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These notes were produced for the 2021 PCMI Undergraduate Fac-
ulty Program and form a breezy introduction to algebraic curve and
hypersurface singularities and their Milnor forms, i.e., A1-Milnor
numbers. They include some recollections on classical Milnor num-
bers, a quick development of the algebraic theory of quadratic forms,
and the construction of (local) motivic degree and its relation with
the Eisenbud–Levine/Khimshiashvili form. Everything is motivated
by the second derivative test from multivariable calculus, and we
conclude with some open research problems regarding resolution of
singularities over non-algebraically closed fields.

1 A Hessian telescope

Every multivariable calculus student learns the second (partial)
derivative test for classifying critical points of a function f : R2 → R

with continuous second order derivatives:
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Figure 1: The second derivative test
allows us to classify the critical points of
a function like f (x, y) = cos(x) sin(y).

Exercise: Visually identify some
local extrema and saddle points in this
picture, then check that the second
derivative test verifies your inspection.

Theorem 1.1 (Second derivative test). Suppose f : R2 → R is a C2

function and that ∇ f (a, b) = ( ∂ f
∂x (a, b), ∂ f

∂y (a, b)) = (0, 0). Let

H f (a, b) =

 ∂2 f
∂x2 (a, b) ∂2 f

∂x∂y (a, b)
∂2 f

∂y∂x (a, b) ∂2 f
∂y2 (a, b)

 =

α β

β δ


denote the Hessian matrix of f at (a, b). Then

(1) if α > 0 and αδ− β2 > 0, then f (a, b) is a local minimum;

(2) if α < 0 and αδ− β2 > 0, then f (a, b) is a local maximum;

(3) if αδ− β2 < 0, then f (a, b) is a saddle point.

Being a symmetric matrix, H f (a, b) has an assocaited quadratic
form

(x, y) ∈ R2 7−→ Q f(a,b)(x, y) := (x y)H f (a, b)

x

y

 = αx2 + 2βxy+ δy2.

Quadratic Taylor approximation tells us there is some c ∈ [0, 1] such
that for all small enough h, k ∈ R,

f (a + h, b + k) = f (a, b) +
∂ f
∂x

(a, b)h +
∂ f
∂y

(a, b)k +
1
2

Q f(a+ch,b+ck)(h, k).
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When Q f(a,b) is nondegenerate — meaning that αδ − β2 6= 0 — it
is a consequence of continuity of second order derivatives that the
“shape” of Q f(a,b) is the same for small perturbations of a and b. Thus,
when it is nondegenerate, Q f(a,b) controls the local behavior of f near
critical points (where ∇ f (a, b) = 0). Indeed, the conditions of the
second derivative test precisely describe when Q f(a,b) is (1) positive
definite, (2) negative definite, or (3) indefinite.
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Figure 2: Graphs of positive definite,
negative definite, and indefinite regular
quadratic forms of rank 2.

Presently, I would like to use the second derivative test as a tele-
scope through which we will spy some fragments of further mathe-
matics:

(1) We only sacrifice the convenient numerology of Theorem 1.1 in
passing to functions of more variables. The Hessian matrix of
f : Rn → R still has an associated quadratic form Q f , and the
definiteness of Q f (when it is nondegenerate) still controls the
extremal properties of f near critical points. The isometry class
of Q f is encoded in its Sylvester type: there is an invertible matrix
S such that SHS> is diagonal with only 0’s, 1’s, and −1’s on the
diagonal. The triple (n0, n+, n−) counting the number of such
entries in SHS> is the Sylvester type of Q f and is invariant under
choice of S. This corresponds to the n-ary quadratic form

n+

∑
i=1

x2
i −

n++n−

∑
j=n++1

x2
j .

and is nondegenerate if and only if n0 = 0. Sylvester type (0, n, 0)
gives a local minimum, while (0, 0, n) gives a local maximum.
When the Sylvester type is (0, p, q) for q = n − p, we call the
critical point nondegenerate with index (p, q) or signature p− q.

(2) In the n = 2 case, we can study the shape of f via its contour lines,
also known as level curves. These are solutions to f (x, y) = d
for some fixed d ∈ R. For general n, these solution sets are level
hypersurfaces. If f is a polynomial function, then we are working
with algebraic hypersurfaces. The critical points of f correspond
to singularities in the associated hypersurfaces.
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Figure 3: Level curves of (x, y) ∈ R2 7→
x2 − y2.

(3) What can we do with holomorphic functions Cn → C? Or poly-
nomial functions kn → k for a general field k? Our primary focus
will be on plane algebraic curves, which are the level curves of
polynomials f (x, y) ∈ k[x, y], but we will also consider alge-
braic hypersurfaces. Questions about extreme values quickly lose
meaning in this generality, but there is still much that we can say
about the “shape” of singularities.

(4) The classification of real quadratic forms by Sylvester type just
scratches the surface of the algebraic theory of quadratic forms.
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As we move to a general base field k, we will use the Grothendieck–
Witt ring GW(k) to track isometry types of nondegenerate quadratic
forms. Over k = C, isometry type is completely determined by di-
mension and GW(C) ∼= Z. To the eyes of quadratic enumerative ge-
ometry, this isomorphism is responsible for classical enumerations
producing numbers. Over k = R, both dimension and signature
are necessary in order to classify forms, but not every dimension-
signature pair is achievable; indeed, GW(R) ∼= Z[h]/(h2 − 2h)
where h corresponds to the hyperbolic plane x2 − y2. For more
general fields, the structure of GW(k) can be fairly exotic. For in-
stance, GW(Q) is countably-infinitely generated as an Abelian
group and “knows about” Hilbert and quadratic reciprocity.

The invariant we aim to study is the Milnor form of a plane curve
(or hypersurface) singularity. We begin with the story of classical
Milnor numbers; these are defined for hypersurfaces over C and agree
with the rank of the associated Milnor form.

2 Classical Milnor fibers and numbers

Suppose that f ∈ C[x1, . . . , xn] is a complex polynomial in n variables.
The hypersurface cut out by f is

V( f ) := {x | f (x) = 0} ⊆ Cn.

A singular point p of V( f ) is a simultaneous solution of the equations Recall that ∇ f = (∂ f /∂x1, . . . , ∂ f /∂xn)
is the gradient of f .

f (p) = 0, ∇ f (p) = 0.

We let Sing( f ) ⊆ V( f ) denote the singular points of V( f ), and we call
elements of V( f )r Sing( f ) regular points of f .

Our initial goal is to get a feeling for the local topology of V( f ). We
begin with a regular point p of V( f ) and assume for simplicity that
∂ f
∂xn

(p) 6= 0. Then, by the implicit function theorem, there is a neigh-
borhood of p in V( f ) that is the graph of an analytic function of the
first n − 1 variables. Thus, near a regular point, V( f ) has the topol-
ogy of Cn−1, with real dimension 2n − 2. This is why the algebraic
geometer’s plane curves (which have real dimension 2 in C2 ∼= R4) are
sometimes thought of as surfaces.

Now consider p ∈ Sing( f ). Since ∇ f (p) = 0, we no longer have
recourse to the implicit function theorem. To simplify matters, let us
assume that p is an isolated singularity, i.e., that there exists a neigh-
borhood of p in V( f ) in which p is the only singularity. The idea used
to such great effect by Milnor1 is to study the neighborhood of p in 1 Milnor, J. (1968). Singular points

of complex hypersurfaces. Annals of
Mathematics Studies, No. 61. Prince-
ton University Press, Princeton, N.J.;
University of Tokyo Press, Tokyo

“slices” according to distance (in Cn) from p. To be more precise, for
ε > 0, let

S2n−1
ε (p) = {x ∈ Cn | ‖x− p‖ = ε}
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denote the radius ε sphere centered at p. Since p is an isolated singu-
larity of f , for small enough ε, S2n−1

ε (p) only intersects V( f ) at regular
points, so

Kp,ε( f ) := S2n−1
ε (p) ∩ (V( f )r Sing( f ))

is the intersection of a real codimension 1 manifold and real codimen-
sion 2 manifold. As such, Kp,ε( f ) is a real codimension 3 submanifold
of Cn and real codimension 2 submanifold of the sphere S2n−1

ε (p).
In the plane curve case (n = 2), we get a link in S3! The number of
components in the link corresponds to the number of branches —
irreducible local components — of V( f ) at p.

Remark 2.1. In what follows, I will make statements about hyper-
surfaces in Cn whenever their complexity is bounded above by the
specialization to plane algebraic curves (the n = 2 case). The reader is
encouraged to mentally engage with the n = 2 specialization through-
out, and most of my examples will be curves.

