A). Conversely, if X
has equalizers which belong to M, then every object in A(T) is preterminal.

(b) For an object A E X, let the square A x A exist in X, with projections P1, P2.
Then the following are equivalent:

(1) A is preterminal,

(2) pi = p2,
(3) bA =< 1A, 1A >: A - A x A is an isomorphism,

(4) bA is epic.

(c) Let X have all squares, and consider any functor U : X -+ Y. If U preserves
squares, then U preserves preterminal objects, and if U is faithful, then U
reflects preterminal objects (so that A E X must be preterminal whenever
UA E Y is preterminal). Conclude that if X admits a faithful square-preserving
functor into Set, then A E X is preterminal if and only if UA has at most one
element.

(d) Find one example of an M-complete category in which least M-subobjects
are not necessarily preterminal.

7.C (Closed Graph Theorem) Prove for a closure operator C of a category
X (as in 2.1) with finite products, that for every morphism f : X -+ Y in X with
Y E A(C) the graph <lx, f>: X- X x Y is C-closed.

7.D (C and C have the same Delta-subcategory) For every closure operator
C and its idempotent hull C, show A(C) = A(C), without assuming the existence
of finite products (as in Proposition 7.1) or M-wellpoweredness of X (so that C
could be constructed as CO°, see 4.6). Hint: Use the adjointness property (C <
regA q A CA(C)).

7.E (Normal valued regular closure in Grp) Prove that a full subcategory
A of Grp is contained in AbGrp if and only if the A-regular closure of a subgroup
is always normal.

7.F (Regular hull of maximal closure operators) For a closure operator C
of Grp, let C-8" = C*(c) be its maximal hull (cf. 5.5). Let X be a strongly
epireflective subcategory of Grp with A-regular radical r. Prove:

(a) A(Cr) = A fl AbGrp and (C')re° = regdnAbGrp = CrVk;

(b) v V regA < v regA < regA v = v regA . v < regAnAbGrp = ((LegA)m )reg;

(c) the closure operators of (b) induce the same Delta-subcategory.

7.G (Essential equivalence) In the context of 7.4, confirm that essential
equivalence is an equivalence relation on CL(X, M). Furthermore, if Cc G Ci < C2
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with Co, C2 essentially equivalent, then all three operators are essentially equivalent.
Now prove that if C'"g and (C)°° are essentially equivalent, then C is essentially
strong.

7.11 (a is not essentially strong) Confirm the claim of Example 7.6(1) that
A(a) is the category US and then show that a is not. essentially strong, using the
following example due to J. Pelant: let X = l4 U {oo} be such that each point of N
is isolated; for an ultrafilter 4) E 614 \ by a basic neighbourhood is {t} U U (U E 4i),
and for oo a basic neighbourhood has the form {oo} U A U W, with A a cofinite
subset of N and W a cocountable subset of f3N \ H; now prove X E US and that
M := /3N\N is a-closed in X, but that for the cokernelpair i, j : X - K = X +M X
of M X, i(X) is not a-closed in K. Hint : M is a-closed in X since n -> oo and
its subsequences are the only non-stationary convergent sequences in X. But i(X)
is not a-closed in K since i(n) -- j(oo). For the latter property first confirm that,
for every A C N,

lc (A) = kpN(A) U loo};

here f314 has the usual compact topology. Conclude that for every open subset V of
X with v n m cocountable in M, v ft N is cofinite in 14, using the well-known fact
that for A C N infinite, kpN(A) is uncountable (in fact, IkpN(A)( =

22R0).
A typical

open neighbourhood of j(oo) in K has the form W = i(V) U j(U) with U, V open in
X, 00 E U and V fl M = U fl M. The definition of the topology yields that V 0 M
is cocountable in M.

7.1 (Regular hull in additive categories) For any closure operator C of
ModR, prove that Cres and (C)°° are essentially equivalent and that these op-
erators actually coincide if C is essentially strong. Hint: Recall that C is simply
the maximal closure operator of the preradical induced by C; see Example 6.6(2).

7.J (Preservation of initiality by (C s-+ C+)) For a closure operator C of
a topological category X over Set, show that C+ is initial if C is initial. Provide
sufficient conditions which yield the same result for closure operators of an abstract
category (see 4.8).

7.K (Minimal and maximal epirefiective extension subcategories) A mono-
source (pi : B -+ Ai)iEI is strong if for every epimorphism e : U --t V and for all
u,vi with pi u=vi efor all iEIthere is aw:V-.B viforall
i E I. For a full and replete subcategory A of X, denote'by

S(A) = 3x(A) :_ {B E X : B is the domain of a stron
mono-source with codomains in A5.

(a) Exhibit S(A) as the epireflective hull of A in X whenever sources factor as
(epi, strong mono-sources); cf. Exercise 7.A. Formulate and prove statements
analogous to those of Exercise 7.A.

(b) Prove that A is bireflective in S(A) (so that the reflexions are both monic and
epic) whenever it is reflective in X.
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(c) For A reflective in X, let EPI(A, X) denote the conglomerate of all full and
replete epireflective subcategories B of X with A epireflective in B. If X has
source-factorizations as in (a), then EPI(A, X) (partially ordered by inclusion)
has the structure of a large complete lattice, with bottom element 3(A)-

(d) (Cf. Baron [1969]) Under the hypotheses of (c), denote the A-reflexion by p
and prove that the top element in EPI(A,X) is

Bx(A) := Sepx({py : Y E Bo}),

for any Bo E EPI(A, X).

7.L (Nabla-presentations of CTop) With the preradicals c (=connected
component) and q (=quasi-component) of Top. (see Example 6.9) and their induced
closure operators V. and U. of Top (see Theorem 6.10(1)), show

Qoo=Cc<Cq=Q"' <Q

and conclude that all these closure operators induce the same Nabla-subcategory,
namely the category of connected spaces.

7.M (Lattice rules forTJ(C)) Show that C'-. Tj(C) is order reversing for
j = 1, 2. "Compute" TJ (Vie1).

7.N (The "dual" of Ti(C)) In the category Top, for every closure
operator C, let Tr (C) be the full subcategory of spaces X in which each point is
C-dense. Show:

(a) TF (C) = Tl (C11) C V(CIO) C V(C);

(b) Tl (K) is the category of indiscrete spaces;

(c) Ti (Q) = V(Q) = CTop;
(d) TF (9) = V(K) =IrrTop.

7.0 (C need not be additive for additive C) In the categories Modx and
Top, find additive closure operators whose strong modification is not additive. Hint:
In ModR, take a non-cohereditary radical r and consider its minimal closure. Then
use Exercise 3.M(b) and Example 6.6 (2). In Top, consider the fully additive core of
a non-additive regular closure operator (see Example 7.5(2)) and apply the formula
of Exercise 6.U.

7.P (Topological coreflection a to Herrlich [19691)

(a) For every (full and replete) coreflective subcategory A of Top one obtains the
closure operator C = AK of Top, i.e., the comodification of the Kuratowski
operator along the A-coreflexion. Show: C is an additive, grounded and
idempotent closure operator with C < K.
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(b) For every additive, grounded and idempotent closure operator C < K there is
a coreflective subcategory A of Top with C = AK. Hint: let A contain the
spaces X with ex = kX. The closure operator C gives a CS-valued functor (cf.
5.10) which actually takes values in Top, and for every X E Top, idx : CX -+
X is continuous. Now consider all ordinal powers of C to eventually arrive at
the A-coreflexion of X.

7.Q (Nabla versus Delta) In the setting of 7.8, show that V(C) n A(C) is
the subcategory of preterminal objects in X, for every closure operator C of X.
Conclude that if the class £ belonging to M is closed under finite products, then
every morphism f : X -+ Y in X with X E V(C) and Y E A(C) factors through a
preterminal object of X (i.e., f is "constant" morphism).

7.R (Bing's [1953] space) Let R := {(x,y) E R' : y > 0} be the upper
half-plane, and let X be its subset of rational points. For e > 0 and (x, y) E R,
set B, (x, y) = {(z, y) : x - e < z < x + e} n X. Now define a topology on X
by taking as a base of neighbourhoods of (x,0) E X the sets BE(x,0) (e > 0),
and as a base of neighbourhoods of (x, y) E X with y > 0 the sets U&, y) _
{(x,y)} U B.(u,0) U B.(v,0) (e > 0), with u and v such that the triangle with
vertices {(z, y), (u, 0), (v, 0) is regular. Show:

(a) X is Hausdorff, hence X E T1(9) (cf. Example 7.9(1));

(b) no pair of distinct points in X can be separated by disjoint closed neighbour-
hoods, hence X E V(9).
Conclude:

(c) while the identities regU''Y = 81 and epiU`Y = (9°°), hold true when restricted
to Ury, they fail when considered for the whole category Top;

(d) while, for any closure operator C of Top, V(C) n A(C) contains only trivial
spaces, V(C) n Ti(C) may contain non-trivial spaces.

7.S (Alternative description of the left adjoint r{-) -i £t-) of Theorem 7.6) Let
X be M-complete, with M as in 2.1, and let V be a class of morphisms in X.
Using the orthogonality relation for morphisms (as defined in 1.8), define a closure
operator 7D, as follows : given m : M - X in Al, for every d : U -+ V in D, let
1(d). be the set of all morphisms v : V -+ X for which there is u : U -+ M with

put

7z(m)=V{v(1v):vE1(d)for some d:U-+Vin D}

and show:

(a) 7D is a closure operator of X with V C £7D;
(b) for every closure operator C of X with V C £c, 7D < C. Conclude 7D

in particular: 7D is weakly hereditary.

D
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7.T (Weak hereditariness of regE(A)) Let A be a subcategory of a category
X as in 7.7. Show:

(a) (regA),o < regE() < reg t. The first inequality becomes an equality if reg (A)
is weakly hereditary.

(b) regE(A) is weakly hereditary in case X = ModR. Hint: See Ex.7.6 (3).

(c) In case X = Grp or Top, regE(A) is weakly hereditary if the epimorphisms in
A are surjective.

Notes

The Salbany Correspondence of Theorem 7.1 appears in Tholen [1988], while the
Generating Diagonal Theorem was proved by Giuli and Husek [1986] for the category"
Top and by Giuli, Mantovani and Tholen [1988] in categorical generality. The notion
of essential equivalence for closure operators was introduced (under a different name)
by Dikranjan [1992] who also proved the crucial Theorems 7.4 and 7.5 in the context
of topological categories over Set. The PR-Correspondence appears in the paper
by Pumpkin and RAhrl [1985], with its factorization through the conglomerate of
idempotent closure operators being discussed by Castellini, Koslowski and Strecker
[1992a]. Hoffmann[1982] introduced the maximal epi-preserving extension of Section
7.7, with more general categorical studies appearing in Giuli, Mantovani and Tholen
[1988]; its description via a closure operator has its origins in the paper [1987b] by
Dikranjan and Giuli. Nabla subcategories were defined but hardly studied in the
Dikranjan-Giuli paper [1987a], while the "companions" 7.8 of A(C) appear for the
first time in Dikranjan [1992].



8 Epimorphisms and Cowellpoweredness

Characterizing the epimorphisms of a concrete category and settling the ques-
tion whether the category is cowellpowered can be a challenging problem and has
been the theme of many research papers (see the Notes at the end of this chapter).
In many cases, closure operators offer themselves as a natural tool to tackle the
problem. We concentrate here on results for those categories of topology and algebra
where this approach proves to be successful. These include criteria for epimorphisms
in subcategories of modules and fields, recent or new results on cowellpowered and
non-cowellpowered subcategories of topological spaces, and a rather direct proof of
Uspenskij's recent discovery of a non-dense epimorphism in the category of Hausdorff
topological groups.

8.1 Categorical preliminaries
We consider an arbitrary category X and any subclass £ of morphisms in X
which is closed under composition with isomorphisms. Two morphisms e, d E £
with common domain are isomorphic (e - d) if there is an isomorphism j in X with
j e = d. For every object X E X, this defines an equivalence relation on the class
X\6 of morphisms in £ with domain X. The category X is called £-cowellpowered
or cowellpowered w.r.t. £ if for every X E X, the conglomerate of =-equivalence
classes can be labeled by a small set, i.e., if there is a small set IX and a map

VX:IX -'X\£

such that for every e E £ with codomain X there is i E I with 91(i) = e. Note
that £ is not assumed to be necessarily a class of epimorphisms in X. If it is,
then £-cowellpoweredness is dual to M-wellpoweredness as defined in 1.1, i.e., X
is £-cowellpowered if and only if X°P is £-wellpowered. The prefix £ is omitted
if £ = Epi(X) is precisely the class of epimorphisms in X.

As usual in Category Theory, we assume the category X to have small hom-
sets. The advantage of this assumption for the notion of £-cowellpoweredness is
that it suffices to consider the codomains of morphisms in X \ 6. Every object Y
which appears as such a codomain is called an £-image of X. (If £ belongs to an
(£, M)-factorization system of X, this terminology is in accordance with the notion
introduced in 1.3.), We then have:

PROPOSITION X is £-cowellpowered if and only if every object has only a
small set of non-isomorphic £-images.

Proof With a representative system (Yj)jEJ of non-isomorphic .6-images of X
one obtains for every e : X -* Y' in 6 a unique j E J with Yj = Y. Hence the
inclusion map

IX U£(X,Yi)`-'X\£
jEJ
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with E(X, YJ) := £n X (X, Yj) shows the "if' part. The converse statement is trivial.

We now consider any functor F : A X. For an object X E X, let F-1X :_
to E A : FA = X} be the (class of objects of the) fibre of F at X, and let
F-1X := {B E A : FB - X} be its replete closure in X. F is called (strongly)
fibre-small if (the replete closure of) each fibre of F contains only a small set of
non-isomorphic objects. Finally, F is called transportable if for every B E F-1X
there is A E F-1X with A - B.

LEMMA Every strongly fibre-small functor F is fibre-small, and the converse
holds true if F is transportable.

Proof If F is transportable, then a representative system of non-isomorphic
objects in F-1X is also representative for F-1X.

We obtain the following simple Theorem which, however, proves to be very useful
for applications:

THEOREM Let F : A --+ X be a functor, and let D,£ be classes of morphisms
of A, X, respectively, both closed under composition with isomorphisms, such that
F(D) C C. Then £-cowellpoweredness of X implies D-cowellpoweredness of A,
provided F is strongly fibre-small; even fibre-small suffices if F is transportable.

Proof For A E A, let (Y )jEJ represent the non-isomorphic C-images of FA,
and for every j E J, let (Bjk)kEKJ represent the ion-isomorphic objects in F-1Y .
Since F(D) C £, for every D-image B of A, FB is isomorphic to some Yj, hence
B E F-1Yj is isomorphic to some Bjk. Consequently, the size of a representative
system of D-images of X cannot exceed the cardinality of

U{j} x Ki.
jEJ

COROLLARY If A admits a fibre-small, transportable functor F into Set, then
A is D-cowellpowered if and only if there is a cardinal function p for the objects of
A such that for every D-image B of A, card(FB) < p(A);

Proof Taking for £ the closure of F(£) under composition with isomorphisms, we
see with the Theorem that the given condition is sufficient for D-cowellpoweredness
of A. Trivially, it is also a necessary condition.

REMARKS

(1) Transportability is an essential condition for both, the Theorem and the Corol-
lary. For instance, if A is the ordered class Ord of all ordinals, considered as a
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category (see Example 1.11(2)), we may define a faithful and fibre-small functor
F : Ord -+ Set sending each ordinal a to the singleton set {a}. Every morphism in
Ord is epic, hence Ord is not cowellpowered. Still, the constant cardinal function 1
satisfies the criterion of the Corollary. Note also that F maps every (epi)morphism
of Ord to an isomorphism in Set.

(2) While faithfulness is irrelevant for the validity of the Theorem and the Corol-
lary, it is the only essential condition in the following useful statement: if any cat-
egory A admits a faithful functor into Set, then A is both wellpowered w.r.t. the
regular monomorphisms of A and cowellpowered w.r.t. the regular epimorphisms
of A (with regular epimorphism defined dually to regular monomorphism): see
Exercise 8.A.

(3) Statement (2) can be strengthened: one only needs a collectively faithful small
set of functors (Fi : A -+ Set)iEr, so that two morphisms f,g : A -+ B in A with
Fi f = Fig for all i E I must coincide. Any category A with a small generating set
(Gi)ier of objects provides this environment.

(4) Having achieved cowellpoweredness w.r.t. regular epimorphisms fairly easily,
one may ask about cowellpoweredness w.r.t. the larger class of strong epimorphisms
or even of extremal epimorphisms (for definitions in the dual case, see Exercises 1.D,
I.E). Since

(regular epis) C {strong epis} C {extremal epis},

with strong epis the only class always being closed under composition, it is natural
to consider large chains of regular epimorphisms, i.e., functors E : Ord -+ A such
that E(a) -+ E(a + 1) is a non-isomorphic regular epimorphism for every a E Ord,
and E(A) = colim,,,<AE(a) for every limit ordinal A. Clearly, for the conditions

(i) A is cowellpowered w.r.t. extremal epimorphisms,

(ii) A is cowellpowered w.r.t. strong epimorphisms,

(iii) A is cowellpowered w.r.t. regular epimorphisms and A has no large chains of
regular epimorphisms,

one obviously has (i) . (ii) . (iii). However, whether these conditions are equivalent
for categories A with "sufficiently many" colimits, depends on our set-theoretic
hypotheses, as we shall explain in more detail next.

One needs a "large version" of Konig's Lemma which asserts that an infinite tree
with finite levels has an infinite branch. Recall that a tree is a poset with a bottom
element such that for every element x, the set of all predecessors of z is well-ordered;
the ordinal type of this set is called the level of x. Any well-ordered set of a tree
is called a branch. Observe that a large tree has small levels if and only if every
element has only a small set of immediate successors. Now call the universe (the
class which has as its elements all (small) sets) weakly compact if every large tree
with small levels has a large branch. In this terminology one can prove (cf. Ada.mek
and Tholen [1990]):

(I) If the universe is weakly compact, then for every cocomplete category A with a
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small generating set, conditions (i)-(iii) are equivalent. (Actually, A needs to have
only coequalizers and small-indexed cointersections of strong epimorphisms.)

(II) If the universe is not weakly compact, then there is a cocomplete category A
with a small generating set which satisfies (iii) but not (ii).

(5) Characterizing the extremal epimorphisms in a category is normally an easy
task, provided one "knows" sufficiently many monomorphisms. But in a concrete
category A with a faithful functor F : A -+ Set, morphisms with injective un-
derlying Set-maps are certainly monic. Hence, if the (epi,mono)-factorization of
Ff : FA -. FB in Set can be "lifted" to A, so that f = m e with Fm injective
and Fe surjective, then every extremal epimorphism of A has surjective underlying
Set-map. (The converse statement holds true if F reflects isomorphisms.) Certainly,
a mono-fibration F has the needed lifting property and is transportable. Hence, a
trivial application of the Corollary gives the statement that a category A which ad-
mits a faithful, fibre-small mono--fcbration A -+ Set, is cowellpowered w.r.t. extremal
epimorphisms.

Unfortunately, the gap between extremal epimorphisms and all epimorphisms is
generally big, hence settling the question of cowellpoweredness becomes considerably
more difficult. Consequently, for general results, fairly strong assumptions on the
category are needed. The next section contains such results for categories of type
S(A) and S(A), with A small or A closed under limits.

We close this section with an immediate application of the Corollary:

EXAMPLE Haus is cowellpowered. In fact, epimorphisms in Haus are dense
(Example 6.5 (2)), and for every dense subspace X of a Hausdorff space Y, cardY <
22"dX. For the latter property, consider the injjective map that assigns to every
y E Y the set {U flX : U neighbourhood of yin Y }.

8.2 Reflectivity and cowellpoweredness
A class of objects A in a category X is cogenerating if X = Sx(A), i.e., for every
object X there is a mono-source with domain X and codomain in A; equivalently,
the source X (X, A) = UAEA X (X, A) is monic (cf. 7.2 in the dual situation). A is
called strongly cogenerating if X = 3x(A) (cf. Exercise 7.K).

The existence of a small cogenerating set in a category usually enforces co-
wellpoweredness:

PROPOSITION Let X admit a transportable and fibre-small functor F : X --+ Set
which preserves mono-sources. If X has a small cogenerating set A of objects, then
X is cowellpowered.

Proof For an epimorphism e : X - Y in X, the Set-map

X (e, A) : X (Y, A) -+ X (X, A), H h e
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is injective. As a source in X, X(Y,A) is monic, and so is its F-image. Hence the
canonical map

FY -. H F(codomain(h)), z r--. ((Fh)(z))h,
hEX(Y,A)

is injective. Consequently, if X (Y, A) = 0, the cardinality of FY is at most 1.
Otherwise the injective map X(e,A) has a retraction which induces an injective
map

11 F(codomain(h)) -+ 11 F(codomain(k));
hEX(Y,A) kEX(X,A)

hence the cardinality of FY is bounded by the cardinality of the codomain of the
last map. Consequently, the assertion follows from Corollary 8.1

Of course, smallness of the cogenerating set A is essential for the validity of the
Proposition (since every category X has X as its own cogenerating class). Still,
for not necessarily small A, something can be said about the interplay between
A, Sx(A), and Sx(A), as far as reflectivity and cowellpoweredness are concerned,
provided A is closed under limits:

THEOREM Let A be a full and replete subcategory of a complete wellpowered
and cowellpowered category X. Then the following assertions are equivalent:

(i) A is reflective in X and cowellpowered;

(ii) A is limit-closed in X and Sx(A) is cowellpowered;

(iii) A is limit-closed in X and 3x(A) is cowellpowered.

Proof (i) = (ii) Reflectivity always implies closedness under limits, hence co-
wellpoweredness of S(A) is the only issue. For an epimorphism e : B -+ C in S(A),
consider its reflection:

B

Pal

e C

IPC

RB Re RC

Since C E S(A), pc is monic in X and in S(A), hence an epimorphism in S(A) (cf.
Exercise 3.L, dual). But since pc e = Re pu is epic, also Re is epic in S(A), in fact
epic in A. Hence every epic image of B in S(A) is a monic subobject in X of an epic
image of RB in A. Consequently, wellpoweredness of X and cowellpoweredness of
A give cowellpoweredness of cowellpoweredness of Sx(A)

(i) = (iii) In (i) (ii) replace S(A) by 3(A). ("Monic" may be replaced by
"strongly monic"; hence wellpoweredness of X with respect to strong monomor-
phisms suffices for this implication.)
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(ii) - (i) Since A --+ Sx (A) preserves epimorphisms, cowellpoweredness of A
follows trivially with Theorem 8.1. Since Sx(A) is reflective in X, due to co-
wellpoweredness of X (cf. Exercise 7.A), only reflectivity of A in S(A) is left to
be shown. Since A is complete, with limits formed as in S(A) and X, according
to the General Adjoint Functor Theorem, it suffices to provide a solution set for
each B E S(A). We claim that a representative system of S(A)-epimorphisms with
codomain in A gives such a set. In fact, every morphism f : B --+ A E A factors as
f = m e, with m : A' --+ A monic in A and e : B -+ A' epic in S(A): take m to be
the intersection of all monos in A through which f factors (cf. Theorem 1.10); the
resulting morphism is epic since A is closed under equalizers.

(iii) #, (i) In (ii) (i), replace S(A) by 3(A). 0

REMARKS

(1) Cowellpoweredness of X is used in the Theorem only to derive reflectivity of
SX(A) and 3x (A). But in the case of SX(A), cowellpoweredness of X w.r.t. strong
epimorphisms suffices for that.

(2) For (ii) (i), only cowellpoweredness of Sx(A) w.r.t. those A-epimorphisms
with codomain in A is needed which factor only trivially through a monomorphism
of A.

EXAMPLES

(1) The category CBoo of complete Boolean algebras is an orthogonal full sub-
category of the category Frm, hence closed under limits (cf. Exercise 5.B). But it
is not reflective in Frm since, otherwise, free complete Boolean algebras (on count-
ably many free generators) would have to exist - but they don't (see Johnstone
[1982], p. 33). Still, CBoo and Frm are intimately connected: every frame is iso-
morphic to a subframe of a Boolean algebra (see Johnstone [1982], p. 53); hence
S(CBoo) = Frm. From these two facts alone one concludes with the Theorem that
Frm is not cowellpowered, as follows: Frm is complete and trivially weIlpowered
and cowellpowered w.r.t. strong epimorphisms (see Remark (1)!; strong epis are
surjective in Frm, according to Remark 8.1(5)), hence the Theorem is applicable,
and failure of condition (i) yields failure of (ii). (An explicit construction of a large
chain of epimorphisms can be found in Johnstone [1982], p. 53.) =Conversely, having
non-cowellpoweredness of Frm and using the fact that epimorphisms in the category
CBoo are surjective, the Theorem also permits to derive non-reflectivity of CBoo
and therefore non-existence of (certain) free complete Boolean algebras!

(2) Let A be the full subcategory of Top described in Example 7.5 (i.e., a proper
rigid class). We claim that S(A) is not cowellpowered. In fact, by Lemma 7.1,
A and S(A) give the same regular closure. Since A does not consist of singleton
spaces only, S(A) contains the discrete doubleton D. As shown in Example 7.5,
every injective map D -+ X E A is A-dense, hence S(A)-dense. But the cardinality
of spaces in a proper class cannot be bounded. Hence, by Corollary 8.1, S(A) is
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not cowellpowered. With the Theorem one obtains that S(A) is not cowellpowered
either.