Example 2.2. Consider the polynomial f (x, y) = x3 − y2. The real
points of V( f ) form a cusp.
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Figure 4: The real points of V(x3 − y2).

One may check2 that K0,ε( f ) lies on a torus of the form 2 Exercise!

{(x, y) | ‖x‖ = ξ, ‖y‖ = η}

for some positive constants ξ, η. In fact, K0,ε( f ) is a (2, 3)-torus knot,
aka a trefoil knot.
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Figure 5: A projection of K0,ε(x3 − y2)
into R3.

What Milnor proves is that the topology of Kp,ε( f ) is independent
of ε for small enough ε > 0. In fact, Milnor does even more: if D2n

ε (p)
is the radius ε closed disk centered at p, then for small ε,

D2n
ε (p) ∩V( f ) ∼= C(Kp,ε( f ))

where the right-hand side is the cone on Kp,ε( f ). In this sense, Kp( f ) =
Kp,ε( f ) (for ε > 0 sufficiently small) determines the local topology of
V( f ) near p.

Crucially, the polynomial f endows the pair Kp,ε( f ) ⊆ S2n−1
ε with

some additional structure. Consider the map

M f : S2n−1
ε r Kp,ε( f ) −→ S1

x 7−→ f (x)
‖ f (x)‖ .

Here x is viewed as an element of Cn which is distance ε from p such
that f (x) 6= 0, and S1 is the space of unit length complex numbers.
Milnor proves that M f is a fiber bundle with each fiber Fθ := M−1

f (eiθ)

a smooth parallelizable3 (2n− 2)-dimensional manifold. 3 Parallelizable m-manifolds admit
m smooth vector fields V1, . . . , Vm
such that {V1(x), . . . , Vm(x)} is a basis
of the tangent space at each point x
in the manifold. Equivalently, the
tangent bundle is trivializable. Every
parallelizable manifold is orientable.

Thinking about the n = 2 case is particularly instructive. Then
the fibers Fθ are all homeomorphic surfaces bounded by Kp,ε( f ). In
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this fashion, we can think of M f as instructions for viewing the Fθ as
pages of a book all glued together along the common spine Kp,ε( f );
the entirety of this book is all of S3.

Figure 6: A projection of D2n
ε (0) ∩

V(x3 + y5). In this case, K0,ε(x3 +
y5) is a (3, 5)-torus knot. Each color
corresponds to K0,η(x3 + y5) for some
0 ≤ η ≤ ε, and the visually apparent
self-intersections are artificial. Access
a manipulatable model in CoCalc
(click the green “Open with one click!”
button).

Figure 7: Several fibers of Mx3−y2 . See
this blog post for more visualizations by
Henry Blanchette.

We write

Fθ = Fθ ∪ Kp,ε( f )

for the closure of Fθ in S2n−1
ε . This makes Fθ a (2n − 2)-dimensional

manifold with boundary

∂Fθ = Kp,ε( f ).

Milnor proves the following remarkable fact about Fθ .

Theorem 2.3. The space Fθ is homotopy equivalent to a bouquet of (n− 1)-
dimensional spheres,

Fθ ' Sn−1 ∨ · · · ∨ Sn−1︸ ︷︷ ︸
µ copies

.

In particular, the middle homology Hn−1(Fθ ; Z) is free of rank µ.

The number µ = µp( f ) is called the Milnor number of f at p. Per-
haps surprisingly, it measures the degeneracy of our singularity. Re-
call that an isolated critical point p of f is nondegenerate when the
Hessian matrix

H f (p) =

(
∂2 f

∂xi∂xj
(p)

)
1≤i,j≤n

is nonsingular. We claim that this is equivalent to the multiplicity of
∇ f at p being 1. Indeed, note that p ∈ Sing( f ) implies that the com-
ponents of ∇ f (that is, the partial derivatives of f ) have intersection
multiplicity at least one. The multiplicity is exactly one if and only if

V(∇ f ) = V( f1) ∩ · · · ∩V( fn)

is smooth at p. This is equivalent to the Jacobian of ∇ f being nonsin-
gular at p. But the Jacobian of ∇ f is exactly H f . Thus the degeneracy
of p is measured by the multiplicity with which ∂ f /∂x1, . . . , ∂ f /∂xn

intersect. In order to state this precisely, let C[x1, . . . , xn]p denote the
localization of C[x1, . . . , xn] at the ideal (x1 − p1, . . . , xn − pn). This is
the subring of rational functions in x1, . . . , xn with denominator not
vanishing at p.

Theorem 2.4. The Milnor number µp( f ) is equal to the intersection multi-
plicity

dimC C[x1, . . . , xn]p/(∇ f )

of the partial derivatives ∂ f /∂x1, . . . , ∂ f /∂xn of f at p.

https://cocalc.com/share/79d6f50ac8b766b11529ee96a5590c95fc195c1f/torus_knot_cones.sagews?viewer=share
http://people.reed.edu/~ormsbyk/projectproject/posts/milnor-fibrations.html
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Milnor’s proof uses the identity Here χ denotes Euler characteristic.

χ(Fθ) = 1 + (−1)n−1µp( f ),

the Lefschetz trace formula, and a “topologization” of intersection
multiplicity (in terms of degree — see below).

Example 2.5. Let’s compute the Milnor number of the cusp V(x3− y2)

in two ways, beginning with the middle Betti number of Fθ . Since this
is a Seifert surface for a trefoil knot, we find our local knot theorist
and learn that the genus of this knot is 1. This corresponds to Euler
characteristic

χ(Fθ) = 2− 2 · 1− 1 = −1

and the above relationship between Euler characteristic and Milnor
number gives

−1 = 1− µ0(x3 − y2) =⇒ µ0(x3 − y2) = 2.

The partial derivatives of x3 − y2 are 3x2 and −2y. Thus

C[x, y](x,y)/(3x2,−2y) ∼= C[x, y]/(x2, y) ∼= C[x]/(x2)

has dimension 2 as a C-vector space. This agrees with the above com-
putation.

We conclude this brief overview of classical Milnor numbers by dis-
cussing their connection with topological degree. Suppose g : M → N
is a smooth map between connected orientable manifolds of the same
dimension. Endow M with charts that have consistent orientations (so
the transfer maps are orientation-preserving) and do the same for N.
Given a point p ∈ M at which g is regular, define the local degree of g at
p to be Here (dg)p : Tp M → Tp N is the deriva-

tive of g at p.degp(g) := sign(det(dg)p) ∈ {±1}.

If q ∈ N is a regular value of g, then the (global) degree of g is

deg(g) := ∑
p∈g−1{q}

degp(g) ∈ Z.

It is a theorem that deg(g) is independent of the choice of q.
In our case of interest, we want to view ∇ f as a map Cn → Cn

(where again f ∈ C[x1, . . . , xn]). Beware, though, that ∇ f is not
smooth at degenerate critical points of f . Milnor’s workaround is
to instead work with the normalized function ∇ f /‖∇ f ‖ on a small
sphere centered at some p ∈ Sing( f ). This is a smooth function
S2n−1

ε → S2n−1 (where the latter sphere has radius 1). The topolog-
ical degree of ∇ f /‖∇ f ‖ as a function S2n−1

ε → S2n−1 is also called
the local degree of ∇ f at p, and is denoted degp(∇ f ); well-definition
of degp is an exercise, and the proof of the following theorem may be
found in Milnor.
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Theorem 2.6. For f ∈ C[x1, . . . , xn] and p ∈ Sing( f ),

µp( f ) = degp(∇ f ).

This is our first indication that Milnor numbers are related to de-
gree. The insight of Kass–Wickelgren4 (building off work of Eisenbud– 4 Kass, J. L. and Wickelgren, K. (2019).

The class of Eisenbud-Khimshiashvili-
Levine is the local A1-Brouwer degree.
Duke Math. J., 168(3):429–469

Levine,5 Khimshiashvili,6 and Scheja–Storch7), is that the local motivic

5 Eisenbud, D. and Levine, H. I. (1977).
An algebraic formula for the degree
of a C∞ map germ. Ann. of Math. (2),
106(1):19–44
6 Himšiašvili, G. N. (1977). The local
degree of a smooth mapping. Sakharth.
SSR Mecn. Akad. Moambe, 85(2):309–312
7 Scheja, G. and Storch, U. (1975). Über
Spurfunktionen bei vollständigen
Durchschnitten. J. Reine Angew. Math.,
278(279):174–190

degree of ∇ f (valued in the Grothendieck–Witt ring of quadratic
forms) plays this role over fields other than C.