8.3 Epimorphisms in subcategories of Top - a first summary
In this section we give a brief synopsis of those results on epimorphisms and co-
wellpoweredness for subcategories of Top which can be obtained fairly easily from
the general techniques presented so far. We begin with a list of:

EXAMPLES

(1) For A epirefiective with weakly hereditary regular closure operator, epimor-
phisms of A are surjective, hence A is cowellpowered (Proposition 6.9, Corollary
8.1). This applies to Top, (Examples 6.5(2), 6.9(2)), ?-tom (Example 6.9(4)), and
every disconnectedness (in the sense of Exercise 6.T).

(2) For A epireflective with regAJA = KIA, one has A C Haus, and epimor-
phisms are (K-)dense, hence A is cowellpowered (Corollary 6.9, Example 8.1).
This applies to Reg, Tych, 0-Top and DHaus (=totally disconnected Hausdorff
spaces), see Examples 6.9(4), 6.9(1).

(3) The (idempotent, additive and grounded) b-closure can be considered as a con-
crete functor b : Top --+ Top (cf. 5.10). Now b maps Topa and its b-dense maps
to Haus and its K-dense maps. Hence the restriction. Topo --r Haus of b pre-
serves epimorphisms (cf. Example 6.5(2),(3)), so that Topa must be cowellpowered
(Corollary 8.1, Example 8.1).

(4) Cowellpoweredness of Topa = STQp({ Sierpinski space}), 0-Top = 3Tp({2-
point discrete space}), Tych = STop({unit interval}) can also be derived with Propo-
sition 8.2.

Let us now assume A to be strongly epireflective in Top with A C Haus. Then
(K-)dense maps are certainly A-epic (Corollary 6.9). We are interested in a criterion
for the converse proposition and, for that purpose, we try to define the "position"
of its maximal epi-preserving extension DTop(A) (see 7.7). For that it is useful to
have the following criterion for containment in Haus.

For every cardinal rc, consider a set X of cardinality rc and an ultrafilter 4? on
X. Then one generates a topology on Y,,,, = X U {a, b} with a # b outside X by
declaring the sets {x) (x E X), U U {a} (U E 4i), U U {b} '(U E 4') to be open.

LEMMA For A strongly epireflective subcategory in Top, A C Haus holds if and
only if no space Y,,,, belongs to A.

Proof The necessity is obvious since the space Y, j, is non-Hausdorff. Assume
A Haus. If A Top, then A contains the Sierpinski dyad, consequently A
contains Topa. Since each space ,,,,p is T1, we conclude ,,,d. E A in this case.
Now suppose that Z E A is a non-Hausdorff T1 space. Then there exist distinct
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points a, b E Z which cannot be separated by disjoint neighbourhoods. With X =
Z \ {a, b} the intersections U fl V fl X, where U is a neighbourhood of a and V
is a neighbourhood of 6, form a filter-base Y on X. Let be an ultrafilter on X
containing F. Then the identity 1Z : Yip -. Z is obviously continuous, so that
Y,,,t. E A follows from Z E A since A is strongly epireflective. 0

REMARK There are similar (in fact: easier) containment criteria for other sub-
categories in lieu of Haus: for any strongly epireflective A in Top, one has:

(a) A C Topc if and only if the 2-point indiscrete space does not belong to A;

(b) A C Top, if and only if the Sierpinski dyad does not belong to A;

(c) A C 7{, if and only if the space Xa of Example 6.9(5) does not belong to A;

(d) A C US if and only if the following space Y = N U {a, b} does not belong to
A: basic open sets are {n}, AU {a}, BU {b} with n E N and A, B C N cofinite.

We leave the verification of these statements as Exercise 8.D.

PROPOSITION Let A be non-trivial and strongly epireflective in Top with A C
Haus. Then also DTop(A) C Haus, and both categories coincide if and only if
the epimorphisms of A are precisely the K-dense maps in A; in this case A is
cowellpowered. 0

Proof Since D(A) is strongly epireflective in Top (Remark (1) of 7.7), if we
assume D(A) ¢ Haus, then D(A) must contain a Haus-test space Y,,,4. = XU {a, b},
by the Lemma. The subspace Z U {a} is Hausdoiff and actually zero-dimensional.
But since A # T is non-trivial, the strongly epireflective A contains 0-Top, hence
Z and its subspace X belong to A. The inclusion X --* Z is dense, i.e., epic in
Haus, hence epic in A and therefore in D(A). On the other hand, the distinct maps
f,g : Z - Y with f Ix = glx, f(a) = a, g(a) = 6 are continuous - a contradiction.
This proves D(A) ¢ Haus.

Since A C Haus, K-dense maps in A are always A-dense (Corollary 6.9).
Hence, if D(A) = Haus, epimorphisms in A are epic in D(A) and therefore K-
dense. On the other hand, having the latter condition, the maximality of D(A)
yields D(A) = Haus. 0

The Proposition gives D(A) = Haus if and only if epiAIA = KIA.

PROBLEM For strongly epireflective A as in the Proposition, is the statement
D(A) = Haus also equivalent to regAJA = KIA, or to E(A) = Haus?

Let us now move to categories of type A(C) and T2(C) for an additive closure
operator C of Top. (Due to the Additive Diagonal Theorem, every strongly epire-
flective subcategory is of this type; see Proposition 7.5.) From Theorem 7.9(3) one
knows that the epimorphisms in each A(C) and T2(C) are precisely the (C)OO-dense
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maps, so that the inclusion functor d(C) -+ T2(C) preserves epimorphisms. This
proves the first statement of:

THEOREM Let C be an additive closure operator of Top. Then T2(C) is co-
wellpowered under each of the following two conditions:

(a) A(C) is cowellpowered,

(b) C is essentially strong and bounded on T2(C).

proof We are left with having to consider condition (b) so that (C)°O = CO° = Cc'
for some a E Ord; cf. Corollary 6.6. First note that for every C-dense subspace
X of Y E T2(C), cardY < 22-'AX; this is shown exactly as in the case C = K (cf.
Example 8.1), by trading (K-) neighbourhoods for C-neighbourhoods. From the
definition of CO one obtains by ordinal induction

cardY < p"(X)

whenever X is Ca-dense in Y, with p° the a-th iteration of the function p(s) = 22'.
With Corollary 8.1, this proves the claim. O

Without prior knowledge that C is essentially strong, or if C fails to be essen-
tially strong, like in the case of the sequential closure or (see Exercise 7.H), we need
effective computational methods for its strong modification C. These are provided
in particular cases in the following section.

8.4 Projective closure operators and the categories Haus(P)
For every class P of topological spaces and every closure operator C of Top one
has the P-modification of C, as defined in 7.7. For C = K the Kuratowski closure
operator, and if P contains a non-empty space, then this is the operator given by

Pkx(M) = U{h(h-1(M)) : P E P, h: P -+ X}.

Obviously, PK < K, with K = T°jK. We have seen in Example 7.7 that, for
instance, v and t are such comodifications of K. In this section we study specific
closure operators C with PK < C < K and their induced Delta-subcategories.

DEFINITION For a class P C Top containing a non-empty space, define the
P-projective closure operator prop by

proX(M) := U{M fl h(P) : P E P, h : P -. X}

and its image restriction ipro1 by

iprop(M):=U{Mflh(P)nh(P):PEP,h:P-*X}.
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PROPOSITION

(1) pro' and iproP are, like PK, additive closure operators of Top with

PK < ipro' < pro' < K.

(2) The Delta-subcategory of prop is the subcategory Haus(P) of spaces X such
that, for every h : P -+ X, P E P, the subspace h(P) is Kausdorf.

(3) If P is closed-hereditary (-closed under closed subspaces), then prop and
ipro' are weakly hereditary, and Haus(P) is epi-closed.

Proof The verification of (1) and (3) is straightforward. For (2), we first show

prop < regHaus(P)

which implies Haus(P) C A(prop). For this we must prove that for all h : P --+ X,
PEPandMCX,

M fl h(P) C regxH "(P)(M).

In fact, we shall prove a stronger condition, namely

M n h(P) C regXa' 1' (M) (+)

Let Z := h(P) and N := M Ii Z. Since Z is closed in X, and since the Kuratowski
closure is (weakly) hereditary, we obtain (+) once we have shown the even stronger
statement

kz(N) C regZBUS(P)(M). (++)

Finally, in order to show (++), we consider maps f, g; Z -+ Y E Haus Pwith
f IN = 91N and prove fly = glV. Since Y E Haus(P), the set B := f(h(P)) fl
g(h(P)) is Hausdorff. Indeed, for every x E

f(x)Ef(N)Cf(N)=g(N)CB
since N C h(P). Analogously, g(x) E B. With the map s :=< f,g >: Z -+ Y x Y,
one therefore has s(x) E B x B. With s(N) C AB, continuity of s gives

s(x) E kyxy(AB) n B x B = kBXB(AB) = AB

since B is Hausdorff. This shows f (x) = g(x) and completes the proof of the
inclusion "C" of Haus(P) = A(pro').

For "Y", let X V Haus(P), so that there is a map h : P -+ X with h(P)
non-Hausdorff. There are then two points x, y E h(P) which cannot be separated.
We claim that (x, y) E pro'(Ax) and show (x, y) E h'(P) = ©x fl h'(P) with
h' =< h, h >: P - X x X. In fact, any neighbourhood of (x, y) E X x X contains
a product W = U x V of open neighbourhoods of x and y. The choice of x and y
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enforces u fl v fl f (P) # 0, even u fl v n f (P) # 0 since u fl v is open. This implies
W fl h'(P) # 0. Consequently Ax is not prop-closed, i.e., X V A(pro1). O

REMARKS

(1) Clearly, if P is closed under images, then prop = PK.

(2) The closure operators prop and ipro1 often coincide (but not always: see

Example (1) below). More precisely, if

(Vh : P - s X, P E P)(`dx E h(P))(3j : Q -+ X, Q E P) h(P)U{x} C j(Q), (*)

then pro' = ipro1. Condition (*) is certainly satisfied if the following condition
holds:

(VPEP)(3QEP\{0})P+QE P.

(3) As a consequence of Proposition (2), under condition (*) and, a fortiori, under
(**}, the Delta-subcategory of ipro1' is Haus(P). In general we put

Haus;(P) := A(ipro1).

(4) The assignment (P '-+ proP) is monotone (actually, proP = VPEP Pro{p}).

More generally, for two classes Po and Pi (each containing a nonempty space), if
every Po E Po can be covered by a surjective map q : PI -+ P0 with Pi E Pi, then
proPO < proP' and iproPO < iproP'.

Our next goal is to compute the strong modification of prop and ipro1. In
consideration of inclusion (+) in the proof of the Proposition , it seems reasonable
to look at

espX (M) = U{M n h(P) : P E P, h : P ---+ X),

iespX (M) = U{M fl h(P) n h(P) : P E P, h : P -+ X}.

It is checked easily that these are in fact additive closure operators which, in the
lattice of all closure operators, give this picture:

esp1

/
proP iesp1

/
ipro1
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If P satisfies (*) of Remark (2), then ipro' = prop and iesp' = esp1. The proof
that the two new operators play (in most cases) the anticipated role, requires some
topological propositions, as given by the following Lemma. For M C X E Top, as
usual we denote the cokernelpair injections by i, j : X - X +M X =: Y and let
c : Y -+ X be their common retraction.

LEMMA For every B C Y,

j-'(i(X) n B)ui-'(j(X) n B) = M n e(B) = j-'(i(x nn B)ui-'(j(x) n B). (t)

Proof Let us see first that for A C X and x E X the condition z V M n q is
equivalent to the existence of an open neighbourhood U of x and an open subset
V C U with VnM = UnM and VnA = 0. In fact, if the latter condition holds, then
also V nA = 0, so that U n (M n A) = 0, thus x V M n A. Conversely, if x M n A,
then there exists an open neighbourhood U of z such that U n (M n A) = 0. Then
for every z E U n M there exists an open neighbourhood z E VZ C U which avoids
A. Then V U{VZ : z E U nM} is an open subset of U satisfying V n M= U n M
and VnA=0.

Now assume that x V M n e(B). Then by the above argument there exist open
setsV C UofXsuch thatx E U, VnM= UnMand Vne(B) =0. Then
W = i(V) U j(U) is an open neighbourhood of j(x), which has the property that
W n i(X) n B = 0. In fact, W n i(X) = i(V), so it suffices to prove i(V) nB = 0.
Let z E X and i(z) E B. Then z = ei(z) E e(B) C e(B). Now the choice of V
gives z V V. Consequently W n i(X) n B = 0 is established, which implies that
j(x) V i(X) n R. Arguing by symmetry we get also i(x) V j(X) n B. This proves
the inclusion C of the first identity claimed.

To prove the inclusion C of the second identity claimed, note that e(B) _
i-'(B) U j-'(B) and that therefore

Mne(B)=Mni-1(B)UMnj-'(B)

holds. Next we show M n i-'(B) C j-'(i(X) n B). In fact, if H E X\j-'(i(X) n B),
then there exists a neighbourhood W of j(x) with W n i(X) n B = 0. One can take
W of the form W = i(V) U j(U), where U is an open neighbourhood of x in X,
V is an open subset of U and V n M = UnM. Now W n i(X) n B = 0 yields
V n i-'(B) = 0, which implies x V M n i-'(B) according to our initial remark. A
similar argument proves M n j-'(B) C i-'(j( X) n B), and the claimed inclusion is
shown. Since the right hand side in (t) is obviously contained in the left hand side,
this proves (t).

We are now ready to state the main result of this section.

THEOREM

(1) pioP = espP = espP and ipro1 < iesp1 = iespin particular, esp1 and
iesp1 are essentially strong.
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(2) (esp1)°O coincides with the regular closure operator of Haus(P) when re-
stricted to Haus(P), and (iesp")°O coincides with the regular closure operator of
Hausi(P) when restricted to Hausi(P).

(3) The epimorphisms of Haus(P) and of Hausi(P) are precisely the (espP)°O-
and the (iesp")°O-dense maps, respectively.

Proof (1) We trivially have prop < espP < e 1. Hence we must show esp" <
espP < fro" in order to conclude Fro" = espP = e p- P, which by Theorem 7.4, yields
essential strength of esp1. But for M C X E Top and any map h : P --+ X +M X
with P E P, we can consider the set B := h(P) and, with g := e h : P -+ X, obtain
from the Lemma:

i-1(j(X) n h(P)) C M n g(P) C esp1(M).

But the left-hand side represents a typical member of the union defining espP, which
is therefore contained in espX(M). In order to prove espX(M) C Fr-6.(M), consider
a map f : P -. X with P E P, and this time let B:= i(f (P)) in the Lemma. Then
&(B) = f (P), and

Mfl f(P) C i-l(j(X) iii(f(P))),
with the right-hand side representing a typical member of the union contributing to
Fr-011' (M).

The proof of iesp" < iesp" proceeds similarly to the one given for esp" < espP
and is therefore omitted.

(2) and (3) follow from (1) and from Theorem 7.4.

EXAMPLES

(1) Let P = T = {X : card(X) < 1} be the subcategory of trivial spaces (which
does not satisfy condition (*) of the Remark!). Then iproT = TK = S is discrete
and proT = K$, so that the Theorem gives espT = K. The operator iespT is
easily seen to be the b-closure. Since trivially S = S, this shows that in general
ipro < iesp1. Consequently, Haus(T) = A(KO) = Top,, while &(iproT) = Top,
and Hausi(T) = Topo.

According to the Theorem, the epimorphisms in Top, = Haus(T) are the K&-dense
maps in Top,, which are surjective (cf. Example 6.5) since KG ITop, = SJTop, .

Again by the Theorem, the epimorphisms in Topo = A(iespT) = Hausi(T) are the
b-dense maps (cf. Example 6.5).

(2) Let P be a class of indiscrete spaces, containing at least one non-trivial space.
Then

pro" = Ke, esp1 = iesp1 = b, ipro1 =PK = p,

with p defined by

pX(M) := U{I C X : I indiscrete & I n M 0}
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(see Exercise 8. F). Actually, it = b®, hence with Exercise 6.U one obtains

iproP = µ = ((1egT0Pe)G)- = regT0Po = b = iespP.

As in (1), one has Haus(P) = Top,, and

A(ipro') = A(PK) = Topo = Haus=(P) = A(iesp').

(3) Let P consist of finite spaces, with at least one non-discrete space. In fact, we
can then assume that the Sierpinski dyad S belongs to P (see Remark (4)). Then

proP = iproP = K® and esp' = iesp1 = K®,

and Haus(P) = Haus;(P) = Top,.

(4) Since we are mostly interested in computing the projective closure operators in
Haus(P)-spaces (which are T,-spaces), we shall consider from now on only classes
P C Top, (since every h : P - X E Haus(P) factorizes through the Top,-
reflexion of P). Every infinite T,-space P admits a continuous bijection P -. Xa,
where a = JPJ and X. is the "test-space" given in Example 6.9 (5) (see also Remark
8.3(c)), hence pro{p} > pro{xa}. Note that {X.} satisfies (*) of Remark (2), so
that pro{xo} = ipro{x,.} and esp{x,} = iesp{xa} One has x E projrxa)(M) if and
only if there exists an embedding X. --. X, such that x E Xa, and Xa fl M is
infinite. Note, that Haus({Xa}) = W. since every continuous TI-image of Xa is
homeomorphic to Xa. Hence W. = A(pro{xa})

(5) P = {N }. Now {r }K = o, as already mentioned. Since (*) is fulfilled,
ipro{ } and Tjie category Haus({11,,,}) coincides

with the category SUS of topological spaces in which each convergent sequence has
a unique accumulation point, and asus (see Exercise 8.1). Conse-
quently, regsus (sus = uO° Isus

(6) P = {,c}, where x is a cardinal provided with the discrete topology. Now
(*) holds and pro" = ipro" is idempotent. (This closure operator is known also
as rc-closure; spaces X with pro' = kx are usually called spaces of tightness <
ic.) Furthermore, esp" is not idempotent (so that pro" is not essentially strong,
see Exercise 8.K). Haus(n) is the category of spaces in which every subspace of
cardinality < ic is Hausdorff.

(7) K = proTOP = pro) r, where Discr is the category of discrete spaces, and
in both cases (*) is fulfilled, hence also K = iproToP. Obviously, also K = espTOP,
which proves, in view of the Theorem, that K is strong.

(8) P = CTop. By Remark (1) and (*), which holds now, pro' = iproP = 'K
and esp' = iesp'. Since the closure of a connected set is connected, we have
esp' = pro' as well, so that all four closure operators coincide and are obviously
idempotent. Haus(CTop) is the category of spaces where each connected subspace
is Hausdorff (in particular, Haus(CTop) contains all totally disconnected spaces).
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Obviously, Haus(CTop) C ?f,,, and Haus(CTop) is not comparable with US. A
map f : X - Y in Haus(CTop) is an epimorphism if and only if for each y E Y
there exists a closed subset C C Y, such that y E C n 1(X).

8.5 Cowellpowered subcategories of Top
Here we add to the Examples 8.3 some new examples of cowellpowered subcategories
of Top. We begin with the following fact which one can easily isolate from the proof
of Theorem 8.3.

Let C be an additive closure operator of Top. Then T2(C) is CC-cowellpowered.

We note that this statement cannot be extended to Delta'subcategories. In fact,
as we show in the next section, there are non-cowellpowered strongly epireflective
subcategories A of Top with additive A-regular closure (so that A = A(regA), and
now ETee-cowellpoweredness means simply cowellpoweredness). Nevertheless, we
have the following easy lemma which can be proved by just mimicking the proof of
Theorem 8.3. We say that a closure operator C is bounded on A if there exists an
ordinal a such that cX is idempotent for every X E A.

LEMMA Let A be an epireflective subcategory of Top with regA1A = C°°IA for
some closure operator C which is bounded on A. Then A is cowellpowered if and
only if A is EC-cowellpowered.

PROPOSITION Let C be an additive and essentially strong closure operator of
Top.

(a) If C is bounded on T2(C), then T2(C) is cowellpowered.

(b) If C is bounded on A(C), then 0(C) is cowellpowered if and only if 1X(C) is
£c-cowellpowered.

Proof In both cases essential strength of C yields essential equivalence of the
respective regular closure and C°°, so that the Lemma applies.

Item (b) of the Proposition rephrases Theorem 8.3 (b). Note that it trivially
holds when C is regular. Hence regularity is one of the conditions that solves the
first of the following

PROBLEMS

(1) Find conditions under which L(C) is £c-cowellpowered, for an additive clo-
sure operator C.

(2) Does there exist an additive closure operator C of Top such that T2(C) is
cowellpowered, but C is not bounded on T2(C)?

(3) Is v bounded on US ?
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(4)

(5)

(6)

Is US &-cowellpowered?

Is US cowellpowered?

When does the inclusion Haus(P) - A(PK) preserve epimorphisms?

(7) If A is a cowellpowered subcategory of Top, is then the subcategory S(AU{X })
cowellpowered for every space X ?

(8) If A and B are cowellpowered subcategory of Top, is then the subcategory
S(A U B) cowellpowered?

Note that for P = {N 0} the inclusion from (6) preserves epimorphisms (see Ex-
ercise 8.Q). In connection with (7) we recall that a subcategory of Top cogenerated
by a single space X is always cowellpowered (cf. Proposition 8.2).

Returning to Problem (1), other than regularity, also A(C) = T2(C) would be a
sufficient condition for A(C) to be £°-cowellpowered. However, it is not a necessary
condition as the case C = a shows; see Examples 7.9 (2)). Another important
instance when Problem (1) has a positive solution is given by:

THEOREM Haus(P) is £"p'-cowellpowered.

Proof It suffices to prove, that for M C X E Haus(P),

le3px(M)I < 2 (*)

In fact, X E Haus(P) implies that for each map h : P -+ X, with P E P, h(P)
is a Hausdorff subspace of X. Now Ml = M fl h(P) is a subset of this Hausdorff
space, hence fM1 < 221M1i < 221'"'. Note that Ml is a typical member of the union
defining espl (M). Since there are at most 2WMI such members, (*) is now obvious.

0

REMARK The reader should observe that for a weakly hereditary unbounded
closure operator C there exist a proper class of embeddings ma : Xa -+ Ya, such
that for every ordinal a, ma is C1+1-dense but not Ca-dense. In particular, every
m,,, is CO°-dense but the domains Xa are distinct (unlike the case of testing £°--
cowellpoweredness). In other words, for a weakly hereditary closure operator C,
£°-`cowellpoweredness should be considered a weak form of boundedness of C.

COROLLARY Haus(P) is cowellpowered wheneverespP is bounded on Haus(P).

Proof Apply the Theorem and the Proposition.

Now we provide examples when esp' is bounded.
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EXAMPLES

(1) If there exists a cardinal y such that all spaces of P have a dense subset of
cardinality at most y, then the order of espP is bounded (by (22')+) on Haus(P).
In fact, if M C X E Haus(P) and a is an ordinal of cardinality at least (22 )+,
then for MI = (espP)X(M) and x E espX(MI) there exists h : P -+ X, with P E P
and x E h(P) ft MI. Since h(P) is Hausdorff (by X E Haus(P)) and has a dense
subset of cardinality < y, we have Ih(P)l < 22 . Hence h(P) C MI, since MI is a
union of an a-chain with a > Ih(P)I. This gives x E MI. Thus MI is esp'-closed.

(2) Clearly the condition from (1) is satisfied when P is a set. We are particularly
interested in the following cases when P consists of a single space: a) P = {N }, b)
P = {,c} (see Examples 8.4). This immediately yields that the categories SUS and
Haus(rc) are cowellpowered.

8.6 Non-cowellpowered subcategories of Top
The non-cowellpowered subcategories of Top considered in this section are divided
in two groups, depending on their position with respect to the subcategory Haus,
which plays a pivotal role in Top. We begin first with "large" subcategories of
Top, i.e., subcategories containing Haus. They will be of the form Haus(P) for
some proper class P of topological spaces, since otherwise Haus(P) is cowellpowered
according to the sufficient conditions given in Corollary 8.5 and Example 8.5. Now
we give sufficient conditions for non-cowellpoweredness of Haus(P).

Non-towellpoweredness of Haus(P)

The following generalization of compactness will be used in this part of the
section.

DEFINITION

(1) A subset B of a topological space X is said to be bounded (w.r.t. X) if every
open cover of X admits a finite subfamily covering B.

(2) A topological space X is e-compact if X admits a dense bounded subset.

Clearly, compact subsets are bounded and compact- spaces are e-compact. For
further properties of bounded sets and e-compact spaces, see Exercise 8.0.

For an ordinal a we denote by a also the space of all ordinals less than a equipped
with the order topology. Then the space a + 1 is compact for each a.

Now we prove the following general result:

THEOREM The category Haus(P) is non-cowelipowered if the class P satisfies
the following conditions:

(1) for a proper class of ordinals a, the class P contains the space a + 1;
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(2) every space in P is e-compact.

Proof For each ordinal ic we shall provide the set (x + 1) x w with a topology
such that the resulting space X,. satisfies:

A) Xa is an open subset of X,. whenever a < ic;
B) Xx E Haus(P);
C) the embedding Xo -+ Xr is an epimorphism in Haus(P).

Obviously, B) and C) will imply that Haus(P) is non-cowellpowered.
Let {Nn} be a partition of w with N infinite for every n E W. The topology on

X., will be defined by transfinite induction on x such that:

Each point (0, n) is isolated.

Assume that a neighbourhood base of all points (y, n) with y < 8 is already
defined such that A) holds.

i) If /3 = y + 1, then a neighborhood base of (/3, n) is composed of the
sets {(/3, n)} U U{Vy : x E {y} x Nn \ F} for finite sets F C Nn, and for
neighbourhoods V, of z in Xy.

ii) A neighborhood base of (#,n), for /3 limit, is composed of the sets
{(f3, n)} U U{Vd : y < 6 <,6} for 6 < /1, and for neighbourhoods Vs of (6, n).

Clearly A) holds. To verify B) and C) we need to prove the following:

Claim: For each /3 < ic, let Gp be a subset of w such that Gp fl Nn is finite for
each n. Then G = Up,:,, 1,6} x Gp is closed in ;X, whenever one of the following
conditions hold:

(a) all Gp coincide;
(b) the sets Gp are pairwise disjoint.

Moreover, G has the product topology in case (a), while in case (b) G is discrete.

Proof of the Claim Take z = (/3, n) E X,£ \ G, /3 < 1c. To find a neighbourhood
U of z which misses G we proceed by transfinite induction on f3.

If z E Xo, then z is isolated and we are through. Assume all z = (y, n), with
y < /3, have a neighbourhood in X,s disjoint from S. Consider first the case when
f3 is a limit ordinal. Now (y, n) E G may occur for at most one y < /3. Choose
a yo < 6 such that (y, n) 0 G for ally with yo < y < f3. Now by the induction
hypothesis each x7 = (y, n) has a neighbourhood VT in X,. disjoint from G. Then
{z}UU{Vy : yo <,y < f3} is a neighbourhood of z which misses G. In case f3 = y+1
is a successor ordinal, the subset F = Gy fl Nn of Nn is finite by hypothesis. Now
each point xk E {y} x (Nn \ F) has a neighbourhood Vk which misses G by induction
hypothesis. Now V = {z} U Uk Vk works as before.

The discreteness of G in case (b) follows easily from the definition of the topology
of X,,. In the case (a) let all Gp coincide with some Go g w. To see that G = x x Go
has the product topology fix n E Go and note that for Gn = Go \ {n} the set
G = rc x GI is closed in X. by the first part of our claim. Therefore, the set
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C,c,,, = x x {n} is clopen in G. It remains to observe that C,,, is homeomorphic to
the compact ordinal space x + 1. This proves the Claim.

Call diagonal set in X,, every subset G of X,, satisfying (b) of the above Claim.
By the Claim, every diagonal set is closed and discrete. Hence, by Exercise 8.0, every
bounded set of X,,. can contain only finite diagonal sets. Consequently a bounded
subset B of X., is either contained in a product (x + 1) x F, where F is a finite
subset of w, or contained in a product K x w, where K is a finite subset of x + 1.
In the first case (x + 1) x F has the product topology according to the Claim, so
that (x + 1) x F, and consequently B, is Hausdorff. In the second case, we note that
finiteness of the diagonal subsets of B implies that for each 03 E K, B meets only
finitely many sets {#} x N,,. Therefore B is contained in a subspace of Xr which
is homeomorphic to a finite coproduct of converging sequences, hence Hausdorff. In
this way we have proved that every bounded subset of Xr is Hausdorff.

Now consider a map h : P -+ X with P E P and a, b E h(P). By our hypothesis
(2), P is e-compact. Hence there exists a bounded dense subset B of P. Now j(B)
will be a dense bounded subset of j(P) by Exercise 8.0. Since B' = j(B) U {a, b} is
still bounded (see Exercise 8.0), our previous argument yields that B' is Hausdorff.
Thus a and b can be separated by disjoint open neighbourhoods in B'. It remains
to note that B' ft h(P) is dense in h(P), so that a and b can be separated in h(P)
as well. This finishes the proof of X, E Haus(P).

To check C) denote by Q the class of all spaces x, with x E Ord. Since for
x' < x one can find easily a continuous surjection x - x', Remarks 8.4 (4) and our
hypothesis (1) imply that proQ _< proj'. Hence, according to Theorem 8.4 (3) and
since pros. = espy., it suffices to prove that for a < x,

Xa. C (proQ)x '(Xo). (*)

But the proof of (*) is a standard application of transfinite induction in view of the
homeomorphism C,,,, = (x + 1). 0

COROLLARY For the following classes P of topological spaces the category Haus(P)
is not cowellpowered:

compact spaces;

compact Hausdorff spaces;

e-compact spaces.

0

There are other classes P of topological spaces which satisfy the hypotheses of
the Theorem, such as compact totally disconnected Hausdorff spaces. However,
since each compact Hausdorff space is a continuous image of such a space, this new
class gives no impact on Haus(P), according to Remark 8.4(4) (while (1)-(3) give
different categories Haus(P), see Exercise 8.Q).
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Non-cowellpoweredness of Ury and of other subcategories of Haus

Now we define in an appropriate way a generalization of the Urysohn separation
axiom (distinct points can be separated by disjoint closed neighbourhoods). To this
end we define the notion of S(n)-neighbourhood in Top.

DEFINITION`

(1) Let n be a natural number and let k = n/2 in case n is even and k = (n+1)/2
otherwise. If X is a topological space, U C X and X E X, then we say that U is a
5(n)-neighborhood of x if there is a family of open sets {U3 : 1 < s < k} such that

x E UI
1<s<k= UUCU.+1
Uk C U if n is odd, otherwise Uk C U.

(2) A topological space is an S(n)-space if any pair of distinct points can be sep-
arated by disjoint closed S(n)-neighbourhoods.

In the sequel we denote by S(n) the full subcategory of Top having as objects
all S(n)-spaces. Clearly, S(1) = Haus and S(2) = Ury.

REMARKS

(1) Every zero-dimensional space is an S(n)-space for each n E N, since any pair
of distinct points can be separated by disjoint clopen neighbourhoods.

(2) For every map f : X --+ Y in Top and x E.X, the inverse image of an S(n)-
neighbourhood U of f (z) in Y is an S(n)-neighbourhood of x in X (see Exercise 8.L
(b)). This permits to define S(n)-closure, which turns out to be a closure operator
due to this property (a point x E X is in the S(n)-closure of a subspace M C X
if and only if each S(n)-neighbourhood of x meets M). Denote by 8k the S(n)-
closure in case n = 2k. Then clearly 81 = 8 and T2(8k) = S(2k). Although 8k
is essentially strong (see Exercise 8.L(e)), Corollary 8.5 cannot be applied to get
cowellpoweredness of S(2k) since 8k is unbounded (this is witnessed by the spaces
X,. constructed in the proof of Theorem` below).

(3) For infinite ordinals a one can define the notion of S(a)-neighborhood by
taking decreasing ordinal chains of size a of neighbourhoods U., (7 < a) as before;
or the notion of S(a*)-neighbourhood by taking increasing chains. In both cases no
distinction is needed as in the third item of Definition* (1) when a is a limit ordinal.
Now define S(a)-spaces and S(a`)-spaces in a similar way.

THEOREM' Every subcategory A of Top satisfying nn S(n) C A C Ury is
non-cowellpowered.

Proof For each ordinal is we shall provide the set (ic + 1) x Q with a topology
such that some appropriate subspaces X. of the resulting spaces Z., will satisfy:
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A) X,.. E S(n) for each n E N (hence X. E A);
B) the embedding Xo' X, is 9°°-dense, hence an epimorphism in Ury (and, a

fortiori, an epimorphism in A).

Clearly, A) and B) will imply that A is non-cowellpowered.
To define the topology of Za we need to modify the topology of the ordinal space

x + 1, as follows. A non-zero ordinal /3 is said to be odd, if /3 can be presented as
,6 _ 13o + n, where /3o is a limit ordinal or zero, and n is an odd natural number.
Non-odd ordinals will be called even. The new topology r of the ordinal space ic+ 1
leaves unchanged the basic neighbourhoods of the even ordinals in rc, while every
odd ordinal /3 < rc has as least r-neighbourhood the set {/3 - 1,/3,/3 + 1} fl rc. This
topology is not even T1, but distant ordinals or and /3 (i.e. such that either or +w < 6
or /3 + w < a) have disjoint S(n)-neighbourhoods. We leave the easy check of this
fact to the reader.

Now let Z,s = 1) x Q be the product space, where Q is equipped with the
usual topology, and is + 1 is equipped with the topology r. Let p : Z,c. -+ Qp and
q : Z,, -+ rc + 1 be the canonical projections. In order to define the appropriate
subspace Xa of Za fix a partition Q = U' .10 Q into disjoint dense subsets. For an
arbitrary ordinal /3 = /3o + n, with /30 limit or zero, set Qp := Qn. Now let

X,..:= U{/3}xQpCZ.
O<R

be equipped with the topology induced by Za. Making use of both projections
p and q, we shall show that X,. E S(n) for each n E N. Fix z, z' E X,. In
case p(z) # p(z') in Q, we can S(n)-separate p(z) and p(z') in Q (which is zero-
dimensional, see Remark (1)) and then take inverse images along p to get disjoint
S(n)-neighbourhoods of z and z' in XR.. In case p(z) = p(z'), it follows by the
definition of X. and Qp, that /3 = q(z) and 6' = q(z) are distant. Hence we
can S(n)-separate /3 and /3' in the ordinal space (rc + 1,r) and then, as before,
take inverse images under q of the disjoint S(n)-neighbourhoods in (rc + 1, r) to get
disjoint S(n)-neighbourhoods of z and z' in X,. This finishes the verification of A).

To prove B) and finish the proof of the Theorem, we need the following:

Claim: For each /3+ 1 < x, Xp+1 C Ox. (X#). Consequently, X,s = 8X (Xo).

Let z = (/1 + 1, x) E Xp+i. If /3 is either a limit ordinal or odd, then each
neighbourhood of 6 in the space (x, r) hits the subspace /3. Hence, taking into
account also the density of each Qp in Q, we conclude that actually z E kXR(Xp)
since every neighbourhood of z in X. hits Xp. Assume now that 8 is an even
non-limit ordinal. Then a basic open neighbourhood of z in X,.. has the form W =
{l3 + 1} x (V fl Qp+1), where V is an open neighbourhood of x in Q. By the density
of Q +1 in Q, there exists r E V fl Q p. Let us see that (/3, r) E Xp n W. In fact,
a basic open neighbourhood of (/3, r) in X,c. always contains {,6 + 1} x (O fl Qpp+1),
where 0 is an open neighbourhood of r in Q. (By the density of Q P+1 in Q, always
OnQp+1 # 0.) Thus W nXp # 0 is proved. This finishes the first part of the proof.
The second part of the proof follows from the first one by transfinite induction. 0

A careful analysis of the proof of the Claim shows that X0 is actually C°°-dense
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in X,s, where C is defined as follows. For a space X and M C X a point x E X is
in the closure cx(M) if for every open neighbourhood U of x in X, ox(U) meets
M. Denote by sUry the full subcategory of Top having as objects those spaces X
in which distinct points x and y have neighbourhoods U and V respectively, such
that ax (U) n ax (V) = 0. Clearly, Ury g sUry = T2(C). Our observation shows
that the hypothesis of the Theorem can be weakened to

n S(n) C A C sUry.
n

In the sequel we consider another generalization of.the Urysohn separation axiom.
It depends on a sequence {hn} of closure operators defined for each n > 0, as follows:
ho is the discrete closure operator, and for a topological space X and M C X define

(hn+1)x(M) = {x E X : for each neighbourhood U of x, hn(U) n hn(M) 001-

Now define h;, by

(h;,)x(M) = {x E X : for each neighbourhood U of x,hn(U) n M # 0}.

The reader can easily check that hn and h' are closure operators for each n > 0,
with hl = K and hF = 8. A space X is an Sn-space if for each pair x and y of distinct
points of X, there exist open neighbourhoods U and V, of x and y respectively, such
that hn(U) n hn(V) = 0. Denote by Sn the full subcategory of Top of Sn-spaces.
Then one obtains:

COROLLARY` The categories S,, (n E N, n > 1) are non-cowellpowered.

Proof It is easy to see that Sn C Sl = Ury for each n > 1. Moreover, S(2') C Sn
(see Exercise 8.N). Now we can apply Theorem*. 0

The categories S(o) (o > 1) as defined in Remark (3) represent a proper class of
non-cowellpowered subcategories of Top. Actually, one can define S(, )-separation
depending on an arbitrary order type rl and characterize those order types q for
which the category S(rl) is cowellpowered (see Dikranjan and Watson [1994]; some
particular cases are given in Exercise 8.M).

8.7 Quasi-uniform spaces
A quasi-uniform space is a pair (X,U), where X is a set and U is a filter of reflexive
relations on X such that for every U E U, there exists V E U with V o V C U.
A uniformly continuous map f : (X,U) --r (Y, V) is a set-map such that for each
V E V there exists U E U with (f x f)(U) C V. This defines the category QUnif
of quasi-uniform spaces which contains the category Unif of uniform spaces (see
5.11) as a full subcategory. The forgetful functor G : QUnif -+ Set is topological;
in particular, the quasi-uniformities on a set form a complete lattice (see Exercise
8.R).
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For a quasi-uniform space (X, U) one can define a topology T(U) on X by taking
as a base of neighbourhoods at x E X the filter base {U(x)}UEU, where U(x) =
{y E X : (x, y) E U}. Every uniformly continuous map f : (X,U) -+ (Y, V)
gives a continuous map with respect to the induced topologies. Hence one has a
concrete functor T : QUnif -+ Top which composed with the forgetful functor
V : Top -> Set (see diagram (5.31)) gives G = V o T.

The functor T admits many sections, i.e., functorially chosen quasi-uniformities
on the underlying set X of a topological space (X, r) inducing the given topology r,
of which the following two are the most relevant ones. The finest quasi-uniformity
F(X, r) is defined as the finest quasi-uniformity U on X with T(U) = r (see Exercise
8.R for its existence). The Pervin quasi-uniformity P(X, r) of a topological space
(X, r) is generated by the filter base of binary relations {Sc}, with SG := (G x
G) U ((X \ G) x X) and G running through the family of all open subsets of X. In
this way one obtains two fiinctors F,P : Top -a QUnif of which F is left adjoint to T.
Then, in the notation of 5.13, the counit ex : FTX --+ X is the identity map, where
FTX is the set X equipped with the finest quasi-uniformity of the topological space
TX.

Consider the natural involutive endofunctor c : QUnif --+ QUnif defined by
(X,U) 4 (X,U-1), where U-1 denotes the filter {U-' : U E U}. The composite
T` := To& : QUnif -+ Top has P := coF as a left adjoint with counit eX := t(e,x)
F``X X. The category Unif of uniform spaces is simply the full subcategory of
QUnif of all quasi-uniform spaces left fixed by s. Actually, Unif is coreflective in
QUnif, with the corefiector defined by (X,U)' -+ (X,U*), with U* = UVU'1 and the
join taken in the lattice of all quasi-uniformities on X. The restriction of the functor
T : QUnif --+ Top to Unif coincides with the forgetful functor W : Unif --+ Top
defined in 5.11. The composition of the corefiector * : QUnif -+ Unif with W is
usually denoted by T* : QUnif -+ Top. Hence one has a commutative diagram:

QUnif Unif

T* W

Top

With respect to the class M of all embeddings, QUnif is M-complete. As described
in 5.13, with the help of the adjunctions F -I T, P -i T`, Incl -i* one can "push"
closure operators of Top and Unif along the respective counits to obtain closure
operators of QUnif w.r.t. M. In particular, for the Kuratowski operator K of
Top and its initial lifting to Unif (see 5.11), we obtain the closure operators

7 :_ `If and `K,

where e* is the corefiexion of the corefiector * : QUnif -+ Unif. Actually, 6 =
(X A y)+, so that J3 becomes the quasi-uniform counterpart of the b-closure. But
it should be mentioned that the restrictions of the closure operators 7, 11 and W to
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Unif coincide ; in particular, 8IUnif coincides with the Kuratowski closure lifted
from Top to Unif. Furthermore, flUnif is regular, while neither `K nor 7 are
regular closure operators of QUnif (see Examples below).

Now we define a series of closure operators of QUnif which fully exploit the
specific features of QUnif. Let n E H and U be a quasi-uniformity in X. For
V E U consider the relation wn(V) = V,, o ... o ...V2 o V1, on X, where VI =
V, V2 = V-1,....Vt+1 = V(-1)k.... Then V E U,n E is
a neighbourhood system of a pretopological space 8n(X) satisfying the condition
from Exercise 8.L(b)(i). Hence in : QUnif --ti PrTop is a concrete functor, which
defines an additive closure operator 8n for every n E N. Obviously, 81 = `K. More
generally, a 8n-neighbourhood in X E QUnif is also an S(n)-neighbourhood in TX
(cf. Definition* (1) of 8.6). If the Pervin quasi-uniformity of TX is contained in the
quasi-uniformity of X, then both neighbourhood systems coincide on TX. Hence,
with S(n) = T2(8,,) and T2 defined as in 7.11, one has T(S(n)) = S(n) (see also
Exercise 8.R(e)).

EXAMPLES

(1) Making use of the definitions and Exercise 8.R(b) one can show that n{(V fl
V-') : V E U} = Ax holds for X E QUnif if X E T-1(Topo) = (T`)-1(Top0)
A(/3). We denote by QUnifo this subcategory of QUnif. The reflector QUnif --
QUnifo is defined as follows: for (X,U) E QUnif set Lx := n{(VnV-1) : V E U).
Clearly Lx is an equivalence relation on X, such that the quotient map p : X --+
RX = (X/L, p(U) is the QUnifo-reflexion of X. Note that p sends /3-closed sets of
X to /3-closed sets of RX. Since QUnifo is the biggest proper strongly epireflective
subcategory of QUnif, the Generating Diagonal Theorem implies that its regu-
lar closure operator regQUII7fa is the finest non-discrete regular closure operator of
QUnif. We claim f3 = regQU°'fo. To prove the inequality 8:5 regQU"ro, note that
both closure operators are idempotent, hence it suffices to show that, each equalizer
eq(f,g) with f,g : X .- Y E QUnifo is /3-closed. In fact, eq(f,g) = h-'(Ay) for
h =< f,g >: X -. Y x Y, and the diagonal Ay is /3-closed in Y x Y. To prove
the opposite inequality, consider a /3-closed subset M of X. By Exercise 8.R, i(x)
and j(x) are separated in X +M X. In case X E QUnifo the other pairs of distinct
points of X +M X can be separated via the projection X +M X -+ X as in Example
6.5, so that by Frolic's Lemma, M is QUnifo-closed. In the general case one has to
observe that the QUnifo-reflexion p : X -+ RX sends /3-closed sets to /3-closed sets.

(2) Analogously, T-'(Top1) = (T`)-1(Top1) = A(t(K*)). Let QUnifl denote
this category. One can show that n{V : V E U} = Ax (or, equivalently, (i{V-1 :
V E U} = Ax) holds for X E QUnif iff X E QUnifl. Similarly to (1) one
can show that the regular closure operator of QUnifl in QUnif coincides with 13
on QUnifl. But note that, unlike the case of QUnifo, regQUII'fi and /3 do not
coincide on QUnif, due to the Generating Diagonal Theorem.

Since a uniform To-space is also Hausdorff, we have Unifo := Unif fl QUnifo =
Unif fl QUnif 1. Note that for X E Unifo, the topological space TX is a Tychonoff
space (see Exercise 8.R (d)). One can easily find examples to distinguish QUnifo
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and QUnif1. To see how big the difference between /3 = (°K A y)+ and `K A y is,
compare QUnifo = d(/3) with L (`KA-f) C QUnifo. (In fact, if X is the Sorgenfrey
Line and M = Q the set of nationals, then M is /3-closed, so that the amalgamation
Y = X +M X belongs to QUnif1 by Exercise 8.R, while for each irrational point
z E X the pair (i(x),j(x)) is in the (K A y)-closure of the diagonal of Y x Y, but
not in the diagonal Ay, so Y E QUnif1 \ 0(`K A y).)

The following theorem helps to find non-cowellpowered subcategories of QUnif.

THEOREM

(1) Let B be a strongly epirefiective subcategory of Top. Then the subcategory
A = T-1(B) of QUnif is strongly epireflective and regA > `regs. The functor
T is (regA, reg5) -continuous (cf. 5.7) iff reg'LIA = `reg5 This implies that the
restriction TIA : A -+ T(A) preserves epimorphisms. If B C Haus, then T is
(regA,reg5)-continuous.

(2) Let A be a strongly epireffective subcategory of QUnif. Then the restriction
TIA : A -r T(A) reflects epimorphisms. Consequently, A is non-cowellpowered if
T(A) is non-cowellpowered. In particular, if A = T'1(T(A)) and T(A) C Haus,
then TIA also preserves epimorphisms, so that T(A) is cowellpowered if A is cow-
ellpowered.

Proof (1) In order to prove regA > `rega, it suffices to show that an A-closed
subspace M C X E QUnif is B-closed in TX. By Frolik's Lemma it suffices to see
that TX`EM TX E B. Note that by Frolik's Lemma again X +,v X E A, so that
T(X +M X) E B. Since the canonical (bijective) map TX +M TX - T(X +M X) is
continuous, strong epireflectivity of B gives TX +M TX E B. The second assertion
follows from,this inequality and the definition of continuity of a functor (see (*) in
Definition 5.7). To prove the last assertion of (1), assume B C Haus and proceed
with the proof of the inequality regA _< `rege, which will imply continuity of T. In
view of the idempotency of the regular closure operators it suffices to see that if
M C X E QUnif is B-closed in TX, then it is also A-closed. By Frolik's Lemma,
B-closedness of M gives TX +M TX E B. Since B C Haus, B-closedness of M
yields also closedness of M in TX. Now Exercise 8.R(b) guarantees that both
topologies on the amalgamation X +M X coincide, so that also T(X +M X) E B.
Thus X +M X E A, consequently M is A-closed by Frolik's Lemma.

(2) Follows from (1) and Theorem 8.1. 0

COROLLARY For every n > 1, the categories 3(n) = C T-1(S(n))
are non-cowellpowered, while the categories QUnifo,QUnif1 and Unifo are co-
wellpowered. 0

Proof For A = S(n) the category T(A) = S(n) is not cowellpowered according
to Theorem* of 8.6. Thus by (1) of the Theorem, both A and T-1(S(n)) are not
cowellpowered. For the properness of the inclusion S(n) C T-1(S(n)) see Exercise
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8.R(e). To prove the last assertion, note that the functor T* : QUnif --i Top sends
QUnifo and its subcategories QUnif, and Unifo into the cowellpowered category
Haus and preserves epimorphisms. Now Theorem 8.1 applies. 0

REMARKS

(1) Exercise 8.R shows that the functor T need not preserve epimorphisms if 6 is
not contained in Haus. In fact, while the epimorphisms in QUnifo are the /3-dense
maps, the epimorphisms in Tops = T(QUnifo) are the 6-dense maps (it is easy to
find a /3-dense map f such that Tf is not b-dense). Another example is provided
by the smaller subcategory QUnif,. Here epimorphisms are (again!) the /3-dense
maps, while the epimorphisms in Top, = T(QUnif,) are surjective (see Exercise
8.R(c)).

(2) It follows from the Corollary, Exercise 8.R(f) and from the obvious counterpart
of Theorem 8.3 for QUnif, that 9 is unbounded for n > 1 (compare with Problems
8.5 (2) in the case of Top).

(3) As the examples above show the deficiencies of the amalgamation in QUnif
(see Exercise 8.R) prevent an easy "lifting" of the known results in Top along the
functor T : QUnif --+ Top. This fact makes it necessary to study problems of
cowellpoweredness in QUnif separately.

(4) The following fact shows that in the Theorem one cannot replace T by the
functor B = T x T' : QUnif --r 2Top. Let A be the full subcategory of 2Top
of pairwise-T2 spaces, i.e., spaces (X, ri, r2) such that for each pair x, y of distinct
points of X there exist disjoint ri-open sets Of (i = 1, 2) such that either x E Ol
and Y E 02, or x E 02 and y E 01. Hence QUni4 = B'1(A), and this category is
cowellpowered by the Corollary. Recently Schroder [1995) proved that A is non-co-
wellpowered.

PROBLEM Do there exist non-cowellpowered full subcategories of Unif ?

8.8 Topological groups

It is easy to see that for the categories of Hausdorff abelian groups or Hausdorff
topological modules over a ring R, the epimorphisms coincide with maps with dense
range (see Exercise 8.R). As mentioned in Example 6.1, this remains true also for the
category of compact groups. Now consider the category HausGrp of all Hausdorff
topological groups and continuous homomorphisms. Every morphism with dense
range is an epimorphism in HausGrp, since the forgetful functor HausGrp -+
Haus reflects the epimorphisms. It was an open problem formulated already in the
late sixties whether the converse proposition is true. This problem is equivalent to
the following problem of K. H. Hofmann (see Comfort [1990], Problem 512).

If G is a Hausdorff topological group and H a proper closed subgroup of G, can
H be reg HausGrp-dense ?
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In other words, does epiHH°'GP coincide with the Kuratowski closure operator
K ? It was proved by Nummela [1978] that epiGB°'G`g coincides with kG for lo-
cally compact and other classes of topological groups G. It was shown recently by
Uspenskij [1994] that, in general, the answer to this question is negative, by means
of the following example. Let T = {z E C : IZI = 1} be the circle group equipped
with the Euclidean metric p, and let G be the group of all self-homeomorphisms of
T, equipped with the topology of uniform convergence. The filter N(G) of neigh-
bourhoods of the neutral element e in G has as basic neighbourhoods the sets

{9 E G : (Vx E T) p(g(x),x) < n-1}

for n E N. Denote by H = {g E G : g(1) = 1} the stabilizer of the point 1 E T.
Then H is a proper closed subgroup of G since G is Hausdorff. We can now prove:

THEOREM The inclusion H --> G is an epimorphism in HausGrp.