First envisioned by Barge, Lannes, and Morel,8 motivic degree is a

8 Morel, F. (2006). A1-algebraic topology.
In International Congress of Mathemati-
cians. Vol. II, pages 1035–1059. Eur.
Math. Soc., Zürich

refined version of topological degree that retains information about
the Jacobian determinant det(dg)p beyond its sign. For a smooth map
between equidimensional varities over a field k, this is packaged as
the image of a quadratic form over k in GW(k), the Grothendieck–Witt
ring of k. Before constructing this degree function, we will introduce
the necessary prerequisites on quadratic forms and GW(k).

3 The Grothendieck–Witt ring

We will quickly introduce quadratic (and symmetric bilinear) forms
and the Grothendieck–Witt ring of a field, which captures the isome-
try classes and arithmetic of these structures. The presentation here is
heavily influenced by Lam’s exceptional book.9 9 Lam, T. Y. (2005). Introduction to

quadratic forms over fields, volume 67 of
Graduate Studies in Mathematics. Amer-
ican Mathematical Society, Providence,
RI

3.1 Basic notions

A quadratic form q over a field k (of characteristic not 2) is a function
q : V → k where

» V is a k-vector space,

» q is homogeneous of degree 2:

q(λv) = λ2q(v),

and

» the polarization

bq : V ×V −→ k

(v, w) 7−→ 1
2
(q(v + w)− q(v)− q(w))

is symmetric bilinear.

Remark 3.1. We will only concern ourselves with quadratic forms on
finite-dimensional vector spaces. As such, we will assume this “finite
rank” condition without comment henceforth.
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Remark 3.2. Once V is given coordinates, we may view q as a degree
2 homogeneous polynomial.10 10 Exercise!

The polarization portion of the definition may not feel particularly
natural, but it is necessary to build a bridge with symmetric bilinear
forms. In fact, away from characteristic 2, quadratic forms and sym-
metric bilinear forms are equivalent by taking (squared) norms:

q(v) = b(v, v).

In other words, polarization and v 7→ b(v, v) are inverse operations.
Since the definition is more convenient, we will work with symmet-
ric bilinear forms from here on. In order to save ink/pixels, we will
sometimes refer to symmetric bilinear forms as sbf’s.

Let V∗ := Homk(V, k). A symmetric bilinear form b on V supplies,
for each w ∈ V, a functional b(−, w) ∈ V∗ given by v 7→ b(v, w). The
form b is nondegenerate (or regular) when V → V∗, w 7→ b(−, w) is an
isomorphism.

The relevant notion of equivalence of symmetric bilinear forms is
isometry. We say that k-sbf’s b1 on V1 and b2 on V2 are isometric when
there is a k-linear isomorphism φ : V1 → V2 such that

b2(φu, φv) = b1(u, v)

for all u, v ∈ V1.
When V has ordered basis α = (e1, . . . , en), we may represent a sbf

on V by its Gram matrix

Gb := (b(ei, ej))i,j.

Indeed, we get the identity

b(v, w) = [v]>α Gb[w]α.

Since b is symmetric, Gb is a symmetric matrix. A standard (and

Here we are writing [w]α for the α-
coordinates of w written as a column
vector.

important) exercise shows that b is nondegenerate if and only if
det Gb 6= 0. Tracing through definitions,11 we get that b and b′ sbf’s on 11 Exercise!

V are isometric if and only if their Gram matrices are congruent: there
exists A ∈ GLn(k) such that

Gb′ = A>Gb A.

The matrix A is a change of basis corresponding to a linear isomor-
phism φ : V → V which witnesses that b and b′ are isometric.

It is also easy to recover the Gram matrix of a sbf from its associ-
ated quadratic form. If the quadratic form is written as a homoge-
neous degree 2 polynomial

q(x1, . . . , xn) = ∑
1≤i≤j≤n

aijxixj
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then the corresponding Gram matrix has (i, j) entry
aii if i = j,
1
2 aij if i < j,
1
2 aji if i > j.

At this point, some examples are due. The below table lists a k-
vector space,12 a quadratic form (presented as a homogeneous degree 12 If the vector space is kn, then we will

assume it is endowed with the standard
basis and that xi is the dual vector of
ei . If 1 ≤ n ≤ 3, we will write x = x1,
y = x2, z = x3.

2 polynomial), and its Gram matrix. I recommend developing fluency
in translating between each of these perspectives.

V q G

k1 ax2 (a)

k2 x2 + y2

1 0

0 1


k2 xy

 0 1/2

1/2 0


k2 x2 − y2

1 0

0 −1


k2 x2 − 4xy + 3y2

 1 −2

−2 3


k2 x2 + 2xy + y2

1 1

1 1


k3 2xy + 4xz + 2yz


0 1 2

1 0 1

2 1 0



Note that the second-to-last form is not regular since det

1 1

1 1

 =

0. We can also observe that xy and x2 − y2 are isometric13. 13 Exercise! The identity x2 − y2 =
(x + y)(x− y) is certainly relevant.Crucially, every sbf is diagonalizable. That is, there exists a basis for

which the associated Gram matrix is diagonal. If a sbf is diagonal with
Gram matrix diag(a1, . . . , an), then we denote it

〈a1, . . . , an〉.

Note that the associated quadratic form is a1x2
1 + · · ·+ anx2

n. The proof
of this result is inductive, leveraging the representation criterion: if a
sbf b satisfies b(v, v) = a for some v ∈ V, a ∈ k, then b is isometric
to the orthogonal sum of 〈a〉 and some other sbf b′. We will not prove
this result in these notes, but orthogonal sum is defined in the next
subsection.
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3.2 Operations

We can combine sbf’s with via orthogonal sum and tensor product. Let
b1 and b2 be k-sbf’s on vector spaces V1 and V2, respectively. Their
orthogonal sum is given by the rule

b1 ⊥ b2 : (V1 ⊕V2)× (V1 ⊕V2) −→ k

((v1, v2), (w1, w2)) 7−→ b1(v1, w1) + b2(v2, w2)

and their tensor product is defined by

b1 ⊗ b2 : (V1 ⊗V2)× (V1 ⊗V2) −→ k

(v1 ⊗ v2, w1 ⊗ w2) 7−→ b1(v1, w1)b2(v2, w2).

On Gram matrices, these operations correspond to block sum and
Kronecker product:

Gb1⊥b2 =

Gb1 0

0 Gb2

 , Gb1⊗b2 =


a11Gb2 · · · a1nGb2

...
. . .

...

an1Gb2 · · · annGb2


where Gb1 = (aij). On diagonal forms, we have

〈a1, . . . , an〉 ⊥ 〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉
〈a1, . . . , an〉 ⊗ 〈b1, . . . , bm〉 = 〈a1b1, . . . , a1bm, . . . , anb1, . . . , anbm〉.

Isometry classes S(k) of regular k-sbf’s together with the operations
⊥ and ⊗ form a commutative semiring. Semirings are sometimes called
rigs because they are “rings without negatives.” In our case, (S(k),⊥)
is a commutative monoid with identity (the unique 0-dimensional
sbf 0), (S(k),⊗) is a commutativie monoid with identity 〈1〉, ⊗ dis-
tributes over ⊥, and multiplication by 0 annihilates S(k). In fact,
(S(k),⊥) is especially nice since it is cancellative in the sense that

b ⊥ d = c ⊥ d =⇒ b = c.

Given any monoid (M, ·), we may form the group completion Mgp of
M in the following fashion: Let M = {m | m ∈ M} and set

Mgp := 〈M | 1 = 1, mn = m · n for all m, n ∈ M〉.

(The right-hand side is the standard notation for the presentation of
a group.) Then the monoid homomorphism M → Mgp, m 7→ m wit-
nesses that ( )gp is left adjoint to the forgetful functor from groups to
monoids, which is a fancy way of saying that whenever G is a group
and M → G is a homomorphism, there is a unique homomorphism
Mgp → G making the diagram

M G

Mgp
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commute.
While the above definition works, it is mostly unusable for general

monoids. Life is much simpler for a commutative monoid (M,+). In
this case,

(a) every element of Mgp can be expressed as m− n for some m, n ∈
M;

(b) if m, n ∈ M, then m = n ∈ Mgp if and only if m + ` = n + ` for
some ` ∈ M;

(c) the set underlying the group completion Mgp is the set-theoretic
quotient of M by the equivalence relation generated by (m, n) ∼
(m′, n′) whenever there exists ` ∈ M such that m + n′ + ` =

m′ + n + `.

Condition (c) is even simpler for cancellative commutative monoids,
in which case

Mgp = M×M/(m, n) ∼ (m′, n′) for m + n′ = m′ + n.

Relatedly, the homomorphism M → Mgp is injective if and only if M
is cancellative.

Example 3.3. We have Z = (N,+)gp and Q× = (Z r {0}, ·)gp.