Sketch of Proof. Consider an arbitrary pair of morphisms f,g : G -i K to
a Hausdorff group K with f 1H = gjH. In order to prove f = g, define j : GxG -> K
by j(x, y) = f (x)g(y)-1. Let V be the lower uniformity on K. This uniformity has
abase {(x,y) E K2 : x E VyV}, where V runs over N(K), and is compatible with
the topology of K. The main steps of the proof are:

1. G x G admits a uniformity U for which j is (U, V)-uniformly continuous.
2. Every uniformly continuous function h : (K, V) -* [0, 1] is constant on the

image D of the diagonal AG of G x G in K. By Exercise 8.R(d) this means that D
is a singleton, i.e., j is constant on the diagonal of G x G. Thus f = g.

Ir
Proof Step 1. We define the uniformity U on G x G. For U E N(G), define
a binary reflexive relation WU on G x G as follows: ((x, y) , (x', y')) E Wu for
x, x', y, y' E G if there exists u E U such that (x', y') equals one of the following
four pairs: (ux,y), (x,uy), (xy-luy,y) or (x,yx-1ux). If U = U-1, which we shall
assume, the relation WU is symmetric. Define the uniformity U on G x G as the
finest uniformity with the following property: for every entourage W E U there exists
U E N(G) such that WU C W. For V E N(K), let us say that two points z1, z2 E V
are V-close if either z2 E z1 V or z2 E Vz1. To prove that the map j : G x G -* K
defined by j(x,y) = f(x)g(y)-1 is (U, V)-uniformly continuous, it suffices to prove
the following assertion:

For any V E N(K) there exists U E N(G) with the following property: If
(x, y), (x', y') E Wu, then z1 = j(x, y) and z2 = j(x', y') are V-close.

This implies that the coarsest uniformity U on G x G for which j is (W, V)-
uniformly continuous, is coarser than U or, equivalently, that j is (U, V)-uniformly
continuous.

If (x', y') is (ux, y) or (x, uy), then z2zi 1 = f (u) or zj 'z2 = g(u)-l, respectively,
and the assertion follows from the continuity of f and g. If (x', Y) = (xy,1uy, y),
then

211X2 = 9(y)f(z)-1f(xy luy)9(y)-1 = k-'f (u)k,

where k = j(y, y). Let F = { j(y, y) : y E G}. This is a compact subset in K:
indeed, since the map y i-, j(y, y) is constant on left H-cosets, F is. a continuous
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image of the quotient space G/H, which can be identified with the compact space
T. It follows that there exists W E N(K) such that k-I Wk C V for all k E F. Pick
U E U(G) so that f (U) C W. Then zi lz2 = k'1 f (u)k E k-1 Wk C V, which means
that zl and z2 are V-close. If (x', y) = (x,yx-lux), the argument is similar: in this
case, z2zi 1 = kg(u)''k-1 with k = j(x,x).

Step 2. The diagonal embedding i : H -+ G x G, i(h) = (h, h) for h E H, induces
a right action of H on G x G via (x, y) h = (xh, yh). Note that j(xh, yh) = j(x, y)
for all h E H. We show that any uniformly continuous function (K, V) -+ [0,1] is
constant on D. Since j is (U, V)-uniformly continuous it suffices to prove that any
U-uniformly continuous function d : G x G -+ [0,1] which is constant on H-orbits,
is constant on the diagonal. Fix such a function d : G x G -+ [0,1]. To check that
d is constant on !G, pick an arbitrary a E G. We must verify d(a, a) = d(e, e). To
this end we show that for every r > 0, one has

Id(a,a) - d(e,e)I < 4s. (*)

Let t = aH E G/H. By the uniform continuity of d, for every k = 0, 1, ... there
exists Uk E N(G) such that, if pi, p2 E Wu, then f d(pl) - d(p2)I < 2-he. We claim
that for the sequence Uo, U1.... and the coset t we can find a sequence gi = e,... , gn
in C and v E U0 such that g, iand

(Vk E N,1 < k < n)(3uk E Uk)(gk+l = ukgk or gk+l = v- 1 U0901

i. e., g,, = ah for some h E H and gk+1 = ukgk, or gk+1 = v'1ukvgk for some
uk E Uk- If a E H this is trivially verified, so that from now on we assume a E G`H.

It follows from the definition of G that for every U E N(G) we can choose
a positive 6 so that for every n E N and every pair of n-tuples al,... , an and
bl, ... , 6n of distinct points in T with p(ai, bi) < 6, i = 1, ... , n, there exists u E U
with u(ai) = bi for each i. For each k = 0,1,..., let 6k denote the positive b
determined as above for Uk. Consider the point b = a(1) of T, we can assume
without loss of generality that 0 < Arg b < w. Let for n E N the point zn E 7
be determined by Arg zn = Arg b/2n. Choose n such that p(zn,1) < bo and set
b = min(bo, ..-,62n-l)- Pick a point to on the arc Iz, of T with p(w, 1) < b. For
0 < k < it set a2k = znk (so that in particular a2n = b) and for 0 < k < n - 1 set
a2k+1 = a2kw, 62k+1 = znk+l and b2k+2 = b2k+lw. Choose v E Uo with v(ai) _
bi, i = 1, ... , 2n and uk E Uk (k = 1,...,2n-1) with uk(ak) = ak+1 if k is even and
uk(bk) = bk+l if k is odd. This is possible since p(ak,ak+1) < b < bk if k is even,
and p(bk, bk+l) < b < bk if k is odd. Define a sequence 91, , 92n E Gas follows:
g1 = e, gk+1 = ukgk if k is even, gk+l = v-lukvgk if k is odd. Then gk(a) = at.
In particular, g2n(a) = b, so 92n E t and the sequence g1, , g2n is as in (**). Our
claim is verified.

Let pk = (gk, vgk) E G x G far 0 < k < it. Let us see that (**) implies (pk, pk+1) E
Wu, o If gk+l = ukgk, then pk+l = (ukgk, vuk9k) = (ukx, (v9k)(9k 'ukgk)),
so that (pk , Pk+l) E Wpk o Wu,, follows by the definition of Wu,,. In the case
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gk+1 = V 1ukvgk it suffices to exploit the relation pk+1 = (v-1ukvgk,ukvgk) _
(9k(vgk)-1uk(vgk),uk(vgk))

By the choice of the Uk's and (pk, pk+1) E Wu,k oWuk, we have ld(pk)-d(pk+1)l <
21-ks. Consequently,

n-1

Id(pi) - d(pn)I < 2 E 2-kE < 2e.
k=1

Since for pi = (e, v) and pn = (g., vg,,) (P1,(e,e)) E Wu. and (Pn,(9n,9n)) E Wu,,
we have ld(e,e) - d(gn,gn)I < 4c. Since (gn,gn) _ (ah,ah) and d is constant on
H-orbits, (gn, gn) can be replaced by (a, a) in the last inequality. This proves (*).
0

The following questions remain still open:

PROBLEMS

(1) Does the regular closure of HausGrp coincide with the epi-closure ?

(2) Is HausGrp cowellpowered?

As we know, (1) is equivalent to asking if the regular closure of HausGrp is
weakly hereditary (see 6.2). It was shown by Uspenskij [1995) that the regular
closure of HausGrp is not hereditary.

8.9 Epimorphisms and coweilpoweredness in algebra
In this section we give a synopsis of epimorphism-related results for R -modules and
Abelian groups obtained with the help of closure operators presented in previous
sections, and we briefly summarize known results for algebraic categories, referring
to the literature for proofs. It turns out that with respect to cowellpoweredness
the situation in algebra is fundamentally different from that in topology: under the
assumption of a large-cardinal axiom, any conceivable "ranked" algebraic category
becomes cowellpowered, and the cowellpoweredness statement for such categories
is actually equivalent to that axiom; for reflective subcategories of groups or R
modules, we sketch proofs for cowellpoweredness within ZFC, without any additional
set-theoretic axioms.

Epimorphisms in categories of R-modules and Abelian groups

Let A be a full and replete epireflective subcategory of ModR with induced
A-regular radical r; hence A contains exactly the r-torsion-free R -modules, i.e., for
all X E ModR,

X E A 4* r(X)=0.
(cf. Proposition 6.7). Its epi-closure E(A) contains exactly those R-modules X such
that X2 does not contain any proper submodule M containing the diagonal such
that X2/M is r-torsion, i.e.,

X E E(A) 4* (VM < X2)(Ax < M & r(X2/M) = X2/M M = X2).
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In fact, the last condition simply means that Ax c.. X' is an A-extremal monomor-
phism, hence epic-closed (cf. Theorem 6.2), and this characterizes the E(A)-objects,
by Corollary 7.6. But we have already shown in Example 7.6 (3) that, fortunately,
this condition simplifies to:

X E E(A) a r°° (X) = 0,

so that E(A) is the r°O-torsionfree class. With Example 6.7 (1), we conclude from
this:

PROPOSITION The following conditions are equivalent:

(i) A is epi-closed,

(ii) r is idempotent,

(iii) A is closed under extensions.

0

COROLLARY If A is closed under images, then epimorphisms of A are surjec-
tive. Conversely, surjectivity of epimorphisms of A forces A to be closed under
images, provided A is closed under extensions.

Proof Trivially, if A is closed under images, for every f : A -+ B in A,
f (A) B is the kernel of B --+ B/ f (A) in A, which must be iso if f is epic.
Conversely, for every surjective f : A -+ B with A E A, since r is idempotent by the
Proposition, so that C' is weakly hereditary, K =.ker f is A-dense in its maximal
closure c'A(K) = f-l(r(B)), hence K = f-I(r(B)) since epis in A are surjective.
Consequently, r(B) = 0, i.e., B E A. 0

A more intricate criterion follows from Theorem 7.7. Let I := r(R), and for
every R-module X, let

a(X) := Annxl := {x E X : Ix = 0}

be the preradical given by the annihilator of I in X. We then have:

THEOREM

(1) Epimorphisms in A are surjective if and only if a(X) E E(A) for all X E
ModR or, equivalently, if r°°a = 0.

(2) If I = 0, and if A # ModR is closed under extensions, then there are non-
sur jective epimorphisms in A.

(3) In case R = Z, if A is closed under extensions and contains non-surjective
epimorphisms, then there is no epireflective subcategory B properly containing A
such that A -+ B preserves epimorphisms.
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Proof (1) From Proposition 7.7 one knows that epimorphisms in A are surjective
if and only if D(A) = ModR, and modules X in D(A) were characterized in Example
7.7 (2) as those with rO°(a(X)) = 0.

(2) If I = 0, then a(X) = X for all X, hence D(A) = E(A). Consequently, if
E(A) = A 0 ModR, also D(A) t- ModR.

(3) As shown in Example 7.7 (3), in case R = Z, one has either D(A) = E(A) or
D(A) = AbGrp, hence A = D(A) under the given conditions on A. The assertion
of (3) therefore rephrases the maximality property of D(A) given in Proposition 7.7.

0

Epimorphisms in categories of universal algebras

By a category of universal algebras we understand a full subcategory A of the
category X of all algebras of a fixed finitary type, i.e., of sets which come equipped
with operations of given finitary arities. We suppose that A is closed under the
formation of subalgebras and homomorphic images, and that finite coproducts exist
in A. Certainly, every Birkhoff variety satisfies these assumptions, i.e., every class
A which is closed under subalgebras, homomorphic images, and direct products;
equivalently, every class that is definable by axioms having the form of identically
valid equations. For instance, groups are presented as sets with a binary operation
x . y, a unary operation x-1, and a nullary operation e, subject to the equations
(x y) z = x (y z), x x-1 = e, x e = x; similarly for rings, R-modules (consider
the unary operations ax for each a E R), R-algebras, lattices, etc. (The epireflective
subcategories of ModR considered above are only so-called quasi-varieties, being
characterized by closedness under the formation of subalgebras and direct products
- but not'necessarily under homomorphic images; their axiomatic description must
permit implications between equations, with a typical example given by torsionfree
Abelian groups: (Vn > 1)(dx)(nx = 0 . x = 0).)

The A-regular closure regg(A) of a subalgebra A of an algebra B in A is called
the dominion of A in B, and its elements are characterized by Isbell's [1966)

LEMMA (Domination Lemma) With the coproduct injections k, I : B -r B * B,
the following conditions are equivalent for an element d E B:

(i) d E regB(A);

(ii) there exists a finite sequence wo = k(d),... , w = 1(d) in B * B such that for
each 0 < i < n, the element (wi,wi+1) belongs to the subalgebra of (B * B) x
(B*B) generated by all elements of three forms, (x, x), (k(a),1(a)), (1(a), k(a)),
with a E A;

(iii) (k(d),1(d)) belongs to the congruence of B*B generated by the pairs (k(a),1(a)),
aEA.

Proof The dominion regg(A) is the equalizer of the cokernelpair of A- B in A.
But since the coproduct B*B exists in A, and since A is closed under homomorphic
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images, the cokernelpair can be constructed as

k

with - the least congruence relation on B * B which contains R := {(k(a), l(a)) : a E
A}. Therefore, (i) and (iii) are equivalent. Condition (ii) is just an elaboration of
how to reach - from R: first enforce reflexivity and symmetry, then the congruence
property, and finally transitivity. 0

The real work starts when one considers

EXAMPLES Of the many published results concerning the characterization of
epimorphisms in varieties of universal algebras, we mention only two non-trivial
characterization theorems. For proofs of these, we refer to the literature:

(1) Isbell's [1966] Zig-Zag Theorem for the category A = SGrp of semigroups
characterizes the elements d E regA(A) \ A as those which have two factorizations
d = aoyl = xma2m connected by 2m relations

ao = xla,,alyl = a2y2,x1a2 = x2a3,...,a2m-1ym = a2m,

for some m > 1, and with all ai in A.

(2) In the category A = Rag of rings (with unit element) the elements d E
regg(A) \ A are characterized as those d E B with d 0 1 = 10 d in B OA B or,
equivalently, those which can be written as

m n

d = Lr L1 xi aij yj

with xi,yjEB,aijEAand F,!"_lxiaijEA(1<j<n),E..1aijyjEA(1<i<
m) (cf. Storrer [1973]).

The survey article by Kiss, Marki, Prohle and Tholen [1983] contains an extensive
list to the literature on epimorphisms (predominantly, but not exclusively) in algebra,
and on related problems (particularly: amalgamation).

Cowellpoweredness of locally presentable categories and accessible categories

Already in Isbell's [1966] paper it is noted that, as a consequence of the Domi-
nation Lemma, the categories of universal algebras satisfying the required hypotheses
for the Lemma, in particular the Birkhoff varieties, are cowellpowered. As far as
varieties are concerned, this statement allows for considerable generalization, to all
locally presentable categories in the sense of Gabriel and Ulmer [1971], and fur-
ther. (For a regular infinite cardinal ic, a category A is locally ic-presentable if it
is cocomplete and contains a small set G of rc-presentable objects such that ev-
ery object is a ic-filtered colimit of objects in G; recall that an object A E A is
ic-presentable if the hom-functor A(A, -) : A - Set preserves ic-filtered colimits.
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A is called locally presentable if it is locally ic-presentable for some ic.) The ex-
tent to which locally presentable categories generalize varieties becomes clearer by
their characterization as model categories of essentially algebraic theories (a con-
cept due to Freyd [1972], with an equivalence proof given by Adamek and Rosicky
[1994]). The passage from the theories having Birkhoff varieties as their categories
of models to essentially algebraic theories has three features: allow for multi-sorted
signatures (so that algebras may have more than just one "underlying set"), allow
operations to be infinitary, but insist that there is only a small set of them, and
allow operations to be partial, but in an equationally-controlled way: the domains
of definition of partial operations are given by equations involving only total oper-
ations. A typical example is the category Cat of all small categories and functors:
an object C in this category has two underlying sets, ob C and mor C; three to-
tally defined operations, domain, codomain : mor C -+ ob C, and 1 : ob C --+ mor C;
and one partial operation (mor C)2 -+ mor C whose domain of definition is the set
{(x) y) : domain(x) = codomain(y)}.

It is not difficult to show that locally presentable categories are complete, co-
complete and wellpowered. It is much harder to prove:

Every locally presentable category is cowellpowered.
This fact goes back to Gabriel and Ulmer [1971), with a very readable version

of the proof being presented in the book of Adamek and Rosicky [1994]. Conse-
quently, every variety of groups or of Rmodules, say, is cowellpowered. What about
quasi-varieties then, in a locally finitely presentable category (ic = R0), say? Such
subcategories are still reflective (in fact: strongly epireflective), so the question is
simply whether the given subcategory is closed under directed colimits; if it is, then
it also locally finitely presentable and therefore cowellpowered. Makkai and Pitts
[1987] prbved a remarkable generalization of this fact:

Every All subcategory of a locally finitely presentable category X closed under
limits and directed colimits is reflective in X and therefore locally finitely presentable
and cowellpowered.

In this statement, closedness under limits is trivially a necessary condition while
the role of directed colimits is much more delicate. It was shown by Rosicky, Trnkova
and Adamek [1990) that under a certain large-cardinal principle, called the Vopenka
Principle, every reflective subcategory of a locally presentable category is closed
under ic-filtered colimits for some ic; hence it is locally presentable in its own right
and therefore cowellpowered. Of course, in concrete examples one would try to avoid
recourse to the Vopenka Principle whenever possible; see for instance Exercise 8.U.

As far as quasi-varieties of groups or of R-modules are concerned, one can easily
prove (without any recourse to the Vopenka Principle or any other set-theoretic
assumption) that they are locally presentable, hence cowellpowered (see Ex.8.V-Y;
for more details and generality, see Dikranjan and Tholen [1995]). The key difference
here is that one does not need to prove that such a quasi-variety is closed under r.-
filtered colimits. (In fact, it needn't be, even for rc = Ro and R = 7, while such a
quasi-variety is surely finitely presentable; see Ex.8.X(d).)

The cowellpoweredness result can be generalized once again, from locally pre-
sentable categories to accessible categories. (K-accessible categories are defined like
locally ic-presentable categories, except that the cocompleteness condition is relaxed
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to the existence requirement for K-filtered colimits. A category is accessible if it
is rc-accessible for some x.) These categories can be described by certain so-called
sketches, as first formulated by Lair [1981] and (largely independently) by Makkai
and Pare [1989]; sketches themselves go back to Ehresman [1968] and are treated in
considerable detail in the book of Barr and Wells [1985]. Although accessible cat-
egories still have (certain kinds of) directed colimits, they are in general no longer
complete or cocomplete: an accessible category is complete (or cocomplete) if and
only if it is locally presentable. In the realm of algebra, a typical example of an
accessible but not locally presentable category is the category Fld of fields: (even
finite) products are strikingly absent here; consequently it is impossible to give an
essentially algebraic description (in particular of the domain of definition for the
multiplication of a field). Usually, the categories of general topology, like Top itself,
are not accessible. Makkai and Pare [1989] gave an elegant proof of the remarkable
fact that accessible categories with pushouts are cowellpowered (see also Adamek and
Rosicky [1994]). Under the set-theoretical assumption that there are arbitrarily large
compact cardinals, one can abandon even the existence condition for pushouts and
show that every accessible category is cowellpowered.

Is there hope then to find, within the average-mathematicians's set-theoretic
horizon, a constructively-defined accessible category which fails to be cowellpowered?
The short answer to this question is No: Adamek and Rosicky [1994] have shown
that the statement "Every full subcategory of a locally presentable category is co-
wellpowered" is equivalent to the Vopenka Principle mentioned above; it implies
the existence of measurable cardinals and, on the other hand, the existence of huge
cardinals implies its consistency. Accessible categories are (easily) fully embeddable
into locally presentable categories, and the statement "Every accessible category is
cowellpowered" implies the existence of large measurable cardinals.

Finally then, how does the non-cowellpoweredness result for the category Frm
fare in light of the previous statements (cf. Example 8.2 (1)) ? Well, although equa-
tionally defined, the arities of the operations here (V, A) are not bounded by a fixed
cardinal, since one permits joins to range over arbitrarily-large indexing sets. The
non-cowellpoweredness result therefore implies that Frm is not locally presentable,
hence there exists no "bounded" equational description for this category.

8.10 The Frobenius closure operator of fields
Every field K of positive characteristic p admits a fundamental endomorphism

4tK:K-- K,a'-+ap,

the so-called Frobenius morphism of K. If we put 4$K := idK in case char K = 0,
then this defines a natural transformation 4i : IdFld - IdFtd for the identity functor
of the category Fld and its homomorphisms. Now define the Frobenius closure of
K in an extension field L of K by the formula

{aEL:ap EK} forp=charL>0,
K otherwise.
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Recall that every morphism in FId is monic, and our subobject structure is given
by M = MorFld.

LEMMA fro is a hereditary but non-idempotent closure operator of countable
outer w, with fro" < int (the algebraic closure, cf. 3.5(3)). A field extension K < L
is purely inseparable if and only if it is fro"-dense, and it is separable if and only if
it is int-dense and fro-closed.

Proof fro is obviously a hereditary closure operator of FId - it is in fact the "mod-
ified modification" of the discrete operator w.r.t. the pointed endofunctor (IdFId, 4>),
in the sense of Exercise 5.V. For positive characteristic p, froL(K) contains exactly
the roots of the polynomials xP -,6 E K[x] in L, hence froL(K) < intL(K). Since
int is idempotent, fro" < int follows. Since

froL(K)={aEL:aP" EK for some n> 1},

we obviously have froL(froL(K)) = froL(K)). For the fields
Ko := Z (x) (=rational functions over the prime field Zr),
Kn Kn_1(n > 1
M Un> 1 Kn ,

one easily shows frost 1(Ko) = K0n+1 # Ko = from (Ko). This proves non-idempoten-
cy of fro, with o(fro) = w.

Recall that a field extension K < L is purely inseparable if for every a E L one
has aP" E K for some n > 1, with p = char L, or if K = L. This is the case exactly
if roL(K) = L. The field extension is separable if it is algebraic and has no purely
inseparable intermediate extensions (other than K); in other words, if intL(K) = L
and if K < M < L with K < M fro"-dense is possible only in case M = K. The
latter condition certainly holds if K < L, and then also K < M is fro"-closed; on
the other hand, taking for M = froL(K), one sees that it also implies fro-closedness.

0

THEOREM fro" is the regular closure operator regFld. Consequently, the epi-
morphisms of Fid are exactly the purely inseparable field extensions.

Proof To show froL(K) C regLld(K), we need to consider only the case char L =
p > 0. But for any morphisms o,r : L -+ M with 9IK = 11K and for every
a E froL(K) we find n > 1 with aP" E K, hence ,(,,P" r(aP"). This implies
(v(a) - r(a))P" = 0, hence o-(a) = r(a).

For the converse inclusion, it suffices to show that every fro-closed extension
K < L is a regular monomorphism of FId. In fact, this follows from our claim that
for every a E L `K we can find a morphism o- : L - L of L into its algebraic closure
L with a(a) # a, so that a does not belong to the equalizer of a and incl : L -+ L.

To prove the claim, first assume a to be transcendental over K. In this case we
can take any automorphism r of the field K(a) of rational functions with r(a) # a
and extend it to an automorphism T of L; now put a = T1L. If a is algebraic over
K, we can consider the splitting field K1 of its minimal polynomial over K. Then
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K < KI is a Galois extension with KI < L. Now we let r to be any automorphism
of KI with r(a) # a and extend it as in the first case.

COROLLARY Let A be a class of fields such that for every field K there is a
morphism K -r A E A. Then fro" is the regular closure operator of A.

Proof For a field L, let L be its algebraic closure. Then the proof of the Theorem
shows regiL}(K) < fro-L(K) for all K < L (in fact: the two closures coincide). With
any (mono)morphism L - A E A, one then has

regL (K) < regLA}(K) < regjL} < froL(K) < regLld(K) < regL (K).

With the natural transformation : IdFId -+ IdF1d, the identity functor becomes
both, pointed and copointed. Its fixed class Fix(Id, ) = {K : 4kK iso} contains
exactly the perfect fields, i.e., those fields K with KK(K) = K.

PROPOSITION

(1) A field K is perfect if and only if K has no proper epimorphic extension
fields.

(2) The subcategory PerFid of perfect fields is both coreflective and reflective in
Fid. It is in fact the least full and replete reflective subcategory of Fid.

Proof (1) By the Theorem, for K not to have any proper epic extension is the
same as to say that K is fro-closed in every extension field L. But this implies that
K S5 KK(K) < K is fro-closed. Since always froK(4K(K)) = 4DK1(4FK(K)) = K,
under the given condition, K = 4K(K) is perfect. Conversely, for any extension
K < L of a perfect filed K, one has

froL(K) = (I 1(4K(K)) = 4L1(4>L(K)) = K.