When we apply group completion to the additive monoid of a
(commutative) semiring (M,+, ·), we get a (commutative) ring by
defining

(m, n) · (m′, n′) = (mm′ + nn′, mn′ + nm′).

This formula will become intuitive as soon as the reader expands the
product (m− n)(m′ − n′).

Definition 3.4. The Grothendieck–Witt ring of a field k is

GW(k) := (S(k),⊥,⊗)gp.

When working with GW(k), we will elide the distinction between a
sbf and its isometry class, and we will write + for ⊥ and · (or concate-
nation) for ⊗.

3.3 Presentation and examples

Diagonalization allows us to only consider diagonal forms when
working in GW(k) — indeed, every isometry class contains a diag-
onal representative. But these representative are not unique! For in-
stance, we may reorder the diagonal coefficients, and we also have
〈ab2〉 ∼= 〈a〉. The following theorem gives a full set of relations
amongst diagonal forms in GW(k):
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Theorem 3.5. The ring GW(k) is generated (as a ring) by the unary forms
〈a〉 for a ∈ k× subject to the following relations:

(a) 〈a〉 = 〈ab2〉 for a, b ∈ k×,

(b) 〈a〉〈b〉 = 〈ab〉 for a, b ∈ k×,

(c) 〈a〉+ 〈b〉 = 〈a + b〉+ 〈ab(a + b)〉 for a, b ∈ k× and a + b 6= 0.14 14 The expression on the right-hand side
is symmetric in a, b, so this implies that
addition is commutative.From these, a not-so-easy exercise reveals that

〈a,−a〉 = 〈1,−1〉

for all a ∈ k×. We write
h := 〈1,−1〉

for this so-called hyperbolic form. The hyperbolic form plays an out-
sized role in the algebraic theory of
quadratic forms. As we proceed, keep in
mind that h = 〈1,−1〉 = x2 − y2 ∼= xy
and that q⊗ h ∼= (rank q)h for all q.

Most authors write (k×)2 for the squares
in k×, but I worry that this might be
confused with k× · k× = {ab | a, b ∈
k×} = k×. I hope you’ll excuse — or
even enjoy — the notational foible k�.

Example 3.6. Write k� := {a2 | a ∈ k×} for the set of nonzero squares
in k. We call k quadratically closed when k� = k×. In this case, 〈a〉 = 〈1〉
for all a ∈ k×, and it follows that

Z −→ GW(k)

n 7−→ n〈1〉

is an isomorphism. In particular, GW(C) ∼= Z via the rank homomor-
phism.

Example 3.7. Recall that the isometry class of a real quadratic form is
completely determined by its Sylvester type (n0, n+, n−). When the
form is regular, n0 = 0 and n+ + n− equals the rank of the form. Thus
rank and signature (n+ − n−) provide a set of complete invariants of
regular quadratic forms over R and

GW(R) ∼= {(n, s) ∈ Z×Z | n + s ≡ 0 (mod 2)}

where the right-hand side is thought of as a subring of the product
ring Z×Z. We may also write

GW(R) ∼= Z[h]/(h2 − 2h)

where h is the hyperbolic form.

Example 3.8. For a finite field k,

GW(k) ∼= Z× k×/k�

via rank and discriminant. (Discriminant is the determinant of the
Gram matrix up to square classes.) Of course, k×/k� ∼= Z/2Z since
k× is cyclic of order |k| − 1.
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Example 3.9. For k = Q, the field of rational numbers, we have

GW(Q) ∼= Z⊕Z⊕Z/2Z∞

as an additive group, where the final term represents a countably
infinite direct sum of Z/2Z’s. Projected onto the first two factors, the
isomorphism is rank and signature, while the rest of the factors record
“discriminants of residues” for finite rational primes.

Example 3.10. The Witt ring of a field is

W(k) := GW(k)/(h) = GW(k)/Zh.

(We have (h) = Zh since q · h = rank(q)h for all q.) But this is an
anachronistic definition! Elements of W(k) are in bijective correspon-
dence with isometry classes of anisotropic quadratic forms: q such that
q(v) = 0 =⇒ v = 0. Witt’s decomposition theorem says that
every quadratic form is uniquely expressible (up to isometry) as the
orthogonal sum of (1) a totally isotropic form, (2) an anisotropic form,
and (3) a sum of hyperbolic forms. Thus Witt was able to define W(k)
by adding and multiplying anisotropic forms and then taking the
anisotropic part of the outcome.

Regardless of the definition we choose, we get the following com-
putations:

» W(C) ∼= Z/2Z via parity of rank,

» W(R) ∼= Z via signature,

» for k finite, To this author, it remains deeply mys-
terious that the abstract isomorphism
type of W(k) can distinguish some finite
fields, while GW(k) cannot.W(k) ∼=

Z/4Z if |k| ≡ 3 (mod 4),

F2[k×/k�] if |k| ≡ 1 (mod 4),

» for k = Q,
W(Q) ∼= Z⊕Z/2Z⊕

⊕
p>2

W(Fp).

3.4 The fundamental ideal

The fundamental ideal GI = GI(k) of GW(k) is the kernel of the rank
homomorphism:

GI := ker(rank : GW(k) −→ Z).

The image of GI(k) under the quotient homomorphism GW(k) →
W(k) is called I(k), the fundamental ideal of W(k). We will interpret
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this ideal through the lens of the following commutative diagram

0 0

0 Zh 2Z 0

0 GI(k) GW(k) Z 0

0 I(k) W(k) Z/2Z 0

0 0 0

∼=

∼=
rank

rank0

(ℵ)

in which the rows and columns are exact. (Here rank0(q + Zh) =

rank(q) + 2Z is well-defined.) There are two observations hiding
in the diagram. First, the restriction of the quotient homomorphism
GW(k) → W(k) to GI(k) is an isomorphism onto I(k). This follows
because GI(k) ∩Zh = 0. Second, an anisotropic form q is in I(k) if and
only if its dimension is 0; this requires a proof, but we won’t rehearse
it here.

Diagram (ℵ) informs us that the GI-adic filtration of GW(k) and
I-adic filtration of GW(k) are identical in positive degrees. Famously,
the Milnor conjecture (proved by Voevodsky, Orlov–Vishik–Voevodsky,
Weibel, Rost, et al) states that

We are writing In for I(k)n.In / In+1 ∼= KM
n (k)/2 ∼= Hn

ét(k; F2).

Here the second term is mod 2 Milnor K-theory, and the third is is
étale cohomology with coefficients in F2; we will not define either of
these objects presently.

3.5 Transfers

We will need one more construction in our study of Milnor forms,
namely a transfer map GW(L) → GW(k) for L/k a separable field ex-
tension. Recall from field theory the additive transfer map trL/k : L →
k where trL/k(a) is the trace of the k-linear multiply-by-a map ma : L→
L. One has

trL/k(a) = ∑
σ∈Aut(L/k)

σ(a).

Given an L-sbf b : V ×V → L, we may postcompose with trL/k to get a
k-sbf

trL/k(b) := trL/k ◦b.
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(We are harmlessly overloading the notation trL/k here.) This yields a
homomorphism of additive groups

trL/k : GW(L)→ GW(k)

called the transfer homomomorphism.
Transfers are wrong-way maps, and we have skipped over the

more natural right-way maps, namely the extension15 (ring) homo- 15 Because the literature is infested with
algebraic geometry, this is typically
called restriction, but we will not do so
here.

morphism
extL/k : GW(k)→ GW(L)

which takes a k-quadratic form (viewed as a homogeneous degree 2
polynomial over k) and thinks of it as a polynomial over L ⊇ k. On
k-sbf’s, this corresponds to extending scalars, b 7→ b⊗k L.

Transfer and extension enjoy a number of nice properties (like an
analogue of Frobenius reciprocity) which are encapsulated by calling
GW a Mackey functor. Again, the details are beyond the scope of these
notes, but the interested reader can read Bachmann’s paper.16 16 Bachmann, T. (2021). Motivic Tambara

functors. Math. Z., 297(3-4):1825–1852

4 Motivic degree

We now come to the construction at the heart of our exploration. The
classical Milnor number can be defined in terms of local topologi-
cal degree of ∇ f , and we will define Milnor forms in the same way
but using local motivic degree, degA1

p , which is valued in GW(k). We

will give a purely algebraic definition of degA1

p in a moment, but first
should say something about its proper context, motivic (or A1-) homo-
topy theory.

4.1 Motivic homotopy theory

Motivic homotopy theory is a homotopy theory of smooth schemes
in which the affine line A1 plays the role of the unit interval [0, 1]
in classical topology. Instead of incanting a terminological spell,17 17 The A1-localization of the Nisnevich lo-

calization of the (simplicial) model category
of simplicial presheaves on the category of
smooth separated finite type schemes over k.

we will content ourselves with a phenomenological description of
this subject. The category of motivic spaces Spck is an enlargement
of the category of smooth k-schemes that allows both simplicial and
colimit18 constructions useful in algebraic topology. It contains both 18 When X ⊆ Y is an embedding of

motivic spaces, we may form the ho-
motopy quotient Y/X in Spck . Beware
that if X and Y are smooth schemes,
it is no longer the case that Y/X is
representable.

smooth schemes (via the Yoneda embedding) and simplicial sets19

19 Beyond their formal definition,
simplicial sets should be thought of
as a combinatorial standin for (nice)
topological spaces.

(via the constant presheaf functor).
Spheres play a crucial role in algebraic topology, serving to probe

spaces and detect holes. In motivic homotopy, there is a bigraded
family of spheres. There are the simplicial spheres,

We start to use smash products ∧ here.
For pointed simplicial sets (X, p) and
(Y, q), we have X ∧ Y = X × Y/(X ×
q ∪ p × Y. For pointed simplicial
presheaves, we perform this operation
section-wise. We won’t belabor the
chosen basepoints in the discussion
below.

Sn,0 := S1 ∧ · · · ∧ S1︸ ︷︷ ︸
n copies

,



16 KYLE ORMSBY

and the geometric spheres,

Sn,n := (A1 r 0) ∧ · · · ∧ (A1 r 0)︸ ︷︷ ︸
n copies

.

We can also intermix the two classes of spheres to get

Sm,n := S1 ∧ · · · ∧ S1︸ ︷︷ ︸
m−n copies

∧ (A1 r 0) ∧ · · · ∧ (A1 r 0)︸ ︷︷ ︸
n copies

= Sm−n,0 ∧ Sn,n.

The grading here is chosen so that m counts the total number of
spheres, while n counts the number of geometric spheres.

The homotopy category of Spck witnesses the contractibility of
A1 (along with some simplicial and “Nisnevich local” data). Given
motivic spaces X and Y, the homotopy classes of maps X → Y are
denoted We’re being a little sloppy with based

vs. unbased homotopy classes here. In
general, our computations will happen
in the based category.

[X, Y]A1 .

4.2 Local and global motivic degrees

We are interested in maps g : An → An, but An ' ∗, so [An, An]A1 =

∗. Suppose g(p) = q. In order to get a meaningful local invariant of g
near p, consider the induced map

g : An/(An r p) −→ An/(An r q).

The quotient An/(An r p) is not a two-point space. Rather, we should
think of it as more akin to Rn/(Rn r B) ∼= Sn where B is an open ball.
Indeed,

An/(An r p) ' S2n,n.

Thus the homotopy class of g may be considered in [S2n,n, S2n,n]A1 .
The following theorem is one of the main results of Morel’s book.20 20 Morel, F. (2012). A1-algebraic topology

over a field, volume 2052 of Lecture Notes
in Mathematics. Springer, HeidelbergTheorem 4.1 (Morel). There is a motivic degree map

degA1
: [S2n,n, S2n,n]A1 −→ GW(k)

which is an isomorphism for n ≥ 2.

Recall that the classical degree of a map Sn → Sn may be computed
by summing signs of Jacobian determinants over the fiber of a regular
value. Morel’s insight was to record the square class of the Jacobian
determinant as a unary quadratic form, and then add these values up
in GW(k). More precisely, for f : S2n,n → S2n,n induced by f : An →
An and q a regular value of f , We write k(p) for the residue field of p.

degA1
( f ) := ∑

p∈ f−1q

trk(p)/k〈det J f (p)〉.
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In the case of g : (An, p) → (An, q), we define the local motivic
degree of g at p to be

degA1

p (g) := degA1
(g) ∈ GW(k).

With the definitions sorted and organized as we’ve done here, it fol-
lows directly that

degA1
( f ) = ∑

p∈ f−1q

degA1

p ( f ).

Motivic degree extends topological degree on both complex and
real points. Indeed, if k ⊆ R, then we may extend the functors of
complex and real points to motivic k-spaces, and we get the following
commutative diagram:

[Sn, Sn] [S2n,n, S2n,n]A1 [S2n, S2n]

Z GW(k) Z.

degA1

R-points C-points

deg deg

sgn rank

(4.2)

Example 4.3. Suppose f : An → An has an isolated simple zero at p
with det J f (p) 6= 0. Then

degA1
( f ) = degA1

p ( f ) = 〈det J f (p)〉.

For instance, if f is a linear transformation x 7→ Ax, then

degA1
( f ) = 〈det A〉.

Example 4.4. If f : A1 → A1, x 7→ x2, then 0 is not a regular value, so
we cannot compute the motivic degree of f as its local motivic degree
at 0. Instead, 1 is a regular value with f−11 = {±1} and

degA1
( f ) = degA1

1 ( f ) + degA1

−1( f ) = 〈2〉+ 〈−2〉 = h.

When f is not regular at p, we need other techniques to compute
its local degree at p. By work of Kass–Wickelgren, the Eisenbud–
Levine/Khimshiashvilli form provides just such a tool.

4.3 Eisenbud–Levine/Khimshiashvilli forms

Well before the invention of motivic homotopy theory, Eisenbud–
Levine21 and Khimshiashvilli22 independently defined a symmetric 21 Eisenbud, D. and Levine, H. I. (1977).

An algebraic formula for the degree
of a C∞ map germ. Ann. of Math. (2),
106(1):19–44
22 Himšiašvili, G. N. (1977). The local
degree of a smooth mapping. Sakharth.
SSR Mecn. Akad. Moambe, 85(2):309–312

bilinear form with signature recovering the local topological degree
when k = R. Their definition is completely algebraic and may be
made over an arbitrary field k. Kass–Wickelgren23 and Brazelton–

23 Kass, J. L. and Wickelgren, K. (2019).
The class of Eisenbud-Khimshiashvili-
Levine is the local A1-Brouwer degree.
Duke Math. J., 168(3):429–469

Burklund–McKean–Montoro–Opie24 prove that this form’s image in

24 Brazelton, T., Burklund, R., McKean,
S., Montoro, M., and Opie, M. (2021).
The trace of the local A1-degree. Homol-
ogy Homotopy Appl., 23(1):243–255
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GW(k) is equal to the local motivic degree. Presently, we will define
the EL/K-form25 and make its relationship with degA1

p ( f ) precise.

25 In other references, this is abbreviated
to EKL-form.

Suppose f : An → An and that f (p) = q for k-rational points p, q.26

26 In the subsequent subsection, we
will see how to deal with non-rational
points.

The local ring of f at p is

Qp( f ) := OAn ,p/( f − q).

Here OAn = k[x1, . . . , xn] is the coordinate ring of An, and the sub-
script p indicates localization at the maximal ideal (x − p) = (x1 −
p1, . . . , xn− pn). The quotient is by ( f − q) = ( f1− q1, . . . , fn− qn). If p
is an isolated solution of f (x) = q, then Qp( f ) is finite-dimensional as
a k-vector space. We should think of Qp( f ) as a k-algebra that records
what V( f − q) looks like in an infinitesimal neighborhood of p.

Example 4.5. If f : A1 → A1 with f (x) = x2, then

Q0( f ) = k[x](x)/(x2) ∼= k[x]/(x2).

Definition 4.6. Assume that char k - dimk Qp( f ). Then the EL/K-form
ωEL/K = ωEL/K

p ( f ) of f at p is the isometry class of the sbf given by

ωEL/K : Qp( f )×Qp( f ) −→ k

(a, b) 7−→ η(ab)

where η : Qp( f ) → k is any k-linear map satisfying η(det J f ) =

dimk Qp( f ). Recall that J f is the Jacobian matrix(
∂ fi
∂xj

)
.

To this author, it remains a surprise and tremendous delight that
the isometry class of ωEL/K is independent of the choice of η (as long
as η(det J f ) = dimk Qp( f )). Proving this result requires a significant
detour into the world of Gorenstein duality that we will not under-
take.27 When char k divides the dimension of Qp( f ), there is still a 27 The original paper of Eisenbud–

Levine is readable and fascinating if
you have a background in commutative
algebra.

remedy: one works with the “distinguished socle element” E instead
of det J f and demands η(E) = 1.28

28 This relies on some difficult work of
Scheja–Storch. When the characteristic
assumption is satisfied, det J f =
(dimk Qp( f ))E ∈ Qp( f ).