(2) For coreflectivity, observe that r(K) := 'IK(K) < K defines a preradical.
Hence the (mono-) coreflexion of K can be obtained by forming the idempotent core
of r. As in the case of the idempotent hull of fro, one has r°O (K) = r" (K); explicitly,
for charK=p>0,

r"(K) = n rn(K) = n Kp".
n>1 n>1

For reflectivity, one proceeds analogously, by countable iteration of a suitable
epiprereflection (S, a) of Fid with Fix(S, a) = Fid : for char K = 0, let SK = K,
and for char K = p > 0, let SK be the splitting field of the polynomials {xP - or :
a E K). Note that the inclusion o'K : K -+ SK is purely inseparable, hence epic
in Fid. Now the PerFid reflexion of K is the inclusion map of K into the direct
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colimit
S`"(K) = U Sn(K).

n>1

Note that this is an epimorphism of FId.
Finally, consider any full and replete reflective subcategory A of FId. Since

A is monoreflective, it must be bireflective, i.e., the A-reflexion of any field K is
epic. But if K is perfect, by (1), there are no proper epic extensions, so that the
A-reflexion is iso and K belongs to A. 0

Exercises

8.A (Cowellpoweredness w.r.t. regular epimorphisms) Show that every con-
crete category A is wellpowered w.r.t. regular monomorphisms and cowellpowered
w.r.t. regular epimorphisms. Hint: With F : A -+ Set faithful, to every regular
monomorphism m of A, assign the image of Fm, and to every regular epimorphism
e of A, assign the equivalence relation induced by Fe.

8.B (Cowellpoweredness w.r.t. strong epimorphisms for categories with cogene-
rator) _ Prove: every category X with pushouts and a small cogenerating set A
is cowellpowered w.r.t. strong epimorphisms. Hint: For non-isomorphic strong
epimorphisms e : X - Y, e' : X - Y', show that the maps X (e, A), X (e', A) (as
in the proof of Proposition 8.2) have distinct images, as follows. At least one of the
pushout projections p : Y --+ P, p' : Y' -> P must be non-monic. If pf - pg with
f # g, pick h with codomain in A with h f # hg and show that there is no h' with

8.C (Reflectivity of small limit-closures) Let A be a full subcategory of a
complete and wellpowered category X. Let LX(A) denote the closure of A under
limits in X (i.e., the intersection of all limit-closed full subcategories of X containing
A). Show:

(a) If A is small, then LX (A) is the least full and replete reflective subcategory
of X containing A, and A is strongly generating in Lx(A). Hint: Lx(A) is
contained in SX(II(A)), with II(A) denoting the full subcategory consisting of
direct products of objects in A. A is strongly generating in SX(II(A)) and
therefore in L(A). Now apply the Special Adjoint Functor Theorem.

(b) Give an example in which LX(A) fails to be reflective in X.

8.D (The non-To syndrom, etc) Prove the claims of Remark 8.3. Find test
spaces for SUS. Hint: Let 4' be a non-fixed ultrafilter on N and let X = X,,,.b be
the space N U {oo} U {4'} with all points of N isolated, open neighbourhoods of 00
are {oo} U A, A C H co-finite, and open neighbourhoods of {4'} are {4'} U U, U C N
and U E 1. Show that A C SUS for a strongly epireflective A of Top if A does
not contain a space homeomorphic to X,,,t for some ultrafilter 4'.
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8.E (Staying property within Haus) Prove: every full and replete epireflec-
tive subcategory A of Top which is properly contained in Haus, has a strongly
epireflective hull in Top which is properly contained in Haus. Hint: Consider
X E Haus \A and assume S(A) = Haus. Then the A-reflexion px : X -+ RX can
be taken as the identity map, i.e., RX and X have the same underlying set, but the
topology of RX is properly coarser than that of X. Now compare regA = regs(A)
with K for the spaces X and RX, using also Theorem 6.3.

PROBLEM Are there strongly epireflective subcategories of Top other than Haus with
this property ?

8.F (Housekeeping on projective closure operators) Verify the claims made
in the Examples 8.4 (2), (3). Show in particular: p is the least proper closure
operator of Top.

8.G (Surjectivity of epis in Haus(P)) For a class P of topological spaces
denote by Dis(P) the class of all topological spaces X such that for every map
h : P -+ X with P E P the subset f (P) of X is closed and discrete.

(a) Show that Dis(P) is closed under taking subspaces and finite products.

(b) X E Haus(P) belongs to Dis(P) if and only if epiXa"(P) is discrete (if and only
if regH,,(P) is discrete). Conclude that for Y E Haus(P) every epimorphism
f : X --+ Y in Haus(P) is surjective if and only if Y E Dis(P).

(c) Show that for A = Haus(compact spaces) and Y E A every epimorphism
f : X --+ Y in A is surjective if and only if the only compact subsets of Y are
finite.

(d) Show that for B = Haus(connected spaces) and Y E B every epimorphism
f : X -+ Y in B is surjective if and only if T is totally disconnected (i.e., the
only connected subsets of Y are singletons).

8.H (Generalizing projective closure operators) Taking the definition of the
P-modification PC of a closure operator C as a model (see 7.7) define projective
closure operators in M-complete categories, depending on P and a closure operator
C, and investigate their properties.

8.1 (Projective closure operators and v)

(a) Show prof'-) > oa. Hint: Let X = X,,,,p be the test space of Exercise 8.D.
Now limn = oo, and for M = N C X one has vx(M) = MU{oo}. On the other
hand, for the one-point compactification N of the naturals N, one can easily
find a surjective map f : N -+ X, so that 4) E M= f (N.) n M n f C
pro{N-} (M).

(b) Show that for a topological space X the following are equivalent:

(i) every converging sequence in X has a unique accumulation point;
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(Il) ax =
(iii) X E

8.J (An essentially strong but non-strong closure operator of Top)

(a) Show that KID is essentially strong but not strong. Hint: Consider the space
X = N U {oo} with 0 and [n, oo] for n E N the only open sets. Then M = IY
is K®-dense and K®-closed. Hence KID is not strong. On the other hand,
KID is essentially strong since every subspace of a space in Top, = &(KID) is
A(Ke)-closed, hence strongly Ks-closed.

(b) Show that the inequality b < KID does not hold in Top. Hint: Use the same
example as above; M is b-dense, hence M = k4 (M) C bx(M) = X.

8.K (A proper class of non-strong closure operators in Top) Show that for
each infinite cardinal rc the closure operator pro{u} is not strong. Hint: For each
infinite cardinal rc define the space X,, with underlying set /arc U {oo} following the
idea of Exercise 7.H. Then the subset M := (arc \ is C X is pros' }-closed, but
i(X) 4 X +M X is not pro{F}-closed.

8.L (A proper class of essentially strong closure operators in Top)

(a) Let C be an additive and essentially strong closure operator of Top with C°° >
K. Then the closure operators C, = CK and C2 = KC are essentially strong,
and the following hold for i = 1, 2:

(i} T2(C,) C T2(C) and Cc = Cr;
(ii) z (Ci) = AM;

(iii) the T2(Ci)-closure coincides on T2(C,) with the T2(C)-closure.

(b) For a topological category X over Set as in 7.9 a C-neighbourhood structure is
a concrete functor C : X --* PrTop, i.e., an additive grounded closure operator
C of X (see 5.10).

(i) An assignment (X, x) +-. Vx that gives for every X E X and x E X a filter
VS on X, induces a neighbourhood structure C : X -> PrTop '-, FC via
(.F - x ' V. C.T; cf. 3.2) if and only if for every morphism f : X - Y
in X and every x E X one has f -t (U) E Vy for every U E Vy--).

(ii) Show that S(n) : Top - PrTop defined by means of S(n)-neighbourhoods

(c)

as in Definition* of 8.6 is a (concrete) functor and therefore defines an
additive grounded closure operator of Top (see Remark 8.6 (2)).

Let n be an arbitrary order-type (i.e., an isomorphism class of totally ordered
sets). For X E Top, M C X and z E X define U to be a S[rl]-neighborhood of
x if there is a family of open sets {U, :'Y E 77} contained in U and containing
x such that Ua C Ua', whenever ) > .1'.

(i) Show that this defines a S[,]-neighbourhood structure as in (b), hence an
additive grounded closure operator O,, of Top.
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(ii) Define S[q] = T2(O,,) and show that for q = n > 0 finite, S[n] = S(2n - 1).

(d) For X E Top and M C X define 8,,(M) by x 8,(M) iff there exists a family
{Ux: A E q} of open subsets of X containing x such that Ux C Ux,, whenever
A>A'andUxnM=Oforeach \EL.

(i) Show that 8n is an additive grounded closure operator of Top coinciding
with On as defined in Remark 8.6, when q = n > 0 is finite.

(ii) Show 0,,K = 0,r < On < OI+o. If q 1 + q, then these inequalities
become equalities. When q has no bottom element then 0,, = 8,i. If q has
a bottom element, i. e., if q = 1 + q', then 0,, = 0q.K and 0' =

(iii) If q = a is an infinite ordinal, O, = 8a and T2(8a) = S[a] = S(a), as given
by Porter and Votaw [1973] (see Remark 8.6);

(iv) (PorterVotaw [1973], Example 2.10) Show that different ordinals a give
different categories S(a), hence different closure operators 8a.

(e) Show that the closure operators 8. and 0,r are essentially strong for every order
type q. Conclude that the epimorphisms in S[q] and S(q) := T2(9,)) are the
O.'-dense maps, and that the inclusion S[1+q] --. S(q) preserves epimorphisms.

(f) Generalize the construction of 0. and 0,, from totally ordered sets to arbitrary
partially ordered sets and closure operators, as follows. Let (L, <) be a partially
ordered set and let C = {Cx : A E L} and V = {Dx : A E L} be collections of
additive grounded closure operators of Top. Define C = 8(L, C, V) by declaring
that, for X E Top, M C X, and x E X one has x V cx(M) if there exists a
family {Ux:A E L} of subsets of X containing x such that:

(i) Ux is a Cx-neighbourhood of x (in the sense of 7.9) for each \ E L;
(ii) Ux, is a C,\,-neighbourhood of (dx)X(Ux) whenever A > A';

(iii) (dx)X(UA) fl M =0 for each A E L.

Show that C = 9(L,C,V) is an additive grounded closure operator of Top. C
is essentially strong whenever each Cx is essentially strong and if there exists
Ao E L such that Dx < Cx. for each A E L. Hint: Apply (a).

8.M (The categories S(a) are not cowellpowered) Let a be an infinite ordinal
and let a* denote the reversed order of a.

(a) Show that the epimorphisms in S(a) and A(9a) are the 000-dense maps (see
Remark 8.6(3) and Exercise 8.L(d)).

(b) Show that the epimorphisms in S(a*) and z (8a.) are the 8".-dense maps (see
Exercise 8.L (e)).

(c) (Dikranjan and Watson [1994]) Show that the category S(a) is not cowellpowered.
In particular, the category S(w) is not cowellpowered.

(d) (Dikranjan and Watson [1994]) Show that the category S(a') is cowellpowered
if and only if a is indecomposable (i.e., whenever a is expressed as the ordinal
sum of two ordinals, the latter ordinal equals a). In particular, the category
S(w') is cowellpowered.
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(e) Let rl be the order type of the reals or of the rationals. Prove that S(77) = S[7]
is cowellpowered. Hint: Show that 9,, is idempotent (Dikranjan and Watson
[1994]).

8.N (Housekeeping on S") Show that B"8, < 8"+, and 82.. for each
n, s > 0 and conclude S(2") C S for each n > 0.

8.0 (Boundedness and e-compactness) Let B be a bounded subset of a
topological space X. Prove:

(a) every subset of B is bounded;

(b) for every continuous map f : X --+ Y, the subset f (B) of Y is bounded;

(c) if B is closed, then B is compact; in particular, if B is closed and discrete,
then B is finite. Hint: For an open cover B = Upe, Up of B consider the open
cover X = (X \ B) U UbEB Wp, where Wp is an open subset of X such that
Wpf1B=Up for each

(d) e-compactness is preserved under continuous surjective maps in Top.

8.P '( "Cowellpowered core" of a subcategory of Top) For a reflective sub-
category A of Top denote the subcategory T2(regA) for brevity by Ae. Prove the
following properties of A.

(a) A` is a strongly epireflective subcategory of Top.

(b) A` °(S(A))e C S(A) = A(regA). Hint: A` depends only on the A-regular
closure which coincides with the S(A)-regular closure.

(c) A` = Top if S(A) = Top. Hint: If S(A) = Top, then the A-closure coincides
with the discrete closure operator, so A` = Top. The other implication follows
from (b).

(d) regA` coincides with regA on Ac. Hint: see Corollary 7.9.
(e) Ace = Ac

(f) The inclusion Ac --+,A preserves the epimorphisms.

(g) If A C B, then Ae C Be.

(h) If the A-closure is additive and grounded, then the restriction regA IA- : Ae
Haus of the functor regA : Top -. PrTop preserves epimorphisms.

(i) If the A-regular closure is additive and grounded then Ae is cowellpowered.

(j} If the A-regular closure is additive and the restriction regA : A - Haus of the
functor regA : Top --> PrTop to A preserves finite products, then Ae = S(A),
so that both A and S(A) are cowellpowered. Hint: Follows from (h).

(k) If regA kA = KIA, then both A and S(A) are cowellpowered.

(1) Hause = Haus, FHause = FHaus, Top' = Topo, 0-Topc = S(O-Top),
Rege = S(Reg).
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(m) The following subcategories of Top are cowellpowered: Hausdorff spaces, re-
gular spaces, functionally Hausdorff spaces, Tychonoff spaces, zero-dimensional
spaces, To-spaces.

(n) (Watson [1990]) Show that regFH,,, : FHaus - Haus does not preserve
finite products.

(o) Ury` # Ury, and more generally, S(a)° # S(a) for each ordinal a > 1. Show
that Ury` contains all spaces which admit a regular topology coarser than the
given topology.

(p) (Open problem) Assume that the A-regular closure is additive. Is A` the biggest
cowellpowered subcategory of A ? In particular, does A` coincide with A in
case the latter is cowellpowered ?

8.Q (Preservation of epimorphisms) Show:

(a) the inclusion SUS -- US preserves epimorphisms;

(b) the inclusion Haus(compact spaces) y Haus(compact Hausdorff spaces) pre-
serves epimorphisms;

(c) Haus(compact spaces) --* Haus(-compact spaces) does not preserve epimor-
phisms. Hint: Let Z = PM = X \ fool be the subspace of the space X defined
in Example 7.H. Then Z is Hausdorff and D = N is dense and bounded in
Z. Therefore, for P = {e-compact spaces}, D is prop-dense in Z, so the in-
clusion i : D Z is an epimorphism in Haus(P) by Theorem 8.4. Since
the only compact subsets of Z are finite, X E Dis(Q) (see Exercise 8.G) with
Q = {compact spaces}, so that i is not an epimorphism in Haus(Q).

In particular, the inclusion in (c) is proper. Show that also the inclusions (a) and (b)
are proper. Hint: For (a) it suffices to note that the test-spaces X,' from Exercise
8.D are always in US. For (b) take the Alexandroff one-point compactification of
the rationals Q equipped with the usual topology.

8.R (Housekeeping on quasi-uniform spaces)

(a) The functor G : QUnif -+ Set is topological, while the functor T : QUnif ->
Top is not topological. If {U;}$EI is a family of quasi-uniforriiities on a set X
inducing the same topology, then also Vi U, induces this topology on X. Hint:
A topological space need not admit a coarsest quasi-uniformity inducing the
given topology.

(b) For (X,U) E QUnif and a subspace M C X, one defines the adjunction
space X +M X in QUnif as follows. The underlying set of X +M X, the
canonical embeddings i, j : X -. X +M X and the natural projection map
p : X + X -> X +M X are defined as in Example 6.5. The quasi uniform
structure U +M U of X +M X has as a base the sets (for V E U) Wv :_
(ixi)(V)U(jxj)(V)U(ix j)(RM,VURj V)U(jxi)(RM,VUR,ytV),where
RM,V = (x, y) E X x X : V-1(y) fl V(x) f1 M # 0} (i.e., y E V(V(x) fl M)).
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Then U +M U is a uniformity whenever U is. If x V `kx(M) (with a as in 8.7),
then i(X \ M) is an open neighbourhood of i(x) in T(X +M X), so that the
topologies of T(X +M X) and of TX +M TX coincide at i(x) (hence also at
j(x)). In particular, both topologies coincide on X +M X when M is closed in
TX. Finally, if X E Unif and x E `kx(M), then i(x) and j(x) have the same
neighbourhoods in the space T(X+MX). Hint: Use the relations (px p)(Wy) C
V2 and (i x i)(V) = (i(X) x 1(X))nWv and (j x j)(V) = (j(X) x j(X))nWv
for V E U. Note that for a point x E V\ M in TX the following are equivalent:
i) x E V(V(x) n M) for each V E U; ii) (V nV-1)(x) meets M for each V E U;
iii) x E n{[V n v- ii(m) : V E U} (i. e., x E EJgx(M)). Choose V symmetric
to obtain the final assertion.

(c) Show that the subset Q of R E QUnif, is QUnif,-dense, while Q is Top,-
closed in TR. Conclude that `regT°P3 does not coincide with regQ13 1 on R.
Hint: Q is Top,-closed in TR since reg'DP1 is discrete on Top, (cf. Example
6.5(1)). By (b), for every x E IR the neighbourhoods of the points i(x) and j(x)
of T(IR +M R) coincide, hence the canonical map IR +Q R R is in fact the
Q Unif 1-reflexion of R +Q R.

(d) For (X,U) E Unifo and a # 6 in X, there exists a uniformly continuous
function f : X -> [0, 1] with f (a) # f (b). For the closure operator Z" of Unif
defined in analogy with Z (see Example 6.9(4)), but w.r.t. uniformly continuous
functions f : X -r [0, 1], show that Z" = `K = `Z on Unifo. Hint: Choose
U E U such that (a, b) V U and a sequence of symmetric Un E U, n E N, such
that Uo = U and Un o Un o U C for n > 1. Define a pseudometric d (i.e., a
function d : X -> [0, 1] such that d(x, y) = d(y, x) and d(x, y) + d(y, z) _< d(x, z)
for x, y, z E X) with Un C {(x, y) E X x X : d(x, y) < 2-n} C for each
n > 1' Then f (x) = d(x, a) is uniformly continuous and f (a) = 0, f (b) > 0.

(e) For n > 1, show that T-1(S(n)) properly contains 3(n). Hint: Set X =
N U loo}, and for each n set Ln(oo) _ {oo}, Ln(k) = {k} if k < n, and
Ln(k) = )C otherwise. Then the sets Ln = UrEX{x} x Ln(x) generate a quasi-
uniformity U on X whose induced topology is discrete, so that TX E S(n) with
n < w. On the other hand, for each n obviously n + 1 E Ln 1(l) n Ln 1(00), so
that Xr 5(n) for any a> 1.

(f) Show that 8n is essentially strong for every n and conclude that ree(n) coincides
on S(n) with the idempotent hull of 0n.

8.S (Exotic properties of pretopological spaces)

(a) Let PrTopo be the category of To-pretopological spaces. Show that the epi-
morphisms in PrTopo are surjective. Hint: Apply Frolik's Lemma.

(b) (Cf. Kneis [1986] and Dikranjan, Giuli and Tholen [19881.) Let PrTop2 =
T2 (K) be the category of T2-pretopological spaces. Show that PrTop2 is not co-
wellpowered. Hint: Consider the restriction F of the functor 6 : Top - PrTop
to Ury. Observe that F sends Ury into PrTop2 and preserves epimorphisms,
since the epimorphisms in PrTop2 are precisely the K°°-dense maps according
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to Theorem 7.9. According to Theorem 8.1, PrTop2 cannot be cowellpowered
since Ury is not cowellpowered, by Theorem' of 8.6.

8.T (Epimorphisms of topological modules) Let R be a unital ring,
let TopModR be the category of topological R -modules and continuous module
homomorphisms, let V : TopModR -r Top be the forgetful functor and let Ky be
the initial lifting of K along V (in analogy with Theorem 5.9; see also Theorem 5.8
and Remark 5.8 (4)). Show that Ky coincides with the regular closure operator of
the full subcategory HausModR of Hausdorff topological modules of TopModR.
Conclude that the epimorphisrs in HausModR are the homomorphisms with dense
image.

8.U (Cowellpoweredness of module categories and hereditariness of preradicals)

(a) Let r be a hereditary preradical of ModR. Then the subcategory Ar of r-
torsion-free modules of ModR is cowellpowered. Hint: Show that if m : M -+
X is an epimorphism in A,., then necessarily M is an essential submodule of
X. (If N is a non-zero submodule of X, then the quotient Nf (M ft N), being
isomorphic to a submodule of the r-torsion quotient X f M, is r-torsion as well,
so that Mn N cannot be 0.) Conclude that X is isomorphic to a submodule of
the injective hull E(M) of M, so that cardX is bounded by a cardinal function
depending only on M and R.

(b) Let (me) be a sequence of natural numbers m > 1. Define a preradical r in
AbGrp by declaring r(G) to be the intersection of the family of subgroups

for every abelian group G. Then the .subcategory Ar of r-torsion-free
modules of ModR is cowellpowered, but r fails; to be hereditary. Hint. Consider
the functor T : AbGrp --+ TopGrp which sends a group G to the topological
group (G, r), where r is the group topology on G obtained by taking as a
prebase of neighbourhoods of 0 the family Clearly, T sends a group
G to HausGrp if G is in Ar. Since the epimorphisms in Ar are the Cr-dense
homomorphisms, the restriction of the functor T sends Ar to the category
HausAbGrp of Hausdorff abelian groups and preserves epimorphisms. From
the cowellpoweredness of HausAbGrp (see Exercise 8.T) and Theorem 8.1
we conclude that also Ar is cowellpowered. To see that r is not hereditary,
consider the inclusion Z -+ Q and observe that r(Q) = Q, while r(7L) # Z.

8.V (Local presentability for categories of groups or modules; cf. Adamek and
Rosicky [1994]) Let X be the category of groups or of R-modules (or any variety
of finitary universal algebras). Show:

(a) an object A E X has less than x generators if it is n-generated in the following
sense: every morphism f : A -+ Y, where Y = limY, is a sc-filtered colimit
such that all canonical morphisms i, : Y, -+ Y axe mono, factors through some
ia(Ya) --+Y;
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(b) A is K-presentable iff it has a presentation with less than K generators and less
than x relations in these generators, in the sense that there exists a short exact
sequence 0 -+ N - F -+ A - 0 where F is a free object of X of less than K
generators and N is K-generated.

Extend (a) and (b) to any epireflective subcategory A of X, replacing X by A
everywhere (cf. Dikranjan and Tholen [1995], the free object F is now "free in A",
hence obtained by applying the reflector to a free object of X).

8.W (Epireftective subcategories of Grp) Show that every epireflective sub-
category A of Grp is locally Ri-presentable. Hint: Prove first that every count-
able group G E A is Ri-presentable: since G has countably many (i.e., < R1)
generators it suffices to note that there exists a short exact sequence
1 -+ N - F -+ A -+ 1 where F is a free group of A of fio generators, hence
both F and N are countable. Now note that every group of A is a hi-directed col-
imit of ltl-generated (hence ltl-presentable in A) subgroups, of which there are at
most 21°. Finally observe that reflective subcategories of Grp are cocomplete.

8.X (Epirelective subcategories of ModR)

(a) Let R be a right noetherian ring. Show that every finitely generated right
R-module is Ro-presentable. Show furthermore that the hypothesis on R is
essential for the previous statement. Extend the result to any epireflective
subcategory of ModR. Hint: It suffices to argue as in 8.W, replacing countable
by finitely generated, and using the fact that submodules of finitely generated
modules are finitely generated. A counterexample for general R can be found
in Bourbaki [1961].

(b) Let x be a regular cardinal with cardR < K. Show that every K-generated
module is also K-presentable. Hint: Let M be a K-generated module. Then
there exists a set of generators {x;}iEI of M with card I < K. Let F be a
free R-module of I generators. Then cardF < K and there exists a surjective
homomorphism f : F -+ A. Since obviously card(ker f) < K and since the
relations between the generators {xi} of A are given by the elements of ker f,
it follows that M is K-presentable.

(c) Show that every epireflective subcategory of ModR is locally K-presentable if
cardR < K. Hint: Argue as in 8.W replacing countable by K-generated and
R1-directed colimit by K-directed colimit.

(d) Show that the strongly epireflective subcategory R of AbGrp of reduced groups
is locally Ro-presentable, but not closed under directed (hence Ro-filtered) col-
imits in AbGrp. Hint: The first part follows from (a), for the counterexample
observe that Q ¢ R is a (directed) union of cyclic subgroups.

8.Y (Cowellpoweredness of quasi-varieties of groups or modules) Let X be
as in 8.V. Show that every reflective subcategory of X is cowellpowered. Hint: For
such a subcategory A the strongly epireflective hull Sx(A) is locally presentable by
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8.W and 8.X (c). Then Sx(A) is cowellpowered by Gabriel and Ulmer's theorem.
Finally, Theorem 8.2 permits to conclude that A is cowellpowered.

8.Z (Non-additivity of Frobenius closure and algebraic closure)

(a) Consider the field of rational functions Z2(x, y) in two variables over the prime
field of characteristic 2 and its algebraic extension L = Z2(x, y)(z) with z =

x R y. Show that K, = Z2(x) and K2 = Z2(y) are fro-closed in L. Since
z E froL(Z2(x, y)), conclude that fro is not additive.

(b) Use the same example as in (a) to show that also the algebraic closure is not
additive.

Notes

The surjectivity of epimorphisms in Top, was noted by Burgess [1965] who also
described the epimorphisms in Haus, while Baron [1968] characterized the epimor-
phisms in Topo.

The closure operators ipro1' and iesp1' were defined in Dikranjan and Giuli [1987],
while esp1' appears in Dikranjan and Giuli [1986] and in Giuli and Husek [1986], in
two particular cases.