Example 4.7. Following up on Example 4.5, note that the Jacobian
determinant of the squaring map is 2x, so we may choose η such that
η(1) = 0 and η(2x) = 2. Using 1, 2x as an ordered basis of Q0(x2), we
see that ωEL/K has Gram matrix η(1) η(2x)

η(2x) η(4x2)

 =

0 2

2 0

 ,

where the bottom right entry is 0 because 4x2 = 0 ∈ Q0(x2) ∼=
k[x]/(x2). This form is hyperbolic, agreeing with Example 4.4.

This and the following example are
inspired by the paper of Quick–Strand–
Wilson.

Example 4.8. Consider the function f : A1 → A1 with f (x) = axn

where a ∈ k×. Then Q0( f ) ∼= k[x]/(xn) with dimension n, and
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det J f = naxn−1. Endow Q0( f ) with ordered basis 1, x, x2, . . . , xn−1

and define η to take the value 0 on each of these except

η(xn−1) = a−1.

Then η(naxn−1) = naa−1 = n, as required, and the Gram matrix for
ωEL/K is anti-diagonal of the form



0 0 · · · 0 a−1

0 0 · · · a−1 0
...

...
. . .

...
...

0 a−1 · · · 0 0

a−1 0 · · · 0 0


.

We derive that

ωEL/K =

 n
2 h if n is even,
n−1

2 h + 〈a〉 if n is odd.

Example 4.9. Fix constants a, b ∈ k× and consider the map f : A2 →
A2 with components f1 = xy and f2 = −ax2 + by2. We have Q0( f ) ∼=
k[x, y]/(xy,−ax2 + by2) with ordered basis 1, y, y2, x. Furthermore,

J f =

 y x

−2ax 2by


with determinant

det J f = 2(ax2 + by2) ∈ k[x, y].

Reducing this modulo (xy,−ax2 + by2) we get

det J f = 4by2 ∈ Q0( f ).

We may thus define η by

η(1) = 0

η(y) = 0

η(y2) = b−1

η(x) = 0.
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With respect to this η, the Gram matrix for ωEL/K is
η(1) η(y) η(y2) η(x)

η(y) η(y2) η(xy2) η(xy)

η(y2) η(y3) η(y4) η(xy2)

η(x) η(xy) η(xy2) η(x2)

 =


η(1) η(y) η(y2) η(x)

η(y) η(y2) η(0) η(0)

η(y2) η(0) η(0) η(0)

η(x) η(0) η(0) η(a−1by2)



=


0 0 b−1 0

0 b−1 0 0

b−1 0 0 0

0 0 0 a−1

 .

Thus

Note, e.g., that y3 = ab−1x2y = 0 ∈
Q0( f ) since by2 = ax2 and xy = 0 in that
ring.

ωEL/K = 〈a, b, 1,−1〉 = 〈a, b〉+ h ∈ GW(k).

4.4 Traces and general points

Everything in the preceding section is accurate, but only works when
p is a rational point of An, i.e., a k-point of An. From the functor of
points viewpoint on algebraic geometry, we know that we will care
about L-points as well where L is a field extension of k. Recall that a
point p of An = Spec k[x1, . . . , xn] is a prime ideal. The residue field of
p is

k(p) = k[x1, . . . , xn]p/p

and we call p a k(p)-point.
When k(p) is a finite separable extention of k, we get the following

formula for the local degree of f : An → An at p: Note that finite separable points are
closed points. Though not obvious,
local A1-degree at the generic point (0)
recovers global degree.degA1

p ( f ) = trk(p)/k degA1

p ( f ⊗ k(p)) = trk(p)/k(ω
EL/K
p ( f ⊗ k(p))).

In other words, we can compute the local degree of f considered as an
n-tuple of k(p)-polynomials in n variables, and then apply trace to get
the local degree over k.

5 Milnor forms

We are now prepared to define and explore the Milnor forms of hyper-
surface singularities over a field k. Recall that one of the expressions Milnor forms are typically called mo-

tivic or A1-Milnor numbers in the
literature. I am not quite ready to call
a quadratic form a number, and thus
prefer this name.

for the Milnor number of a function germ f : Cn → C at p is

µp( f ) = degp(∇ f ).

We proceed by direct analogy using the motivic technology we have
developed.



MILNOR FORMS OF ALGEBRAIC SINGULARITIES 21

Definition 5.1. Let f : An → A1 be an algebraic map and suppose
V( f ) has an isolated singularity at p. The Milnor form of V( f ) at p is

µA1

p ( f ) = degA1

p (∇ f ).

Note that we may consider ∇ f = (∂ f /∂x1, . . . , ∂ f /∂xn) as an
algebraic map An → An. By the work of the previous section, when p
is a rational point we can also express µA1

p ( f ) as an EL/K-form:

µA1

p ( f ) = ωEL/K
p (∇ f ) ∈ GW(k).

Let’s unpack this a bit. Since p ∈ Sing( f ), we have ∇ f (p) = 0. Thus

Qp(∇ f ) = k[x1, . . . , xn]p/(∂ f /∂x1, . . . , ∂ f /∂xn).

Now observe that

J(∇ f ) = H f =

(
∂2 f

∂xi∂xj

)
i,j

,

the Hessian of second partial derivatives of f . Thus the EL/K-form of
∇ f on Qp(∇ f ) is given by (a, b) 7→ η(ab) where η is a k-linear map
Qp(∇ f )→ k such that

η(det H f ) = dimk Qp(∇ f ).

Note that if k ⊆ C, then (4.2) implies that

rank µA1

p ( f ) = µp( f ⊗C) (5.2)

where the right-hand side is the classical Milnor number of f consid-
ered as a polynomial with C coefficients.

Example 5.3. We begin with the cusp f (x, y) = x3 − y2 over a field k
with characteristic not dividing 6. As initial data, we compute

∇ f = (3x2,−2y),

H f =

6x 0

0 −2

 ,

det H f = −12x.

Consider the ordered basis 1, x of Q0(∇ f ) ∼= k[x, y]/(x2, y). Define
a k-linear map η : Q0(∇ f ) → k by η(1) = 0, η(x) = −1

6 . Then the
EL/K-form of ∇ f at 0 is  0 −1/6

−1/6 0

 .

Thus
µA1

0 (x3 − y2) = h.

The rank of h is 2, which matches our computation of µ0(x3 − y2) from
Example 2.5 and thus verifies this case of (5.2).
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Example 5.4. There is only one singularity simpler than a cusp,
namely a node. These are singularities p at which H f (p) is nonsin-
gular. In this case, p is a regular point of ∇ f and we may compute
µA1

p ( f ) without recourse to the EL/K-form. Instead, for p rational we
have

µA1

p ( f ) = degA1

p ( f ) = 〈det H f (p)〉

and for p a finite separable point,

µA1

p ( f ) = trk(p)/k〈det H f (p)〉.

Without loss of generality, suppose p = 0. In dimension 2, we can
perform a change of coordinates so that the singularity is of the form

f (x, y) = ax2 + by2 + higher order terms

for some a, b ∈ k×. In this case,

det H f (0) = 4ab

and we conclude that

µA1

0 ( f ) = 〈4ab〉 = 〈ab〉.

In the arbitrary dimension case,

f (x1, . . . , xn) = a1x2
1 + · · ·+ anx2

n + higher order terms

and

µA1

0 ( f ) = 〈2na1 · · · an〉 =

〈a1 · · · an〉 if n is even,

〈2a1 · · · an〉 if n is odd.

Computation of (Gram matrices of) Milnor forms can be automated
via work of Pauli.29 To conclude this section, we present a table of 29 Pauli, S. (2020). Computing A1-

Euler numbers with Macaulay2.
arXiv:2003.01775v3

Milnor forms extracted from loc. cit. The first seven entries are the
ADE plane curve singularities, and the ones thereafter are du Val
singularities of some surfaces in A3. All computations hold over Q

and thus for any characteristic 0 field.
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name equation f µA1

0 ( f )

An, n odd x2 + yn+1 n−1
2 h + 〈2(n + 1)〉

An, n even x2 + yn+1 n
2 h

Dn, n even y(x2 + yn−2) n−2
2 h + 〈−2, 2(n− 1)〉

Dn, n odd y(x2 + yn−2) n−1
2 h + 〈−2〉

E6 x3 + y4 3h

E7 x(x2 + y3) 3h + 〈−3〉
E8 x3 + y5 4h

E12 x7 + y3 + z2 6h

Z11 x5 + xy3 + z2 5h + 〈−6〉
Q10 x4 + y3 + xz2 5h

E13 x5y + y3 + z2 6h + 〈−10〉
Z12 x4y + xy3 + z2 5h + 〈−22〉+ 〈−66〉

6 Zooming out and blowing up

At this point we have summarized — or at least previewed — most of
the major results on Milnor forms. Where do we go from here? Before
presenting a research program related to resolution of singularities,
we state a few open problems on motivic degree and Milnor forms.

6.1 A smörgåsbord of open problems

Here are a few ideas for research problems that are approachable (or
at least state-able) given the background we’ve acquired up to now:

(1) Compute more Milnor forms in specific examples and use the
perturbation theory results of Kass–Wickelgren30 (extended by 30 Kass, J. L. and Wickelgren, K. (2019).

The class of Eisenbud-Khimshiashvili-
Levine is the local A1-Brouwer degree.
Duke Math. J., 168(3):429–469

Pauli–Wickelgren31) to place constraints on the nodes into which

31 Pauli, S. and Wickelgren, K. (2021).
Applications to A1-enumerative geom-
etry of the A1-degree. Res. Math. Sci.,
8(2):Paper No. 24, 29

they can bifurcate. The idea is that for generic a1, . . . , an ∈ k and
all t ∈ k, the equation

f (x)− a1x1 − · · · − anxn = t (6.1)

only has nodal fibers. Kass–Wickelgren–Pauli prove that

∑
p∈Sing( f )

µA1

p ( f )

equals the sum of the Milnor forms of the nodes of (6.1). In this
fashion, Milnor forms constrain the types of nodes that can appear
when the singularity is perturbed.
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(2) Classify the Grothendieck–Witt classes that can be realized as (lo-
cal) motivic degrees. Up to rank 7, this has been done by Quick–
Strand–Wilson.32 Loc. cit. also proves that every EL/K-form of 32 Quick, G., Strand, T., and Wilson,

G. M. (2021). Representability of
the local motivic Brouwer degree.
arXiv:2011.04046v2

rank at least 2 contains h as a direct summand, which partially
explains the prevalance of hyperbolic terms in our table of Mil-
nor forms. Whether Milnor forms are more constrained than
general EL/K-forms has not been addressed in the literature to
the best of my knowledge. (Pauli’s tables for du Val singulari-
ties all have anisotropic part of rank at most 2!) What if the class
of maps/singularities is constrained in some fashion? What if a
particular field or class of fields (finite, local, formally real, etc.) is
fixed?

(3) Relatedly, what can be said about various quadratic form invari-
ants associated with Milnor forms? We know that rank matches
the classical Milnor number and that signature matches real Mil-
nor numbers, but what about discriminant? Stiefel–Whitney
classes?

(4) Classically, curve singularities are often studied via their associ-
ated Puiseux series and Newton polygons. It is in fact possible to
deduce the Milnor number of a plane curve from this data (see
Wall33 Exercise 6.7.2]). Is there an analogous statement for Milnor 33 Wall, C. T. C. (2004). Singular points

of plane curves, volume 63 of London
Mathematical Society Student Texts.
Cambridge University Press, Cambridge

forms?

(5) ( Hard!) Recall that, in the classical case,

χ(Fθ) = 1 + (−1)n−1µp( f ) (6.2)

where Fθ is the Milnor fiber of f at p. Determine the relation-
ship between Milnor forms and A1-Euler characteristic of Milnor
fibers. Beware, though, that there is no “Milnor fiber” in this con-
text; rather, work of Denef and Loeser provides a way to think
of χA1

(Milnor fiber) as the difference of two Euler characteris-
tics. Progress in special cases has been made by Levine–Pepin
Lehalleur–Srinivas and Azouri.34 In particular, one can derive 34 Levine, M., Pepin Lehalleur, S.,

and Srinivas, V. (2021). Euler char-
acteristics of homogeneous and
weighted-homogeneous hypersur-
faces. arXiv:2101.00482v2; and Azouri,
R. (2021). The quadratic Euler character-
istic of nearby cycles and a generalized
conductor formula. arXiv:2101.02686v1

from their work an enrichment of the the following theorem of
Milnor–Orlik35: If f ∈ C[x1, . . . , xn] is homogeneous of degree m

35 Milnor, J. and Orlik, P. (1970). Isolated
singularities defined by weighted
homogeneous polynomials. Topology,
9:385–393

with an isolated singularity at 0, then

µp( f ) = (m− 1)n.

Beware that there are some nonintuitive zero-dimensional correc-
tion factors in the motivic case!

(6) As a consequence of (6.2) and the inclusion-exclusion formula for
Euler characteristic, one can deduce that

µp( f g) = µp( f ) + µp(g) + 2(V( f ) ·V(g))p − 1
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for f , g ∈ k[x, y] and (V( f ) · V(g))p the local intersection number
of V( f ) and V(g) at p. Does this formula admit a quadratic refine-
ment? Perhaps h degA1

p ( f , g) could replace 2(V( f ) · V(g))p. An
experimental approach may shed light on the situation. In the ex-
ercises, you will discover that the term −1 will need to be replaced
by some −1-dimensional class in GW(k).

6.2 Blowups and resolutions

Our present aim is to explore how Milnor forms transform under
blowup and resolution of singularities. We restrict our attention to
plane curve singularities in order to simplify the picture and access a
wealth of beautiful classical material.

Let’s begin by blowing up A2 at the origin. The idea is to replace

An etymological note: Blowing up is
a process of enlargement, not one of
destruction. Think about blowing up a
photograph, not a bomb.

0 with the space of lines passing through it (namely P1) without dis-
turbing the rest of A2. We accomplish this with

B`0A2 := {(x, `) ∈ A2 ×P1 | x ∈ `}.

Note that if x 6= 0, then there is exactly one ` ∈ P1 containing x, but
the origin is in every element of P1. The blowup is equipped with a
natural projection

π : B`0A2 −→ A2

(x, `) 7−→ x

which is an isomorphism over A2 r 0, while π−10 = 0×P1. We call
E := π−10 the exceptional divisor.

Figure 8: The cover of Shafarevich’s
Basic Algebraic Geometry I nicely illus-
trates the real points of the blowup
construction. Note that the top and
bottom portions of the picture upstairs
are identified.

There are two natural coordinate charts on B`0A2, namely

U0 := {((x, y), [z0 : z1]) | z0 6= 0, (x, y) ∈ [z0 : z1]}
∼=−→ A2

((x, y), [z0 : z1]) 7→ (u0 = x, v0 = z1/z0)

and

U1 := {((x, y), [z0 : z1]) | z1 6= 0, (x, y) ∈ [z0 : z1]}
∼=−→ A2

((x, y), [z0 : z1]) 7→ (u1 = z0/z1, v1 = y).

In terms of these coordinates, we have

π|U0(u0, v0) = (u0, u0v0),

π|U1(u1, v1) = (u1v1, v1).

(According to Brieskorn–Knörrer,36 “This description of the mapping 36 Brieskorn, E. and Knörrer, H.
(1986). Plane algebraic curves.
Modern Birkhäuser Classics.
Birkhäuser/Springer Basel AG, Basel.
Translated from the German original by
John Stillwell, [2012] reprint of the 1986
edition

by a quadratic transformation should be remembered without fail.”)
Also note that the exceptional divisor E = π−10 is easy to track in
these coordinates: it corresponds to u0 = 0 in U0 and v1 = 0 in U1.
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Now suppose that V = V( f ) ⊆ A2 is some hypersurface. The strict
transform Ṽ of V is the closure of π−1V r E in B`0A2. We have

π−1V ∩U0 = V( f (u0, u0v0)),

π−1V ∩U1 = V( f (u1v1, v1)).

If 0 ∈ V, then

f (u0, u0v0) = um
0 f (1)0 (u0, v0),

f (u1v1, v1) = vn
1 f (1)1 (u1, v1)

and Ṽ has equation f (1)0 in U0, f (1)1 in U1.

Example 6.3. Let us return to our beloved cusp V = V( f ) with
f (x, y) = x3 − y2. The equation for π−1V ∩U0 is

u3
0 − (u0v0)

2 = u2
0(u0 − v2

0) = 0

so f (1)0 (u0, v0) = u0 − v2
0 with zero locus a smooth parabola. The

equation for π−1V ∩U1 is

(u1v1)
3 − v2

1 = v2
1(u

3
1v1 − 1) = 0

so f (1)1 (u0, v0) = u3
1v1 − 1 with smooth zero locus not intersecting the

exceptional divisor.

Figure 9: Andreu Alfaro’s sculpture
Lebenskraft, a real-life blowup. Photo:
Carl McTague.

We see, then, that Ṽ is smooth. Since π : B`0A2 → A2 is an iso-
morphism away from E, π|Ṽ : Ṽ → V is an isomorphism away from
the unique point in π−1V ∩ E. This means that π|Ṽ is a proper bira-
tional map with domain a smooth variety. In other words, Ṽ → V is a
resolution of singularities.