The axioms S(n) were introduced by Viglino [1969], and the axioms S(a), for
infinite ordinals a, by Porter and Votaw [1973], while Sn appears in Arens [1978].
The axioms S(i7) and S[rl], depending on an arbitrary order type n (with S(TI) =
S[q] = S(a) when q = a is an ordinal) were introduced by Dikranjan and Watson
[1994].

The first example of a non-cowellpowered subcategory of Top (see Example
8.2(2)) was given by Herrlich [1975]. Schroder [1983] proved that Ury and Sn, n > 1,
are not cowellpowered. Giuli and Husek [1986] established non-cowellpoweredness
of Haus(compact spaces). This was extended to the smaller subcategory Haus(e-
compact spaces) by Giuli and Simon [1990]; the proof of Theorem 8.6 follows es-
sentially the proof given there. Tozzi [1986] proved that the category SUS is co-
welIpowered. Non-cowellpoweredness of Haus(compact Hausdorff spaces), as well
as cowellpoweredness of certain subcategories of Top (see Example 8.5), was esta-
blished in Dikranjan and Giuli [1986]. Cowetlpoweredness of S(n) and of sUry was
shown by Dikranjan, Giuli and Tholen [1989]. The proof of Theorem 8.6*, isolated
essentially from Dikranjan and Watson [1994], is substantially simpler than all its
predecessors given for Ury and S(n). Cowellpoweredness of S[n] can be character-
ized in terms of properties of the order type rI (see Dikranjan and Watson [1994]
and Exercise 8.M). The epimorphisms in QUnifa were described by Holgate [1992],
while Theorem and Corollary 8.7 come from Dikranjan and Kiinzi [1995]. The proof
of Theorem 8.8 is taken from Uspenskij [1994], where a compact connected manifold
without boundary (either finite-dimensional or a Hilbert cube manifold) is consid-
ered instead of T.

The description of the epimorphisms of Fld belongs to general categorical knowl-
edge but seems hard to track down in the literature. Theorem 8.9 appears to be
new, and so do the assertions of Exercises 8.W, X, Y.



9 Dense Maps and Pullback Stability

In this chapter we briefly discuss a particular type of closure operator, called
Lawvere-Tierney topology, which generalizes the notion of Grothendieck topology
and is a fundamental tool in Sheaf- and Topos Theory: Lawvere-Tierney topologies
are simply idempotent and weakly hereditary closure operators (with respect to
the class of monomorphisms) such that dense subobjects are stable under pullback.
Localizations (=reflective subcategories with finite-limit preserving reflector) give
rise to such closure operators. A Lawvere-Tierney topology allows for an effective
construction of the reflector into its Delta-subcategory, which we describe in detail.

9.1 Hereditariness revisited
In an M-complete category X with M a class of monomorphisms closed under
composition and for a closure operator C, every morphism f : X --1 Y in X gives a
"lax-commutative" diagram

M/Y ff-'(-) -M/x

cy cX

-'M/Y f -) M/X

due to the C-continuity of f. In this chapter we consider situations when (9.1) or
its restriction to certain subsets of M/Y commutes up to isomorphism, i.e., when

f-'(cy(n)) S--- cx(f-'(n))

holds true for certain morphisms f and certain subobjects n E M/Y; we say that
f-L preserves the C-closure of n in this situation. In this terminology we can
rephrase the results of 2.5, as follows:

PROPOSITION

(1)
f-1

C is weakly hereditary if and only if for every m E M and with f = c(m),
preserves the C-closure of every n < m;

(2) An idempotent closure operatorC is weakly hereditary if and only if for every
f E Mc, f-1 preserves the C-closure of every n < f;

(3) For C weakly hereditary, Cc fl M is left cancellable w.r.i. Mc, so that f m
C-dense with f E Mc and m E M implies m C-dense.

(4) The following are equivalent:

(i) C is hereditary;
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(ii) for every f E M, f-t preserves the C-closure of every n < f;
(iii) C is weakly hereditary and, for every f E £c f1 M, f -1 preserves the C-closure

of every n < f;
(iv) C is weakly hereditary and £c flM is left cancellable w.r.t. M.

(5) C is hereditary and idempotent if and only if C is weakly hereditary and
£c n M is closed under composition and left cancellable w.r.t. M.

Proof These are reformulations or minor ramifications of the statements proved
in detail in 2.5. The reader must keep in mind that

mif

is a pullback diagram whenever f is monic.

Next we want to show that to some extent, idempotency and hereditariness are
competing properties, at least in categories of topology. Briefly, we shall show that
for a non-idempotent closure operator C (of Top, say), hereditariness can never be
achieved by passing to its idempotent hull, regardless of whether C was hereditary
or not.

For the remainder of this section, we let P be the class of V-prime elements in
M (cf. 6.5) and assume that

(A) p < q implies p - q for all p, q E P,
(B)m-V{pEP/X :p<m}forevery mEM/X.

LEMMA For C, D E CL(X, M), the composite CD is hereditary only if CD
C V D.

Proof One always has C V D < CD. Now suppose that for some m : M -+ X,
the morphism k : cx(M) V dx(M) -+ cx(dx(M)) is not iso, so that by (B) there
must exist p E P/X with p< cx(dx(m)) but p¢ cx(m) V dx(m). For y:= m V p :
Y X, in the notation of 2.5, one has y cy(my) < cx(m) < cx(m) V dx(m),
hence p ¢ y cy(my). But this implies my = cy(my). In fact, for every q E P/X
with q < y cy(my) one has q < y, so that q < m or q < p follows, with the second
case impossible by property (A) and by the choice of p; consequently, from (B) one
has y cy(my) < m = y my, hence cy(my) - my. Similarly, dy(my) - my,
hence cy(dy(my)) - my. On the other hand, trivially y < cx(dx(m)), hence
y i(cx(dx(m))) - ly, while my ly. Therefore, CD cannot be hereditary.
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THEOREM For a non-idempotent closure operator C, no proper power Cc' (2 <
of < oo) is hereditary.

Proof In case C = D, since C2 > C V C = C, the proof of the Lemma provides
subobjects m < y : Y -. X with my C2-closed in Y but y < cg (m). Since
Mc = Mc' = Mc- (see the proof of Theorem 4.6), my is in fact C"-closed in Y
but y< cl (m), which implies non-hereditariness of C". 0

COROLLARY Let C be weakly hereditary but not idempotent. Then for every
a E Ord u {oo}, a > 2, the class of C"-dense morphisms in M is left-cancellable
w.r.t. Mc, but not w.r.t. M.

Proof C" is weakly hereditary (by the proof of Theorem 4.6), but not hereditary
(by the Theorem). Hence the assertion of the Corollary follows from the Proposition.

0

REMARKS

(1) The general assumptions for the Theorem are certainly satisfied when there
is a monofibration U : X -> Set such that M is the class of U-embeddings. Hence
in such a category, the idempotent hull of a non-idempotent closure operator is
never hereditary. Phrased differently, this means that a hereditary operator is not
presentable as the idempotent hull (or any proper power) of a non-idempotent closure
operator. For example, the Kuratowski closure operator K in Top cannot be a power
of a non-idempotent operator; consequently, the idempotent hull of the sequential
closure o- must be properly smaller than K

(2) The general assumptions for the Theorem are essential for its validity. In fact,
in the category ModR, the situation is completely different: the idempotent hull of
a maximal hereditary closure operator is always hereditary; see Exercise 9.A.

9.2 Initial and open morphisms

In this section we discus two topologically important notions for morphisms and
study their behaviour under composition, cancellation and pullback. We work in an
M-complete category X with M closed under composition and consider a closure
operator C.

DEFINITION A morphism f : X Y is C-initial if

cx(m) f-'(cy(f(m)))
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for all m E M/X. f is C-open if f-I preserves the C-closure of every n E M/Y,
i.e., if

f-I(cy(n)) E--- cx (f -'(n))

for allnEM/Y.

Note that the closure operator C is initial in the sense of 7.5 if and only if each
A(C)-reflexion px-reflexion is a C-initial morphism.

There is the following immediate connection between the notions of C-initiality
and C-openness:

LEMMA

(1) Every C-open morphism in M is C-initial.

(2) Every C-initial morphism in £ is C-open, provided £ is stable under pullback.

Proof (1) Let m : M -. X, f : X -. Y both be in M, with f C-open. Then

f-I(cy(f(m))) = cx(f-'(f(mI))) cx(m)

(see Exercise 1.K (c)).
(2) If f E £ is C-initial and if £ is stable under pullback, then f (f -I (n)) - n for

all n E M/Y (see Exercise 1.K(d)), hence

f-I(cy(n)) = f-I(cy(f(f-I(n))) = cx(f-I(n)) 0

EXAMPLES

(1) In Top, with C = K the Kuratowski closure operator, the C-open morphisms
are exactly the open maps, i.e., those continuous maps f : X -+ Y with f (U) C Y
open whenever U C X is open. The map f is C-initial if and only if X carries
the coarsest topology making f continuous; hence f is C-initial if and only if it is
U-initial, with U : Top --. Set the forgetful functor (cf. Exercise 5.P).

(2) If X has equalizers contained in M, then for every full and replete reflective
subcategory A of X, each A-reflexion is regA-initial (see Theorem 6.3 (1)), hence
it is also regA-open is case A is £-reflective.

(3) If C is the trivial closure operator of X, then every morphism is C-initial and
C-open. If C is the discrete closure operator, every morphism is C-open and every
morphism in M is C-initial.

PROPOSITION

(1) The classes of C-initial morphisms and of C-open morphisms are closed under
composition.
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(2) C-initial morphisms are left-cancellable, while C-open morphisms are left-
cancellable w.r.t. M.

(3) Both C-initial morphisms and C-open morphisms are right-cancellable w.r.t.
£, provided £ is stable under pullback.

Proof (1) Consider morphisms f : X -r Y and g : Y - Z in X. If f and g are
C-initial for all m E MIX, then one has

cx(m) = f-1(cy(f(m)))
f-1(g-1(cz(g(f

(m)))))

(g . f)-'(cz((g f)(m)))-

The statement for C-open morphisms is trivial.
(2) Since cx(m) < f'1(cy(f(m))) holds just by C-continuity, the following

proves the claim for C-initial morphisms:

cx(m) f-,(g-1(cz(g(f(m))))) ? f-1(cY(f(m)))

Now assume g f to be C-open with g E M. Then

f-'(cyan)) C f-1 (g-1 (cz(g(n)))) °-`
cx(f-1 (g-1 (g(n)))) - cx(f-1

(n))

holds for all n E M/Y; this proves C-openness of g f since ">" is always true.
(3) If the composite (X 1- Y -L Z) is C-initial with f E M, then

cy(n) ? f(cx(f-1(n))) = f(f-1(g-1(cz(g(f(f-1(n))))))) = g-1(cz(g(n)))
for all n E M/Y. The relevant computation for C-initiality is:

g-1 (cz(k)) = f(f-1 (g-1 (cz(k)))) = f(cx(f-1 (g-1 (k)))):5 cx(g-1 (k))
for all k E M/Z. 0

We now turn to pullback stability for C-open morphisms. First observe that any
commutative diagram

W X

Pl if (9.3)
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defines two functors

f-1(h(-)) : M/Z -+M/X,

and they are connected by a natural transformation since

< f-1(h(k)) for all k E M/Z.

We say that the commutative diagram (9.3) satisfies the Beck-Chevalley Property
(BCP) if this transformation is an isomorphism.

For pullback diagrams, the status of (BCP) is clarified by the first assertion of
the following Theorem.

THEOREM

(1) The Beck-Chevalley Property holds for every pullback diagram in X if and
only if the class £ is stable under pullback.

(2) Let the commutative diagram (9.3) satisfy (BCP), and let ' be C-initial.
Then, if f is C-open, also <p is C-open.

Proof (1) Let £ be stable under pullback and consider the commutative diagram

TI1 .0 - v

"
}

40

Y

f

Y

IK h, h{ }

The front face is a pullback diagram since all the back, left, and right face
are pullback diagrams. Consequently, since h' E £, also h" E £, which implies
i(cp 1(k)} - f-1(h(k)).

Conversely, consider the pullback diagram (9.3) with h E £ and let k E 1z. Then
h(k) - ly and w -'(k) = lw, hence

0(1w) f-1(h(k)) - f-1(1y) - lx.

Consequently, 10 E £ (see Exercise 2.K(b)).
(2) Under the given assumptions, C-continuity of h, C-openness of f, and C-

initiality of zb give for every n E M z

. f-1()i(K))

40 1(cz(n)) < 'P-1(h-1(cy(h(n))))
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'k-'(f-'(cy(h(n))))
i-'(cx(f-'(h(n))))

cw('P '(n))

REMARK In Top, with C = K, where C-open maps are characterized by preser-
vation of open sets, C-open maps are stable under pullback, i.e., the assumption of
C-initiality of in Theorem (2) is not needed in this case. In fact, due to BCP,
for a basic open set p'(U) n lf-'(V) in the pullback W, with U, V open in Z, X,
respectively, one has

9,(V-'(U) n 0-'(V)) = U n co(b-'(V)) = U n h-'(f(V)),

with f (V) open by hypothesis on f.

9.3 Modal closure operators
Let X be finitely M-complete with M C Mono(X) closed under composition, and
let C be a closure operator of X w.r.t. M.

It
DEFINITION C is called modal if every morphism in X is C-open, that is, if
f-1(cy(n)) - cx(f-'(n)) holds for all f : X -+Y in X and all n E M/Y. An
idempotent modal closure operator is called Lawvere-Tierney topology (LT-topology,
for short) of X w.r.t. M.

PROPOSITION

(1) Every modal closure operator is hereditary.

(2) C is modal if and only if C is weakly hereditary and Sc! n m is stable under
pullback.

(3) With C also C°O is modal (if it exists), provided that f-'(-) preserves joins
(of ascending chains) for every f in X.

Proof (1) is trivial (cf. Proposition 9.1(4)). (2) If C is modal, then C is weakly
hereditary (by (1)) and f -Z(-) preserves the C-closure of every n E M/Y, for each
f : X -+ Y in X; consequently, if n is C-dense, also f-'(n) is C-dense. Conversely,
assume C to be weakly hereditary and £c n M to be stable under pullback. In
diagram (9.5), the upper square is a pullback diagram since the lower square and
the outer diagram are pullbacks.
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f-1(N) N

d in

f-1(cy(N)) f cy(N)
k jc(n)

X f Y

By hypothesis, with jn also d - (f`)-1(jn) is C-dense, and the following diagram
commutes

f-1(n) d - f-1(cy(N))

cx(f_1(N)) cx
f_1(n))

X

With the Diagonalization Property, f -1(cy (n)) < cx (f -1(n)) follows.
(3) Inductively, one shows that the (existing) powers CO (a E Ord U {oo}) are

modal if C is modal. Indeed, the composite of=two modal closure operators is
obviously modal; and if every inverse-image functor preserves joins (of ascending
chains), then the join of (an ascending chain of) modal closure operators is modal.

Modal closure operators are rare in topology but quite common in algebra, as
the following two observations indicate.

EXAMPLES

(1) The only modal closure operators of Top are the discrete and the trivial
operator. Since the trivial operator is the only non-grounded closure operator of
Top (cf. Exercise 2.H), this follows from the following more general fact: if X
admits a faithful monofibration U : X -. Set with M = MU, then the only grounded
and modal closure operator of X is the discrete operator.

In fact, if cx(M) # M for some X E X and subobject M, then (without distin-
guishing between X-objects and their underlying sets) for the inclusion morphism
f : {x} -+ X of some x E cx(M) \ M, groundedness and modality of C lead to the
contradictory statement

0 = c{z}(f-1(M)) = f-' (cx(M)) = {x}.

f-1(cy(n))
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(2) In ModR, maximal closure operators are often modal. More precisely, for a
preradical r, the following statements are equivalent:

i) C' is modal,

ii) C` is hereditary,

iii) r is hereditary.

Consequently, C' is an LT-topology if and only if r is a hereditary radical.

Since (ii)«(iii) was shown in Theorem 3.4(4), in light of the Proposition it suffices
to show that for r hereditary, C''-density is stable under pullback. Hence let N < Y
be C''-dense, i.e., let r(Y/N) = Y/N be r-torsion. Since for every f : X -+ Y one
has

Xlf-1(N)-f(X)/N c_ YIN,
hereditariness of r yields that also X/f (N) is r-torsion. This means that f -1 (N)
is C"-dense in X.

Minimal closure operators can be modal only if they are maximal: see Exercise 9.E
and Remark 5.12.

The most important examples of modal closure operators arise as follows. Let
(T, 7)} be a pointed endofunctor of X such that T preserves subobjects (so that
Tm E M for all m E M) and T preserves inverse images (T(f -1(n)) = (T f)-1(Tn)
for all f : X -+ Y and n E M/Y; cf. Lemma 5.7). One can then define the (T, q)-
pullback closure of m E MIX byf

pbx(m) = r1X1(Tm).

It is elementary to show that pb is a closure operator of X; in fact, pb =TS is the
"modified modification" of the discrete closure operator S of X, as introduced in
Exercise 5.V. Obviously, an M-subobject m is pb-closed if and only if

is a pullback diagram, and it is pb-dense if and only if the commutative square (9.7)
admits a diagonal, i.e., there is a morphism t : X -, TM with Tm t = nx and
(necessarily) t m = r1M. Furthermore:

THEOREM The pullback closure of a pointed endofunctor (T, t1) with T preserving
subobjects and inverse images is modal. It is idempotent if (T, 11) is idempotent, i.e.,
if (T, r1) is given by the reflector of a full reflective subcategory of X. In this case
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the C-dense subobjects M are precisely those with Tm iso, i.e.,

£c n m = T-1(Iso(X)) n M.

Proof Modality follows from

f-1 (pby(n)) = f-' (r[Y1(Tn)) = ti '((Tf)-'(Tn)) =,7j'(T(f-1(n)))-

If (T, rt) is idempotent, so that rtT(= Trl) is iso, then Tm is obviously pb-closed,
hence also its pullback rgjl(Tm). Therefore, pb is idempotent. Furthermore, if m is
C-dense, so that there is a morphism t with Tm t = t)x, hence TTm Tt = ttrx,
one has

Tm is therefore iso. Conversely, if Tm is iso, m is trivially
pb-dense. 0

In the particular case M = Mono(X) we can conclude:

COROLLARY The pullback closure induced by a localization of X (that is: by a
full reflective subcategory of X whose reflector preserves finite limits) is a Lawvere-
Tierney topology on X w.r.t. the class of all monomorphisms. When restricted to
regular monomorphisms (which are equalizers), the pullback closure is simply the
regular closure of the localization. 0

Proof The reflector of a localization preserves in particular monomorphisms and
equalizers as well as pullbacks of such subobjects. Regularity of the pullback closure
follows with the formula given in Theorem 6.3(2). ' 0

9.4 Barr's reflector
For an LT-topology C on X we give an explicit description of the reflector S : X -
A(C) (cf. 7.1) and prove (in partial conversion of Theorem 9.3) that it preserves
subobjects. We assume X to be finitely M-complete with R.eg(X) C M C Mono(X)
and M closed under composition, and we let X have finite products and coequalizers
of equivalence relations (as defined below). Furthermore, the companion ,6 of M is
assumed to be stable under pullback throughout this section.

An M-subobject r : R - X x X is called an M-relation of X E X. It is an
equivalence relation if it is

reflexive: bx < r, with &x : X -+ X x X the diagonal of X;

symmetric: r* < r, with r* =< p2 r, pi r > the converse of r, where p1, p2
X X X --F X are product projections;

transitive: r o r < r, with the composite r o r given by the M-part of an
(£, M)-factorization of <pl . r art, p2 - r'72>, where Tri, are are defined by the
pullback diagram
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. 112 R

R pZr X

The equivalence relation r is called effective if (pl r, p2 r) is the kernel pair of some
morphism f : X --> Y. (Note that the kernelpair (rl, r2) of a morphism f : X -+ Y
always defines an equivalence relation < rl, r2 > on X.) In the category Set, equiva-
lence relations are always effective, and the same is true in every variety of universal
algebras (since, as subalgebras, equivalence relations are actually congruence relax
tions).

In order to construct the reflector into the Delta-subcategory of an LT-topology
C on X, one considers for every X E X the closure

rx=cxxx(bx):RX--+X x X

of the diagonal bX in X X X.

PROPOSITION For every X E X, rX is an equivalence relation on X.

Proof It is a categorical routine exercise to show that an M-relation r : R ---+
X x X is an equivalence relation in X if and only if , for every Z E X, the relation

X(X,r) : X(Z, R) --+X(Z,X x X) - X(Z,X) X X(Z,X)

is an equivalence relation in Set (cf. Exercise 9.F). Hence we must show that, for
all X, Z E X, the relation

u- v :* (<u, v>: Z -+ X x X factors through rx)

is an equivalence relation on the horn-set X (Z, X). We first show:

u - v q e := equalizer(u, v) is C-dense in X. (*)

In fact, e is a pullback of the diagonal bX:

E e z

Modality of C gives the pullback diagrams
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E 0 CZ(E)
c(e)

Z

(9.10)

X - RX rx

Hence, if < u, v > factors through rx, the pullback property of the right half of
(9.10) gives an inverse of c(e), so that e is C-dense. Conversely, C-density of e leads
trivially to a factorization of < u, v > through rx.

Right-cancellability of C-dense morphisms gives with (*):

utiv .. (3mEM/Z)misC-denseand

From (**) we now see that the relation - is trivially reflexive and symmetric, but
also transitive since for C-dense subobjects m, n of Z also m A n is C-dense in Z
(due to pullback stability and closedness of composition of C-dense subobjects). 0

We can now proceed with the construction of the reflector into A(C), by forming
the coequalizer qx of the projections P1, P2 restricted by rx :

RX X xX X sx+SX
Ps

Our main difficulty is to show that SX belongs to A(C). Let us first observe that
the Diagonalization Lemma 2.4 makes R functorial, hence S is a functor as well,
pointed by q. We now show:

LEMMA If the equivalence relation rx is effective, then there is a pullback dia-
gram

RX

rx

XxX

e

qx x qx

SX

osx

SX X SX

(9.11)
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Proof Let us observe that the diagonal morphism Rqx of

qx

Rqx

qx x qx

(9.12)

factors through e := qx - P1 - rx = qx - P2 rx. In fact, with the projections
s; :SX x SX -+SX (i = 1,2) one has

hence

rsx monic. Consequently, (9.11) commutes and we have

rx <_(qx xqx)-'(bx)=: d:D -+X x X.

In order tot show d < rx one uses the fact that (pi - rx, p2 rx) is a kernelpair,
actually: the kernelpair of its coequalizer qx. In fact, with the pullback projection
h:D --+SX one has

(i=1,2),

so that the universal property of (p'-rx, gives the desired morphism D -+ RX.

REMARKS

(1) In a (reasonably interpreted) commutative diagram

U

9

V

X

if

Y

P-

q

P = X/U

Jh

Q=Y/V

(9.13)

in Set where the rows are coequalizers, if f and g are monic, h may fail to be monic
(cf. Exercise 1.M). However, if u =< u1i u2 > and v =< V1, V2 > are equivalence
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relations with u (f x f)-'(v), then f (and therefore necessarily g) being monic
implies that also h is a monomorphism.

(2) In our abstract category X, we say that M is stable under coequalizers of
equivalence relations if for every commutative diagram (9.13) with equivalence re-
lations u =< u1iu2 >, v =< v1,v2 > such that u = (f x f)-1(v), and with
p = coequalizer(ul, u2), q = coequalizer(v1, v2), from f E M follows h E M.

(3) For M = Mono(X), if equivalence relations are effective in X, then M is
always stable under coequalizers of equivalence relations. In fact, in the notation
(9.13), if we let (wl, w2 : W --' P), (zl, z2 : Z - X) be the kernelpairs of h and
h p respectively, then there is a unique morphism e : Z - W with wi - e = p zi
(i = 1, 2). We can think of a as the diagonal morphism in

p

W1

h Q

where each square is a pullback diagram; as the composite of two pullbacks of p, it
therefore belongs to S and is epic.

Since (v1, v2) is the kernelpair of q, there is a morphism k : Z -- V with v; - k = f zi;
obviously, (f x f) -z. Since u S, (f x f)-1(v), there is also a morphism I : Z -+ U
with u I = z and g I = k. The first identity leads top z1 = p z2i hence wl . e = w2 e.
Since e is epic, w1 = w2 follows and h must be a monomorphism.

THEOREM Let C be an LT-topology of the category X in which equivalence
relations are effective. Then S as constructed above is the reflector of the strongly
epireflective subcategory A(C) of X, and it preserves subobjects+whenever M is
stable under coequalizers of equivalence relations; the latter condition always holds
for M = Mono(X).

Proof Since (9.11) is a pullback diagram, modality of C shows that also the
lower part of (9.12) is a pullback diagram. Consequently, Rqx is a pullback of the
morphism

qx x qx = (qx x lsx)(lx x qx),

with each factor being a pullback of the regular epimorphism qx. Since E contains
qx and is stable under pullback and closed under composition, also Rqx belongs
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to E. Consequently, as a second factor of an E-morphism, also jsx belongs to E,
hence it must be iso, and SX E A(C) follows.

For an arbitatry morphism f : X --+ A E A(C), the Diagonalization Lemma
2.4 gives a morphism w : RX -+ A with b w = (f x f) rx. Therefore, with the
projections t; : A x A -+ A, one obtains

(i=1,2).

Consequently, by the preservation property, f factors uniquely through qx.
Concerning the preservation by S of an M-subobject in, first note that

M

bM

MxM

m

mxm

bx

XxX

(9.15)

is a pullback diagram since m is monic. Modality of C gives then the pullback
diagram

RM Rm . RX

rM jrx

M x M m X ' n om X x X

(9.16)

Since M is stable under coequalizers of equivalence relations, the construction of S
gives immediately that Sm must belong to M.

In the case M = Reg(X), such that every regular monomorphism is an equalizer
(which holds true in particular when X has cokernelpairs), one obtains:

COROLLARY Under the hypothesis of the Theorem, a morphism in X is L1(C)-
epic if and only if it is C-dense. Hence C is the i .(C)-epi-closure of X. Conse-
quently, for X M-complete, C is the A(C)-regular closure of X if and only if the
A(C)-regular closure is weakly hereditary.

Proof By definition of A(C), every C-dense subobject-is A(C)-epic. Conversely,
let m = eqializer(u, v) with u, v : X -. Y be A(C)-epic. Then

Su = Sv since qx is a refiexion. Therefore, the diagram
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X 9x- SX

<u,v>

YxY qx x qx

Su SY

bsy

.SY X SY

(9.17)

commutes. Consequently, <u, v> factors through the pullback of bsx along qx x qx
which is rx (according to the Lemma). But this means that the equalizer in of u, v
is C-dense (see the proof of the Proposition).

The additional statements follow with Theorem 6.2. O

9.5 Total density

Rather than asking whether the inverse image for a given morphism preserves the
closure of certain subobjects, one may also investigate the problem whether the
closure of a given subobject is preserved by the inverse image of certain morphisms.
In this section we discuss one particular instance of this problem which has its origins
in topological group theory (see Example below). We assume our category X to be
M-complete, with M closed under composition, and consider a closure operator C.
The notion of total C-density as in Example 5.4 for X = Top can be given for an
arbitrary category X, as follows.

DEFINITION An M-subobject m : M --+ X is called totally C-dense if
k-1(m) : K AM - K is C-dense for every C-closed M-subobject k : K -+ X.

As usual, E denotes the factorization companion of M. Under suitable hypothe-
ses on (E, M), total C-density can be described as density w.r.t. a closure operator:

PROPOSITION If E is stable under pullback along M-morphisms, and if every
subobjeci lattice MIX, X E X,.has the structure of a frame, then there is a weakly
hereditary closure operator Ctot of X, uniquely determined (up to isomorphism) by
the property that the CtOt-dense subobjects are precisely the totally C-dense subob-
jects. Moreover, Ct°t is idempotent whenever C is idempotent.

Proof It suffices to show that the class V of totally C-dense subobjects satisfies
the conditions (a)-(c) of Theorem` of 5.4, and that V is closed under composi-
tion whenever C is idempotent. But the latter property follows immediately from
the Definition and the fact that E° is closed under composition for C idempotent
(Proposition 2.4). Similarly, right cancellability of D w.r.t. M follows from the
corrsponding property of Cc (Corollary* of 2.3).

In order to check the A-V-preservation property (b) for V, we consider the pull-
back diagram 5.13 with n E MIX and f(lx) V n = ly and assume f-1(n) E D.
For every k E Mc/X, one then has the cube
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f-1(N)

f-1(L) L n

(9.18)

j

f-1(n)t
k-1(n)

X f

/"If-i(k)
f-1(k)

with L = KAN, and all faces given by pullback. Since f-1(k) is C-closed, j must be
C-dense, by hypothesis on n. Since £ is stable under pullback along M-morphisms,
the £-images of all horizontal arrows of (9.18) are given by the horizontal arrows of
(9.19):

f-1(N) - f(X) AN

(9.19)

3 X f(X)

f-1(k) --
f-1( ) e 'f(X)AK

Since e E £, one obtains i d = e . j E £c (see Exercise 2.F(b)), hence i E £c. With
the distributivity of MIX the morphism f -1(k) is easily recognized as the join of
the C-dense morphisms i and 1L as in Exercise 2.F(d) and is therefore C-dense, as
desired.

For (c), it suffices to consider M-subobjects mi : Mi - X (i E I) with
ViE1 mi t--- 1x, and 1 : L X with I < mi such that the resulting morphism
li : L -+ Mi belongs to V, for all i E I. But in the pullback diagrams

Y
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L

ki

k

every ki is C-closed, hence l= is C-dense. Frame distributivity gives

VkAmi=kAVmi=k,
iEI iEI

(9.20)

hence VIEI rn = 1K, and this implies that also k-1(1) : KAL --F K is C-dense.
Distributivity of the subobject lattices is an essential hypothesis of the Proposi-

tion; without it, total C-density may in fact not be describable as density w.r.t. a
closure operator, as the following example shows. It gives the context in which the
notion of total density was investigated first.

EXAMPLE (Tonolo [1995a]) In the category TopAbGrp of abelian topological
groups, a subgroup M < X is called totally dense if it is totally K-dense, with K the
Kuratowski closure operator lifted from Top (see 5.9). Totally dense subgroups fail
to satisfy the A-V-preservation property, so that by Theorem* 5.4 there is no closure
operator C whose C-dense subgroups are precisely the totally dense subgroups. In
fact, with Zp the group of p-adic integers endowed with the p-adic topology and
Z the subgroup of rational integers of Zp, M = Z x 7L fails to be totally dense in
X = Zp x Z, while its pullback 7L x 0 -+ Zp x 0 along the embedding K = Ip x 0 -r X
is totally dense (note that K + M = X holds). In order to verify that M is not
totally dense in X, pick l; E 2p such that kE Z for each 0 # k E Z. Then the cyclic
subgroup L of Y generated by is closed and L # 0, while L fl N = 0, so that
L fl N cannot be dense in L.

In case of its existence it would be desirable to have a handier description of the
total closure Ct°t than that given by the proof of Theorem' of 5.4. If "subobjects
are given by points", as in Section 4.9, such a description is available, as we want
to show next. Hence we consider a subclass P C .M of V-prime elements which is
left-cancellable w.r.t. .M and satisfies the following conditions:

(A) f (p) E P/Y for every f : X -i Y and P E P/X

(B) m=V{pEP/X :p<m} for every mEM/X ,
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(C) p = q whenever p < q in PfX .

According to Remark 4.9(1), conditions (A), (B) give each subobject lattice the
structure of a frame. Furthermore, using the left cancellability of P w.r.t. M
and Exercise 1.K(b), these conditions also guarantee stability of E under pullback
along M-morphisms. Hence we are assured of the existence of Ctot for every closure
operator C in this setting, by the Proposition.

For every p : P -. X in P, let P : P - X be the "point closure" cx(p), with C
the idempotent hull of C, and put

l(p,m,X) :=P'cp(P(P-'(mL(p,m,X) -+ X.

Quite similarly to the A-comodification of C as defined in 7.7, we now define

cX(m):=V{PEP:p<I(p,m,X)}

for every m E M/X, X E X, and prove:

THEOREM C' is a closure operator with C` < C such that the C`-dense subob-
jects are precisely the totally C-dense subobjects. Hence Ct°t is the weakly hereditary
core of C`. If C is hereditary and if cX(p) is C-closed for all p E PfX, X E X,
then C` is weakly hereditary, and one has C' = Ctot

Proof For mEMIX, pEP/Xwith p<mone has
t

p_p.p 1(m) <P'P 1(m) <P.cp(P 1(m))=l(p,m,X),

hence C` is extensive. If m < m`, one sees immediately l(p, m, X) < l(p, m', X), so
that C` is monotone. For a morphism f : X -+ Y, from p:5 l(p, m, X) one obtains

f(p) < f(I(p,m,X)) < l(f(p), AM), Y),

due to C- and 0-continuity of f. Since f (-) preserves arbitrary joins, this implies
C`-continuity of f. Hence C` is a closure operator which, due to

l(p,m,X) (m)) < ex (M),

satisfies C" < C.
Let now ,!n E MIX be totally C-dense. Then, for every p E P/X, p '(m) is

C-dense in P, hence
=P?p.

Consequently, cjr(m) 25 1X. Conversely, for m C'-dense and every k E MCIX, we
must show that k-1(m) is C-dense. But for every p E P/X with p < k one has
P < k and therefore

l(p,m,X) =P.cp(P-1(m)) <k.cx(k-1(m));
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furthermore, since cX(m) - lx, from the V-primeness of p and conditions (B), (C)
one has p < 1(p, m, X), hence p< k cK(k-1(m)). This gives

k -
Y {p : p:5 k}:5 k cK(k-1(m))

and then 1K - CK(k-'(m)), as desired.
Finally, let C be hereditary and let cx(p) be C-closed for all p E P/X, so that

- cx(p). For m E MIX, let

y=cx(m):Y=cx(M)-'X;

we must show that the morphism my : M --+ Y with y my = m is C`-dense, i.e.,
cjr(my) - ly. For that it will be enough to show the implication

P:5 y . py < 1(py, my, Y),

with py : P Y given by y py = p, for all p E P/X, since then one has

ly = V {py : P< y} < V {py : py < l (py, my, Y) } < c`y (my).

Hence assume p < y which, under conditions (B), (C), means p < 1(p, m, X), and
consider the following diagram:

W (my

P

Pyj

Y Y

M 1 M
my

(9.21)

Here the left and right faces are pullback by definition, and the bottom face is
trivially a pullback. The back face is one by hereditariness of C:

Py = cy(py) = Y-' (cx W) = Y-' W -

Hence also the front face is a pullback, with the induced morphism t being iso.
Consequently, the top face of (9.21) is a pullback diagram. Applying hereditariness
of C again we obtain

cp (PY'(mY)) c ltm))

This means that also the top part of the following diagram is a pullback:
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L(py, my, Y) L(p, m, X)

Pr P

PY P

Y Y X

(9.22)

Since the vertical composites are l(py, my, Y) and l (p, m, X), the implication

p < l (p, m, X) pY <_ l (py , my, Y)

is now immediate, and this finishes the proof.

REMARKS

(1) For applications of the Theorem to the category Top, see the Examples of
5.4, i.e., C = K, b, or a, all of which satisfy the assumption of the Theorem: note
that, although a is not idempotent, a-closures of points are o-closed.

(2) Idempotency of C does not guarantee weak hereditariness of C*, even in Top,
as the idempotent hull of the 0-closure shows. For that topologize the set X =
IRU{oo} by taking lR to be open and basic neighbourhoods of oo to be of the form
{oo} U U, where U is an open dense subset of R. Then for M = {1/n : n E N} U {0}
one can easily phow OX({oo}) = X; consequently 0X(M) = M U {oo}. But the last
space is a topological sum of M and {oo}, so that M is 0-closed in 01(M), hence
not, 0°°-dense in 01 (M).

(3) The notion of total density given in the Example can be extended to the cat-
egory TopGrp of all topological groups, as total K-density, with K the Kuratowski
closure operator lifted from Top (see 5.9). However, another extension turns out
to be equally (if not more) relevant here: a subgroup M < G E TopGrp is called
weakly totally dense if for every closed normal subgroup N of G the intersection
M (1 N is (K-) dense in N (see Exercise 9.M for the connection with the open
mapping theorem for topolgical groups). It is natural to ask whether weak total
density can be presented as total C-density w.r.t. some closure operator C. Since
the C-closed subgroups must be the (K-) closed normal subgroups, the most natural
candidates seem to be the closure operators K V v < vK < Kv which give as closed
subgroups precisely the (K-) closed normal subgroups. It can be shown that none
of these three closure operators does the job (see Exercise 9.M).

PROBLEM Does there exist a closure operator C of the category TopGrp such
that weak total density coincides with total C-density?
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Exercises

9.A (Hereditariness of idempotent hulls) For a hereditary preradical r of
ModR, show that all its copowers ra (a E Ord) are hereditary (cf. Exercise 4.G).
Conclude that the idempotent hull of the maximal closure operator C' is heredi-
tary whenever Cr is hereditary itself. Does a corresponding statement hold for the
minimal operator Cr?

9.B (Fully hereditary closure operators) Call a closure operator C of an 14t-
complete category X (with M closed under composition) fully hereditary if every
morphism in X is C-initial. Show that fully hereditary closure operators are hered-
itary, but not viceversa. Then show that every fully hereditary closure operator C
has an fully hereditary hull C" which, if X has pushouts, can be constructed as

cX(m) = V{h-1(cz(h(m))) : h : X -- Z}

(cf, the construction of Che in 4.10).

9.C (C-open maps in Top) Let C be a closure operator of Top. Prove for
every f : X -. Y:

(a) f is C-open if and only if f maps a C-neighbourhood of x E X to a C-
neighbourhood of f (z) 7.9).

(b) If f is C-open, then f is also C°-open for every a E Ord U {oo}; in particular,
f is C°°-open.

(c) If f is bijective and o -open, then f is also o-open. Hint: f is o°3-open if and
only if f : sX -+ sY is open (with sX the sequential modification of X, i.e.,
with s the corefiector into the category of sequential spaces). Hence X and Y
have the "same" converging sequences.

9.D (Openness w.r.t. minimal and maximal closure operators) For a pre-
radical r of ModR, every surjective module homomorphism f 'X -+ Y is C'-open;
it if and only if f(r(X)) = r(Y).

9.E (Modality of minimal closure operators) Show that for a preradical r of
ModR, the following conditions are equivalent-

(i) Cr is modal,

(ii) for all f : X -+ Y, f-1 (r(Y)) = r(X ),

(iii) r is hereditary and cohereditary (cf. Remark 5.12).
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9.F (Equivalence relations) Check that an M-relation r : R -+ X x X is
an equivalence relation in the finitely M-complete category X with finite products
if and only if for every Z E X

X(X,r):X(Z,R)-X(Z,X x X)=X(Z,X) x X(Z,X)

is an equivalence relation in Set.

9.G (A(C)-reflection via prereflection) Let C be any closure operator of the
finitely M-complete category X with finite products and coequalizers, and construct
the pointed endofunctor (S, q) as in 9.4.

(a) Show Fix(S, q) = S(C) (cf. 5.1).

(b) Conclude form (a) that d(C) is strongly epireflective in X whenever X is co-
wellpowered w.r.t. regular epimorphisms and has colimits of chains of regular
epimorphisms. Hint: Iterate S.

(c) Describe the Hau:s-reflector of Top.

9.11 (C-initial sources and the finite structure property for products) Call a
source o, _ (fi : X -Y)iEt in X C-initial if cx(m) = A . f; 1(cy;(fi{m}}) for all
m E M/X. If ri = (gif : Y -+ ZiJ)JEJ; are further sources (i E I), the composite
(r - T)iEl is the source (gi1 fi : X -+Y)JEJ;,iEI. Show:

(a) If all ri are C-initial, then (ri o-)iEl is C-initial if and only if o, is C-initial.

(b) C = t (the trivial closure operator of X) if and only if every object of X
(considered as an empty source) is C-initial.

(c) For any non-trivial closure operator C of Top, the only C-initial object is 0.

(d) In Top, a source (pi : RiEt XJ -+ Xi)iEJ of product projections generally fails
to be K-initial. What about PrTop and CS (cf. 5.10)?

(e) For X with direct products, the inverse-limit source

(PF : 11 Xi ' 11 Xi)FCI finite
1Et iEF

is C-initial if and only if C satisfies the finite structure property for products
(cf. 4.11).

9.1 (Openness of product projections) Call a closure operator C of a finitely
M-complete category X with finite products semi-productive if

cXxy(m x ly) = cx(m) x ly (*)

holds for all X,Y E X, m E M/X. Show:

(a) C is semi-productive if and only if every projection of a (finite) direct product
is C-open.
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(b) If C is idempotent, semi-productivity implies finite productivity of C.

(c) Every closure operator of a topological category over Set is semi-productive.
Hint: For spaces X,Y and subspaces M C X and N C Y, in order to prove
the non-trivial inclusion in the formula (*) note that for every z E cx(M) and
every y E Y, one has (x, Y) E cxx{y)(M x {y}) C cx, y(M x Y).

(d) Find an example of a category X with a non-semi-productive closure operator.

9.J (K-open morphisms in TopGrp) Prove that K-open morphisms in
TopGrp, unlike in Top, need not be open as maps between topological spaces.
Conclude that the forgetful functor V : TopGrp -+ Top does not preserve K-
openness of morphisms. (Here, for brevity, we denote each time by K the usual
Kuratowski closure operator K of Top and its lifting from Top along V as in 5.9.)
Hint: Note that if o > r are two distinct topologies on a group G, then the identity
1G : (G, o) -+ (G, r) (as a morphism in TopGrp) is K-open if and only if both
topologies have the same (K-) closed subgroups, while 1G is K-open in Top if and
only if both topologies coincide. We propose now two examples of a group G and
two distinct topologies o > r on G with 1G : (G, a) -+ (G, r) K-open. For the first
one take G = Z, o the discrete topology of Z and r the topology on G defined as
in Exercise 8.U(b) with rn = n for each n E N. For the second one fix a prime p
and take G to be the Prufer group 7L(p°°) := tp(T), with or the discrete topology of
7L(p°O) and r the topology induced by T. In both cases all subgroups of G are (K-)
closed for both topologies.

9.K (Total density vs essentiallity) Call an M-subobject m : M -+ X of
a finitely M-complete category X essential if for; every morphism f : X -+ Y
with f m monic is a monomorphism. Call m £-essential if the M-part of the
(£, M)-factorization of e m is essential for every e EE. Show that:

(a) A subgroup inclusion M -+ G in HausGrp is essential if and only if every
proper closed normal subgroup of G non-trivially meets M.

(b) A (K-) dense subgroup M of an abelian group G E HausGrp is totally dense
if and only if M is £-essential.

9.L (Weak total density and the open mapping theorem) - (cf. Dikranjan
and Prodanov [1974]) A group G E HausGrp is said to satisfy the open mapping
theorem if every morphism G -+ H in HausGrp is open. Prove that for a dense
subgroup M of a group G E HausGrp the following two conditions are equivalent:

(a) M satisfies the open mapping theorem,

(b) G satisfies the open mapping theorem and M is weakly totally dense in G (cf.
Remark 9.5(3)).

9.M (Weak total density as total C-density) Let C be one of the following
three closure operators of TopGrp: v V K, vK and Kv. Show:



Dense Maps and Pullback Stability 329

(a) Weak total density implies total C-density in TopGrp.

(b) For the topological group G defined in Example 5.9 (4) total C-density does
not imply weak total density. Hint. Note that G has no proper closed normal
subgroups, so that a subgroup M of G is totally C-dense if and only if G is
C-dense. Conclude that the stabilizer subgroup M = stab(1) of G is totally
C-dense. Since M is a proper (K-) closed subgroup of G, it is not weakly
totally dense.

Notes

The notion of initial morphism (with respect to a closure operator) appears in
Dikranjan [1992] while the notion of openness is intrinsic to the notion of Lawvere-
Tierney topology (see Johnstone [1977]) which assumes every morphism to be open.
Modal closure operators were investigated by Castellini, Koslowski and Strecker
[1992b]; Theorem 9.3 is very much related to the work of Cassidy, Hebert and
Kelly [1985]. The construction of Barr's reflector appears in Barr [1988] and has
been used by various authors; see, for example, Carboni and Mantovani [1994]. The
notion of total density appears for the first time in Soundararajan [1968] for abelian
groups. The term weak total density was used in Dikranjan and Shakhmatov [1992],
although the notion appeared much earlier (under the name total density) in Dikran-
jan and Prodanov [1974] (see Dikranjan, Prodanov and Stoyanov [1989] for further
information). Total closure operators operators were constructed by Tonolo [1995b]
for applications to topological groups.
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Index of Definitions F-closure (w.r.t. a functor F) 5.7, 140

additive closure operator 2.6, 34

additive core 4.8, 88
adjoint maps (of preordered classes) 1.3, 3

adjoint functors 5.13, 158
Alexandroff pretopological space 3.6, 61
Alexandroff topological space 2.6, 35
algebraic closure 3.5, 57
amnestic functor Ex.5.M, 173

front - 3.3, 47
integral - 3.5, 55
t- 3.3, -4 7
normal - 3.5, 55
- operation (of a poset) Ex.2.E, 40
pullback - 9.3, 313
Scott - 3.7, 68
sequential - 3.3, 47
- space 5.10, 147
0-3.3,47

b-closure 3.3, 47 total - 9.5, 320
Beck-Chevalley Property 9.3, 310 up- 3.6, 57
bicorefiective subcategory 3.6, 59; Ex.3.L, 68 up-directed down - 3.7, 62
bireflective subcategory 3.1, 45; Ex.6.H, 221 closure operator 2.1, 25; 5.2, 114
bounded

- closure operator 4.6,
- set 8.6, 275

82

U-cartesian morphism 5.8, 140
category

abelian - 6.7, 202
accessible - 8.9, 291
additive - 6.7, 201
closure-structured - 5.11, 151
£-cowellpowered - 2.8, 39; 8.1, 258
locally presentable - 8.9, 290
topological - Ex.5.P, 174
M-wellpowered - 1.1, 2

centre (of a group) Ex. 3.N, 70
A-closed M-subobject 6.2, 182
C-closed M-subobject 2.3, 26
closed under (co)limits

- (subclass of morphisms) 1.7, 9;
- (full subcategory) Ex. 2.K, 42

closed under extensions 6.8, 208
closed under M-subobjects 2.8, 38
closure

algebraic - 3.5, 57
b - 3.3, 47
C- 2.2, 26
convex - 3.6, 57
down - 3.6, 57
epi- (of a subcategory) 7.6, 239

1.8, 14

additive - 2.6, 34
bounded - 4.6, 82
Cech - 3.1, 44
cobounded - 4.6, 82
directedly additive - 2.6, 34
discrete - Ex. 2.A, 39
A-epi - 6.2, 181
essentially

- equivalent - 7.3, 231
- strong - 7.4, 232

external - 5.14, 164
final - (induced by a functor) 5.7, 139
finitely productive 2.7, 37
Frobenius - 8.10, 292
fully additive - 2.6, 34
grounded - 2.6, 34
hereditary - 2.5, 31

idempotent - 2.4, 28; Ex. 2.C, 40
initial - 7.5, 235

- induced by a functor - 5.7, 139
indiscrete - 4.7, 85
inverse Kuratowski - 4.2, 75
Katetov - 3.2, 47
Kuratowski - 2.2, 26
maximal - 3.4, 51; 5.5, 125
minimal - 2.5, 36; 3.4, 51; 5.5, 125
modal - 9.3, 311
pointedly radical - 6.10, 215

productive - 2.7, 36



346

projective - 8.4, 267
proper - 4.7, 87
radical - 6.7, 198
A-regular - 6.2, 181
Scott - 3.7, 63
strong - 6.6, 196
symmetric - 6.10, 217
trivial - Ex. 2.A, 39
unbounded - 4.6, 83
uncobounded - 4.6, 83
weakly hereditary - 2.4, 28; Ex. 2.C, 40

closure space 5.10, 147
cobounded closure operator 4.6, 83
cocomposite

- of closure operators 4.3, 75
- of preradicals 5.5, 128; Ex. 5.G, 171

cofibration Ex. 5.P, 173
cogenerating (class of objects) 8.2, 261
cohereditary preradical 3.4, 53; 5.12, 157
cokernel 5.6, 130
cokernelpair 6.1, 178
commutator subgroup 3.5, 55
S-comodification 5.12, 156; 7.7, 244
e-compact space 8.6, 275
M-complete (category) 1.10, 18

finitely - 1.6, 8
composite

- of closure operators 4.2, 73

- of pointed endofunctors Ex. 5.A, 168
- of M-preradicals 5.5, 127

continuity (of a morphism w.r.t. a closure
operator) 2.2, 25
C-continuous function 5.11, 151
(C, D)-continuous functor 5.7, 136
(D, C)-continuous morphism 5.12, 155
convex closure 3.6, 48
co-order (of a closure operator) 4.6, 82
copointed endfunctor 5.2, 115
copower

- (of a closure operator) 4.6, 82
- (of a preradical) 5.5, 129

core
additive - 4.8, 88
directedly additive - 4.9, 94
fully additive - 4.9, 90
minimal - 4.10, 94

Index of Definitions

weakly hereditary - 4.6, 81
corefiective subcategory Ex.3.L, 69
count (of an adjunction) 5.13, 158
£-cowellpowered (category) 2.8, 39; 8.1, 25g
Cech closure operator 3.1, 45

p-defect 6.8, 204
Delta-subcategory 7.1, 226
dense (map of topological spaces) 1.8, 13
C-dense

- subobject 2.3, 26
- morphism 2.3, 27

diagonalization
- Lemma 2.4, 28
- property 1.5, 7; 1.8, 14; 5.3, 116
simultaneous - 1.10, 17

Diagonal Theorem
- additive 7.5, 236
- generating 7.2, 229
- pointed 7.2, 228

directed-complete poset (dcpo) 3.7, 61
directedly additive closure operator 2.6, 34
directed graph, see graph
disconnectedness Ex.6.T, 283
discrete closure operator, Ex. 2.A, 39
divisible abelian group 3.4, 53
domain 3.7, 64
dominion 6.2, 184
down-closure 3.6, 57

edge (of a graph) 3.6, 57
effective equivalence relation 9.4, 315
U-embeddings 5.8, 141