There are two things to note now: First, there was nothing special
about the origin or A2 in our description of blowing up. We may blow
up any algebraic surface at any point and similarly replace the point
with a copy of P1 recording slopes through that point. Second, it is
generally the case that singularities become simpler when we blow
up:

Theorem 6.4. The singularities of any plane algebraic curve may be resolved
by a finite sequence of blowups. Moreover, after potentially applying some
additional blowups, the proper preimage of the curve will meet the system of
exceptional divisors transversely.

The proof of this theorem is classical and requires a careful analysis
of how Newton polygons transform under blowup.

The following theorem exhibits a very nice relationship between
the Milnor number of a plane curve singularity and its blowup:

https://www.mctague.org/carl/fun/blow-up/1.html
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Theorem 6.5. Let V ⊆ A2
C be a plane curve with isolated singularity at p

of multiplicity d, where V has r different tangent lines at p. Then

µp(V) = 1 + d(d− 1)− r + ∑
x∈Sing(Ṽ∩E)

µx(Ṽ).

Question 6.6. Does Theorem 6.5 have an analogue when V is an arbitrary
plane curve and µp is replaced by µA1

p ?

My thesis student, Usman Hafeez,37 studied this problem by com- 37 Hafeez, M. U. (2021). A1-milnor
numbers. Undergraduate thesis, Reed
College

puting
∆p( f ) := µA1

p ( f )− ∑
x∈Sing(Ṽ∩E)

µA1

x ( f̃ )

for a number of examples. For f = xn + ym, he found

∆0( f ) =


n(n−1)

2 h if n is odd,
n(n−1)

2 h if n is even and m is odd,
n(n−1)

2 h + 〈mn〉 − 〈n(m− n)〉 if n, m are both even.

For Dn singularities, Hafeez computed

∆0(Dn) =

2h + 〈−2, 2(n− 1)〉 − 〈2(n− 4)〉 if n is even,

2h + 〈−2〉 if n is odd.

Both calculations indicate that d(d−1)
2 h might be the correct replace-

ment for the d(d− 1) term in Theorem 6.5, but the correction term for
1− r remains mysterious.

There is a beautiful classical theory of resolution of singularities
for plane curves in terms of particular decorated trees and “multiplic-
ity systems.” A positive solution to Question 6.6 would provide an
iterative method for the computation of Milnor forms.

Exercises

(1) Apply the second derivative test to classify the local extrema of
the function (x, y) 7→ cos(x) sin(y).

(2) Let f (x, y) = x3 − y2. Check that K0,ε( f ) lies on a torus of the form

{(x, y) ∈ C2 | ‖x‖ = ξ, ‖y‖ = η}

for some ξ, η > 0. Then go one step further and explicitly
parametrize K0,ε( f ).

(3) Choose several singular curves and compute their Milnor num-
bers algebraically (in terms of the local algebra C[x, y]p/(∇ f )) and
topologically (in terms of Euler characteristic or local degree).
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(4) Find a singular curve for which the dimension of C[x, y]p/(∇ f )
differs from that of C[x, y]/(∇ f ).

(5) Demonstrate the correspondence between {quadratic forms +
ordered bases} and degree 2 homogeneous polynomials.

(6) Let k be a field of characteristic different from 2, and let V be a
finite-dimensional k-vector space. Show that nondegenderate
quadratic forms on V, nondegenerate symmetric bilinear forms
on V, and self-dual isomorphisms V → V∗ are all “the same.”
(Here self-dual means that the dual map (V∗)∗ → V∗ is equal
to the original after composing with the natural isomorphism
V ∼= (V∗)∗). Equivalently, the matrix for V → V∗ with respect to
some/any basis of V and dual basis of V∗ is symmetric.)

(7) Prove that sbf’s b and b′ on V are isometric if and only if their
Gram matrices are congruent:

Gb′ = A>Gb A.

(8) Check that xy and x2 − y2 are isometric.

(9) Use the relations of Theorem 3.5 to prove that 〈a,−a〉 is hyperbolic
for all a ∈ k×.

(10) Compute trC/R〈1〉C. What about trL/k〈1〉L for L a quadratic exten-
sion L = k(

√
α)?

(11) Prove (or recall) the following two facts about field traces for a
finite extension L/k:

(a) For α ∈ L,
trL/k(α) = [L : k(α)] trk(α)/k(α).

(b) If L/k is not separable,38 then trL/k = 0. 38 This means that the minimal polyno-
mial of every α ∈ L has no repeated
roots in any extension; equivalently, the
formal derivatives of minimal polyno-
mials are nonzero.

(12) Use the standard gluing diagram (i.e., pushout square)

A1 r 0 A1

A1 P1

to show that P1 ' S2,1. (Hint: It is always the case that the “homo-
topy pushout” of ∗ ← X → ∗ is the suspension ΣX = S1,0 ∧ X of
X.)

(13) The standard identification of complex numbers with 2× 2 real
matrices via

a + bi 7−→

a −b

b a
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induces a homomorphism

GLn(C) −→ GL2n(R).

Show that every matrix in the image of this map has positive de-
terminant. (Hint: There is a slick topological proof via connectiv-
ity.) How is this related to the fact that every function S2n → S2n

induced by an algebraic map An → An has positive degree?

(14) Redo Example 4.7 but using the functional η′ : Q0(x2) → k given
by η′(1) = 1, η′(2x) = 2. You should ultimately get the same
isometry class!

(15) Compute the A1-degree of the map P1 → P1, x 7→ x2−1
x .39 39 The projective line has charts isomor-

phic to A1, so you are entitled to use the
same techniques as for maps A1 → A1.(16) Let f (x) = A(x)/B(x) be a rational function viewed as an en-

domorphism of P1. Suppose A = xn + an−1xn−1 + · · ·+ a0 and
B = bn−1xn−1 + · · ·+ b0 with no common zeros. Then

A(x)B(y)− A(y)B(x)
x− y

is a polynomial (check this!) and can be written as ∑1≤i,j≤n cijxi−1yj−1

for cij ∈ k. By work of C. Cazanave, the matrix (cij) is symmetric
and nondegenerate and the corresponding element of GW(k) is
equal to degA1

( f ). Use Cazanave’s formula to compute the A1-
degree of x 7→ x2 and of x 7→ x2−1

x .

(17) Let f : An → An and g : Am → Am be algebraic maps. Show that
the map of motivic spheres induced by f × g : An+m → An+m has
motivic degree equal to

degA1
( f )degA1

(g).

(18) Let f , g : An → An be algebraic maps with isolated zeros at the
origin. The chain rule for local motivic degree states that

ωEL/K
0 ( f ◦ g) = ωEL/K

0 ( f )ωEL/K
0 (g) ∈ GW(k).

Use the following steps (Quick–Strand–Wilson40 Theorem 26) to 40 Quick, G., Strand, T., and Wilson,
G. M. (2021). Representability of
the local motivic Brouwer degree.
arXiv:2011.04046v2

prove the chain rule:

(a) Define f̃ = f × id : A2n → A2n and g̃ = g× id : A2n → A2n.
Show/observe that

ωEL/K
0 ( f̃ ◦ g̃) = ωEL/K

0 ( f ◦ g).

(b) Let L : An → An be a unipotent linear transformation. Prove
that

ωEL/K
0 ( f ◦ L ◦ g) = ωEL/K

0 ( f ◦ g).

(This is the hard part! See Knight–Swaminathan–Tseng41 41 Knight, J., Swaminathan, A. A., and
Tseng, D. (2021). On the EKL-degree of a
Weyl cover. J. Algebra, 565:64–81

Lemma 12.)
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(c) By infixing germane choices of unipotent maps, show that

ωEL/K
0 ( f̃ ◦ g̃) = ωEL/K

0 (g× f ).

Use the previous exercise to derive the chain of equalities

ωEL/K
0 ( f ◦ g) = ωEL/K

0 ( f̃ ◦ g̃) = ωEL/K
0 (g× f ) = ωEL/K

0 (g)ωEL/K
0 ( f )

as desired.

(19) Compute the Milnor form of the An singularity x2 + yn+1.

(20) Compute the Milnor form of the Dn singularity y(x2 + yn−2).

(21) Use the fact that Dn = yAn−3 to test the conjecture from smörgås-
bord problem (6).

(22) Download Macaulay2 and implement Pauli’s algorithm for mo-
tivic degrees and Milnor forms.42 Start running experiments on 42 Pauli, S. (2020). Computing A1-

Euler numbers with Macaulay2.
arXiv:2003.01775v3

the problems proposed in Section 6 (or your own).

(23) Fix the SageMath code available at this link so that it will success-
fully compute local motivic degrees. (Sage isn’t good at localiza-
tions. Perhaps we can get around this using saturation?)
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