-(of pretopological spaces) 3.1, 44
-(of topological spaces) 1.1, 2

enough M-injectives 4.10, 95
A-epimorphism 6.1, 177
epi-closure (of a subcategory) 7.6, 239
A-epi-closure operator 6.2, 177
equivalence relation 9.4, 314
essentially strong closure operator 7.4, 232
extension (of a closure operator) 2.9, 38
extremal closure operator 5.14, 164
extremal monomorphism Ex. 1.D, 20; 6.2, -18,

factorization
(£, M)- 1.8, 14
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right M- (of a morphism) 1.5, 7 idempotent - 4.6, 10
right M- (of a sink) 1.10, 16 productive - Ex. 4.Q, 108
- system (as a functor) 5.3, 117; Ex.5.C, 170 regular - 7.4, 242

M-fibration 5.8, 140
fibre-small functor 8.1, 260 idempotent

filter convergence space 3.2, 45 - closure operator 2.4, 28
final closure operator (w.r.t. a functor) 5.7, - hull 4.6, 81
189 - pointed endofunctor 5.1, 109
U-final sink Ex.5.P, 171 - preradical 3.4, 52; 5.5, 128
finite structure property 4.11, 101 image (of a subobject) 1.4, 5; 8.1, 258
finitely M-complete (category) 1.6, 8 indiscrete closure operator 4.7, 85

finitely productive closure operator 2.7, 47 initial closure operator - 7.5, 215; (w.r.t.
frame 4.10, 95; Ex.5.B, 169 functor) 5.7, 119;
Frattini subgroup 3.5, 54; Ex.3.N, 68 initial
Frechet-Urysohn space 3.3, 48 - morphism 5.8, 140; 9.2, 407
Frohlk Lemma 6.5, 192 - source Ex.5.P, 171; Ex.9.H, 327
front closure 3.3, 47 M-injective object 4.10, 95
fully additive integral closure 3.5, 55

- closure operator 2.6, 34 F-interior (w.r.t. a functor) 5.7, 140
- core 4.9, 90 intersection

functor M- (of morphisms) 1.9, 15
adjoint - 5.12, 158 finite M- (of morphisms) 1.9, 15
amnestic - Ex. 5.M, 171 inverse image (of a subobject) 1.2, 4
(C, D)-continuous - 5.7, 146 isomotphic
- preserving subobjects 5.7, 145 - subobjects 1.1, 1
C-structured - 5.9, 151 - factorization systems 5.3, 118
fibre-small - 8.1, 260 - morphisms 8.1, 259
topological - Ex.5.P, 174
transportable - 8.1, 260 Jansenian preradical 3.4, 54

join 1.3, 4
generated by V-prime elements 6.5, 192
£-generator (of a category) Ex. 2.1, 41 Katetov closure operator 3.2, 46
(directed) graph 3.6, 56 kernel 5.6, 140

vertex of a - 3.6, 56 k-space 3.3, 48
edge of a - 3.6, 56 Kuratowski closure operator 2.2, 6
loop ofa-3.6,56
opposite - 3.6, 59
spatial - 3.6, 57

grounded closure operator 2.6, 14

lattice
large-complete - 1.9, 15; 4.1, 72
modular - Ex. 4.N, 107

L Ti t 411l 9 3grounding of a closure operator 4.8, 86

hereditary

awvere- erney opo ogy . ,

left-adjoint
- monotone map 1.3, 4

- closure operator 2.5, 41 - functor 5.13, 158
left £-factorization (of a morphism) 1.5, 7- hull, 4.10, 95
left factorization class 5.3, 117- preradical 3.4, 52
left factorization system 5.3, 117hull
left cancellable (class of morphisms)hereditary - 4.10, 94
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Ex.1.D, 21; 2.5, 32; 5.4, 120
U-lifting

-(of a morphism) 5.8, 140
-(of a sink) Ex.5.P, 173

loop 3.6, 56

Magic Cube Theorem 6.4, 189
maximal closure operator 3.4, 51; 5.5, 125
meet 1.3, 4
minimal

- core 4.10, 94
- closure operator 2.5, 34; 3.4, 51; 5.5, 125

modal closure operator 9.3, 311
T-modification 5.12, 156
modular lattice Ex.4.N, 104
monofibration 5.8, 140
monomorphism

A-regular - 6.1, 177
extremal - Ex. 1.D, 20
A-normal - 6.7, 202
strong - Ex. 1.E, 21

morphism
C-dense - 2.3, 27
C-initial - 9.2, 307
U-initial - 5.8, 140
C-open - 9.2, 308
Frobenius - 8.10, 292

multiple pullback 1.9, 15

C-neighbourhood 7.9, 250
normal closure 3.5, 55
normalizer (in a group) Ex.3.N, 68

C-open morphism - 9.2, 308
opposite

- category 1.5, 7
- graph 3.6, 59

order (of a closure operator) 4.6, 83
orthogonal

(morphism to morphism) 1.8, 13
(morphism to object) Ex.5.B, 169

Index of Definitions

- (of a closure operator) 4.6, 82
- (of a M-preradical) 5.5, 129

precoreflection 5.2 115
preordered

- class 1.1, 1

- set 3.6, 57

preradical 3.4, 51
M- 5.5, 125
idempotent - 3.4, 52; 5.5, 128
Jansenian - 3.4, 53
hereditary - 3.4, 52; 5.6, 133
cohereditary - 3.4, 53; 5.12, 157

prereflection 5.1, 109
A-V-preservation property 5.4, 121
preserves

- subobjects 5.7, 135
- inverse images 5.7, 135
- (direct) images 5.7, 135

(C, D)-preserving functor 5.7, 136
preterminal object Ex.7.B, 253
pretopolgical space 3.1, 44
V-prime subobject 4.9, 91
productive closure operator 2.7, 36
projective object Ex.1.L, 22
property

Beck-Chevalley - 9.3, 310
diagonalization - 1.5, 7; 1.8, 14; 5.3, 116
(E, M)-factorization - 1.8, 13
finite structure - 4.11, 101
A-V-preservation - 5.4, 121
A-V-reflection - 5.4, 121
simultaneous diagonalization - 1.10, 17
- stable under meet or join 4.5, 79
M-transferability - 4.10, 95

M-pullback 1.2, 3
pullback closure 9.3, 313

M-relation 9.4, 312

quasi-uniform space 8.7, 280
quasicomponent 4.7, 87

- factorization system 5.3, 117; Ex.5.E,170radical 3.4, 52

- subcategory Ex.5.B, 169 M-radical 5.5, 128
6-reflection 6.7, 199

pointed endfunctor 5.1, 109 A-V-reflection property 5.4, 121
power reflective (subcategory) 2.8, 38; 5.1, 110
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reflexion (of an object) 2.8, 38

A-regular

- closure operator 6.2, 181
- monomorphism 6.1, 177
- preradical 6.7, 199

regular hull (of a closure operator) 7.4, 282
regular space 3.3, 48
replete subcategory 2.8, 38; 5.1, 109
restriction (of a closure operator) 2.8, 38
retraction Ex.1.C, 20
right-adjoint

- monotone map 1.3, 4
- functor 5.13, 158

right cancellable (class of morphisms) 2.5, 33;
5.4, 120
right M-factorization (of a morphism) 1.5, 7
right M-factorization (of a sink) 1.10, 16
right factorization class 5.3, 117
right factorization system 5.3, 117

Scott-closed subset 3.7, 63
section Ex.2.L, 42; 6.1, 179
section condition 4.11, 99
semisimple class of a radical 6.7, 23
separable (field extension) 8.10, 293
sequential closure 3.3, 47
sequential modification 5.10, 149
sink 1.10, 16
skeleton 1.1, 16
socle 4.3, 77; 4.6, 84
specialization order Ex. 3.P, 70
spatial graph 3.6, 57
splitting field 3.5, 56
stable under

-join 4.5, 79
- meet 4.5, 79
- multiple pullback 1.7, 10
- pullback 1.7, 10
- pushout Ex.1.J, 22
- M-unions 5.4, 122

strong
- closure operator 6.6, 196
- modification 6.6, 196
- monomorphism Ex.1.E, 21

strongly closed subobject 6.4, 187; 6.6, 196
structured category 5.11, 121
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subcategory
bireflective - 3.1, 45; Ex.6.H, 221
corefiective - Ex.3.L, 69
Delta - 7.1, 226
Nabla - 7.8, 247
orthgonal - Ex. 5.B, 169
reflective - 2.8, 38
replete - 2.8, 38

subnormal subgroup Ex. 5.J, 172
M-subobject 1.1, 1

A-closed - 6.2, 182
C-closed - 2.3, 26
V-prime 4.9, 91
V-prime - 6.5, 192
A-regular - 6.1, 177
extremal - Ex.1.D, 20
A-normal - 6.7, 202
regular - 6.1, 177
strongly A-closed - 6.4, 187
strongly C-closed - 6.6, 196
totally C-dense - 9.5, 320
trivial - 1.11, 19

surjectivity class 6.8, 204

symmetric closure operator 6.10, 217

topological
- category Ex. 5P, 174
- functor Ex. 5P, 174
- group 5.9, 144

torsion free class 6.7, 200
torsion theory 6.8, 207
torsion subgroup 3.4, 53
total closure 9.5, 322
totally C-dense

- subobject 9.5, 320
- subspace 5.4, 124

totally continuous function 5.11, 151
M-transferability property 4.10, 95
trivial

- closure operator Ex. 2.A, 39
- object 1.11, 19
- subobject 1.11, 19

Tychonoff space Ex.4.O, 107

uniform space 5.11, 152
M-union 1.9, 16

finite - 1.9, 16
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epic - 6.2, 180
U-universal arrow 5.13, 158
unit (of an adjunction) 5.13, 158
up-closure 3.6, 57
up-directed down-closure 3.7, 61
Urysohn space 7.1, 227

variety
B rkhoff - 8.9, 289
quasi- 6.7, 203; 8.9, 289

vertex (of a graph) 3.6, 56

weakly hereditary closure operator 2.4, 28
wellpointed endofunctor Ex. 5.8, 168
M-wellpowered 1.1, 1

zero closure operator 6.9, 218
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Special categories

AbGrp - abelian groups 3.4, 54
Alex - Alexandroff topological spaces 2.6, 35; 3.6, 61
Cat - small categories Ex. 1.G, 22
CBoo - complete Boolean algebras Ex. 5.B, 169; 8.2, 264
CompGrp - compact Hausdorff topological groups 6.1, 180
CompHaus - compact Hausdorff spaces
CompTop - compact topological spaces (not necessarily Hausdorff) 7.7, 246
CRng - commutative rings 3.5, 56; 1.11, 20
CS - closure spaces 5.10, 147
CTop - connected topological spaces 1.6 , 9
DCPO - directed-complete partially ordered sets 3.7, 62
DHaus - totally disconnected Hausdorff spaces Ex. 6.8, 222
FC - filter convergence spaces 3.2, 46
FHaus - functionally Hausdorff spaces 6.9, 212; 7.6, 287
Fld - fileds 3.5, 56
Frm - frames Ex. 5.B, 169; 8.2, 264
Gph - graphs 3.6, 58
Grp - groups 3.5, 56; 1.1, 2
ltt - Hoffmann's category 6.9, 218
Haus -4Hausdorff topological spaces 6.3, 194
HausGrp - Hausdorff topological groups 8.8, 284
Haus(P), Haus;(P) - P-Hausdorff topological spaces 8.4, 268, 269
IrrTop - irreducible spaces 7.8, 247,
Met - metric spaces Ex. 3.U, 70
ModR - R -modules 3.4, 52; Ex. 2.G, 41
PerFld - perfect fields 6.3, 187
PoSet - partially ordered sets 3.6, 57
PrAlex - Alexandroff pretopological spaces 3.6, 61
PrSet - preordered sets 3.6, 57
PrTop - pretopological spaces 3.1, 45
QUnif - quasi-uniform spaces 8.7, 279
Reg - regular spaces Ex. 6.S, 222
Rug - rings (unital, not necessarily commutative) 8.9, 290
Set - sets 1.1, 2
Set. - pointed sets 5.6, 132
SGph - spatial graphs 3.6, 58
SGrp - semigroups Ex. 6.C, 220
S(n), S - generalized Urysohn spaces 8.6, 278, 280
SUS - spaces in which convergent sequences have unique cluster point 8.4, 272
Top - topological spaces 1.1, 2
Topo, Top, - TO-, Ti-spaces 6.5, 193, 194; 6.9, 212
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Top, - pointed topological spaces 6.10, 218
0-Top - zero-dimensional (w.r.t. ind) spaces 6.9, 212
2Top - bitopological spaces Ex. 4.E, 104
TopAbGrp - topological abelian groups 9.5, 822
TopGrp - topological groups (not necessarily Hausdorff) 5.9, 144
Tych - Tychonoff spaces 6.9, 212
Unif - uniform spaces 5.11, 152
Ury - Urysohn spaces 7.1, 227; 7.3, 231
US - spaces in which convergent sequences have unique limits 7.6, 241; Ex. 7.J, 255
A(C) - Delta-subcategory of a closure operator C 7.1, 226
V(C) - Nabla-subcategory of a closure operator C 7.8, 247
D(A) = Dx(A) - maximal epi-preserving extension of A in X 7.7, 242
E(A) = Ex(A) - epi-closure of a subcategory A in X 7.6, 289
S(A) = Sx(A) - strongly epireflective hull of A in X 7.1, 225
S(A) = SXA - epireflective hull of A in X Ex. 7.M, 255
Sepx(D) - V-separated objects in X (w.r.t. a class of morphisms D) 7.6, 238
Ti(C), T2(C) - companions of A(C) 7.9, 250

General notation on categories and their classes of morphisms

X, Y, A, 8, ... - category, also its class of objects
X°Q - the opposite category of X
M - class of morphisms of X providing the subobject structure 1.1, 1; 2.3, 24;

also considered a category 5.2, 112
£ - factorization companion of M 1.8, 12; 2.1, 24
M1=£,£1=M 1.8, 13
MIX - M-subobjects of an object X 1.1, 1,
X \ £ - morphisms in £ with domain X 8.1, 259,
Mc - C-closed morphisms in M (for a closure operator C) 2.3, 26
£c - C-dense morphisms (for a closure operator C) 2.3, 27
MIy - restriction of M to a subcategory y 2.9, 38
Mu = U-1M fl Initu - U-embeddings (w.r.t. a functor U) 5.8, 141
Regx(A) - A-regular (= A-closed) monomorphisms of X 6.1, 177
Reg(X) = Regx(X) - regular monomorphisms of X 6.1, 178
Epix(A) - A-epimorphisms (A-dense morphisms) of X 6.1, 177
Epi(X) = Epix(X) - epimorphisms of X 6.1, 178
Initu - U-initial morphisms 5.8, 141
Iso(X) - isomorphisms of X
Mono(X) - monomorphisms of X
MorX - class of morphisms of X
MOR(X) - all subclasses of MorX 7.6, 238
SUB(X) - all full subcategories of X 7.1, 228
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Notation concerning subobjects

m : M -+ X, n : N Y - typical M-subobjects 1.1, 1
Am) : AM) -# Y - image of m under f : X -+ Y 1.4, 5; 1.6, 8
f -1(n) : f -1(N) --* X - inverse image of n under f : X -. Y 1.2, 3
lx : X X - identity morphism, largest M-subobject of X 1.11, 19
ox Ox - X - least M-subobject of X 1.11, 19
0 - zero object, zero morphism in a pointed category 5.6, 130
Ai mi : Ai M; X - meet, intersection of M-subobjects mi : Mi -+ X 1.4, 4; 1.9,

15
Vi mi : Vi M; -+ X - join, union of M-subobjects mi : M1 --. X 1.4, 4; 1.9, 16
my : M -+ Y - frequent notation for the morphism given by

2.5, 31.
i, j : X -+ X +M X - frequent notation for the cokernelpair of m 6.1, 178

M cx (M) `XT} X - typical notation for the C-closure of m : M -* X 2.2, 25
ker(f) : Ker(f) -+ X - kernel off : X -. Y 5.6, 130
coker(f) : Y -. Coker(f) - cokernel off : X - Y 5.6, 130
rx : r(X) -+ X - typical notation for the preradical (r, r) at X 5.5, 125

General notation on closure operators

C = (cx)xex - closure operator of a category X w.r.t. M 2.2, 25
C : M - M - functorial presentation of a closure operator 5.2, 114
C : X -> CS (PrTop; Top) - the concrete functor induced by a closure operator C

of a concrete category X 5.10, 148
A Ci - meet of closure operators Ci 4.1, 72
V Ci - join of closure operators Ci 4.1, 72
DC - composite of (first) C with D 4.2, 73
D * C, (d * c)x - cocomposite of (first) C with D 4.3, 75
Ca - a-th power of C 4.6, 82
Ca - a-th copower of C 4.6, 82
C, Coo - idempotent hull 4.6, 81 , 82
C, Coo - weakly hereditary core 4.6, 81 , 82
C - strong modification of C 6.6, 196
C, C+ - additive core 4.8, 88, 89
C° - fully additive core 4.9, 91
C# - directedly additive core 4.9, 94
CG - grounding 4.7, 86
Celt - externalization of C, 5.14, 165
C'", - internalization of C, 5.14, 166
Che - hereditary hull of C 4.10, 95
C" - minimal core of C 4.10, 94
C'eg - regular hull of C 7.4, 232
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Ctot - total C-closure 5.4, 124; 9.5, 322
C(p) - final closure operator of C (w.r.t. a functor F) 5.7, 139
C(p) - initial closure operator of C (w.r.t. a functor F) 5.7, 139
Cly - restriction of C to a subcategory Y 2.9, 38
Cu - lifting of C along an M-fibration U 5.8,
AC - A-comodification of C (w.r.t. a full subcategory A) 7.7
SC - S-comodification of C (w.r.t. a copointed endofunctor (S, e)) 5.12, 156
TC - modification of C (w.r.t. a pointed endofunctor (T, ,)) 5.12, 155
C", `C - closure operators induced by adjoint functors (with unit q, counit e) 5.13,
159, 160
A(C) - Delta-subcategory of a closure operator C 7.1, 226
V(C) - Nabla-subcategory of a closure operator C 7.8, 247
Ti(C), T2(C) - companions of A(C) 7.9, 250
ir(C) - the preradical induced by C 5.5, 125

Special closure operators

b - front- or b-closure of Top 3.3, 48
Cr - minimal closure operator induced by r 3.4, 52; 5.5, 125
Cr - maximal closure operator induced by r 3.4, 52; 5.5, 125
cony - convex closure of SGrp 3.6, 58
dir . - up-directed down-closure of DCPO 3.7, 62
OA - A-comodification of the A-epi closure, 7.7, 244
epiA - A-epi closure, 6.2, 181
espy - essentially strong modification of prop 8.4, 269
fro - Frobenius closure operator of Fld 8.10, 292
G = (gx) - indiscrete closure operator 4.7, 85
iespp - essentially strong modification of pprop 8.4, 269
int - integral closure of CRng 3.5, 56
iprop - image restriction of prop in Top 8.4, 267
K = (kx) - Kuratowski closure operator of Top, Unif and TopGrp 2.2, 26;

5.10, 153; 5.9, 146
- tech closure operator of PrTop and CS 3.1, 45; 5.10, 148
- Katetov closure operator of FC, 3.2, 46

K' = (k3.) - inverse Kuratowski closure operator of Top 4.2, 75
t - compact or t-closure of Top 3.3, 48
v - normal closure in Grp, TopGrp 3.5, 56; 5.9, 146
prop - P-projective closure operator in Top 8.4, 267
Q = (qx) - quasicomponent in Top 4.7, 87
Q" = (qje) - uniform quasicomponent in Unif 5.11, 154
reg'4 - A-regular closure operator 6.2, 181
S = (s9) - discrete closure operator Ex. 2.A, 39
v - sequential closure of Top 3.3, 48
sat - saturation in Top. 6.10, 216
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scott - Scott closure of DCPO 3.7, 64
T = (tx) - trivial closure operator Ex. 2.A, 39
0 - 0-closure of Top 3.3, 48
Z = (zx) - zero operator of Top 6.9, 213; 7.6, 287
!, i - down-closure, up-closure of SGrp 3.6, 58

Preradicals

a - annihilator in ModR 8.9, 288
d - maximal divisible subgroup in AbGrp 3.4, 54
dp - maximal p-divisible subgroup in AbGrp 46, 84
f - Frattini subgroup in AbGrp 3.4, 54
k - commutator subgroup in Grp 3.5, 56
n, p - subgroup of n-multiples, p-multiples in AbGrp 4.6, 84; 6.7, 203
rs, (r : s) - composite, cocomposite of two preradicals r, s 5.5, 127, 128
r*, ra - a-th power, a-th copower of the preradical r 5.5, 129
r 4 - the A-regular preradical (w.r.t. a full subcategory A) 6.7, 199
the - hereditary hull of the preradical r 4.10, 98
soc - socle in AbGrp 4.3, 77
sp - p-socle in AbGrp 4.6, 84
t - torsion subgroup in AbGrp 3.4, 5.4
tp - p-torsion subgroup in AbGrp 4.6, 84
0 - least preradical 5.5, 125
1 - largest preradical 5.5, 125

x

Other notation

card X = IXI - cardinal number of a set X
Card - class of all cardinal numbers
cod - codomain functor 5.2, 112
dom - domain functor 5.2, 112
Fix (C, -y) - the fixed subcategory of a pointed endofunctor (C, 7) 5.1, 109
Ord - class of all ordinals numbers
N natural numbers 1, 2, 3, .. .
Q rational numbers
IR real numbers
Z integers
T circle group 8.8, 285
Z group, ring of p elements
Zp p-adic integers 4.6, 85

ACL(X, M) - additive closure operators of X w.r.t. M 4.8, 90
CL(X, M) - closure operators of X w.r.t. M 4.1, 72
FACL(X, M) - fully additive closure operators of X w.r.t. M 4.8, ?

355
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GCL(X, M) - grounded closure operators on X w.r.t. M 4.7, 85
IDCL(X,M) - idempotent closure operators of X w.r.t. M 7.6, 2.40
RAD(X, M) - M-radicals of X 6.7, 199
RCL(X, M) - radical closure operators on X w. r. t. M 6.7, 199
REF(X, £) - £-reflections of X 6.7, 199
PRAD(X,M) - M-preradicals of X 5.6, 125
PREF(X, £) - £-prereflections of X 5.6, 132
WHCL(X,M) - weakly hereditary closure operators of X w.r.t. M 7.6, 240

F -i G, 0 -l ik - adjoint functors, adjoint maps 5.13, 158; 1.3, 4
f 4 g - A-epi implication 6.1, 177
.7=' L4 z - convergence in a filter convergence space 3.2, 46
x -r y - edge in a graph 3.5, 57

Conditions and relations between them

continuity condition 2.2, 25
extension condition 2.2, 25
monotonicity condition 2.2, 25
(ID) idempotency 2.4, 27
(WH) weak hereditariness 2.4, 27
(CC) composites of closed subobjects are closed 2.4, 27
(CD) composites of dense subobjects are dense 2.4, 27,
(HE) hereditariness 2.5, 31
(LD) left cancellation for dense subobjects 2.5, 32
(RC) right cancellation for closed subobjects 2.5, 33
(MI) minimality 2.5, 33
(GR) groundedness 2.6, 34
(AD) additivity 2.6, 34
(FA) full additivity 2.6, 35
(DA) directed additivity 2.6, 35

Logical connections (see 2.4 - 2.7 and Exercises 3,M, 4.H):

(ID)&(CC) (WH) = (CC) and (WH)&(CD) (ID) (CD)

(CC)&(CD) 0* (ID) and (CC)&(CD) (WH)

(HE) (WH)&(LD) and (MI) = (ID)&(RC)

(MI) (FA) (AD) & (DA)

(MI) (GR) and (DA) (AD) .



Tables of Results

Table 1

Preservation of properties of closure operators under composition & cocomposition

Operation
Property comp. cocomp. Comments

Idempotency - + Ex. 4.2(3); Prop. 4.3
Hereditariness - + Ex. 4.13; Prop. 4.3

Productivity + + Prop. 4.2; Prop. 4.3
Finite productivity + + Prop. 4.2; Prop. 4.3

Regularity ? - + for ModR; consider reg 8"$
Weak hereditariness + - Prop. 4.2; Ex. 4.3

Additivity +- ? Prop. 4.2;
Directed additivity + ? Prop. 4.2;

Full additivity + ? Prop. 4.2;
Minimality + ? Prop. 4.2;

Groundedness 1 1 + + Prop. 4.2; Prop. 4.3

1. We conjecture that for ModR "-" holds for minimality, in which case one example
would work for all three cases (see Ex. 3.M(b)).

Table 2

Preservation of properties of closure operators under arbitrary meet & join
Operation

Property meet join Comments
Idempotency + - Prop. 4.5; Ex. 4.2(3)

Hereditariness + + Prop. 4.5; Ex. 4.D(b) (with MIX distributive)
Productivity + - Prop. 4.5; Ex. 4.U, Ex. 4.6(1)

Finite productivity + - Prop. 4.5; Ex. 4.U
Regularity + ? easy; + for ModR

Weak hereditariness - + Ex. 4.K; Prop. 4.5
Additivity - + Ex. 4.3(2); Prop. 4.5

Directed additivity + + (meets distribute over dir. joins in MIX); Prop. 4.5
Full additivity - + Ex. 5.5; Prop. 4.5

Minimality - + Ex. 5.5; easy
Groundedness + + Prop. 4.7 (non-empty A); Prop. 4.5

f " means that the answer is positive for finite meet or join.
"- f" means that the answer is negative even for binary meet or join.
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