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1 Inferring the shape of data — 25 March 2024

Imagine that you’re running an experiment in which you measure a

large number — say N — of real-valued variables with each observation.

Each observation is then a point in RN
, and if you make k total obser-

vations, then the data associated with your experiment is a point cloud
P = {x1, x2, . . . , xk} ⊆ RN

.

If the system being observed is not purely random, then — up to issues of

noise and accuracy — we expect P to be sampled from a subspace M ⊆ RN
.

How might we infer the structure and shape of M from P, at least under

the assumption that k is relatively large? This is one of the questions that

topological data analysis (TDA) aims to answer, at least for particular

notions of “structure” and “shape”. In the �gure presented here, we see

a point cloud P in R2
sampled with noise from the unit circle S1 ⊆ R2

,

and we seek algorithmic methods that will recognize (features of) S1
as

the underlying space from which P is sampled. Of course, in practice, N
might be very large, and it is unlikely that your visual cortex will rise to the

challenge of guessing M.

But even for small N, we can still ask more from our methods. Consider

the displayed point cloud Q ⊆ R2
which exhibits strikingly di�erent

structure at di�erent scales. At small scales, points seem to be sampled

from disjoint circles. After zooming out (so at a larger scale), those small

circles seem to assemble into one big copy of S1
. The tools we will develop

are scale independent and do not depend on parameter tuning. We will

ultimately produce concise, interpretable summaries that capture the nature

of data at all scales.

Our �rst and primary tool will be the persistent homology of the Čech or

Vietoris–Rips �ltered complex associated with a point cloud P ⊆ RN
. We

may view this as a two-step process:

{point clouds} {�ltered spaces} {persistence modules}.

Č

VR

PH

A �ltered space X = {Xs}s∈R is a collection of spaces
1 Xs indexed by

1

By space we might mean topological

space or (abstract) simplicial complex. If

working with complexes, we take ⊆ to

mean subcomplex.

scales s ∈ R such that

s ≤ t =⇒ Xs ⊆ Xt.

For the purposes of this introduction, we will focus on the Čech �ltered

complex Č(P) of our point cloud P ⊆ RN
. At scale s ∈ R, Čs(P) is
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the simplicial complex with one n-simplex for each subset A ⊆ P with

|A| = n + 1 and We write Bs(x) for the closed ball of radius

s centered at x.

⋂
x∈A

Bs(x) 6= ∅.

In other words, we get an n-simplex for each (n + 1)-subset of P for

Black points are 0-simplices, green edges

are 1-simplices, yellow shading is a 2-

simplex, and red shading is a 3-simplex.

Note that the bottom right triangle is

not �lled in yellow because the triple

intersection of the balls around those

vertices is empty.

which the closed Euclidean balls of radius s centered at points of A have

nonempty common intersection. Since the intersection condition becomes

less stringent as s gets larger, we have that Čs(P) is a subcomplex of Čt(P)
when s ≤ t. Later, we will encounter the Nerve Lemma, which roughly says

that Čs(P) is homotopy equivalent to

⋃
x∈P Bs(P) in reasonable scenarios.

Note that the combinatorial nature of Čs(P) makes it much better adapted

to computation than the �ltered topological space

{⋃
x∈P Bs(P)

}
s∈R

.

Now that we have a �ltered space X = Č(P), we aim to capture

features of each space Xs := Čs(P) and how these features are related

as the �ltration parameter changes. Taking a cue from algebraic topology,

we view H∗(Xs; F) — the homology
2

of Xs with coe�cients in a �eld F —

2

We will review homology theory next

lecture. It is a lie in the direction of truth

to say that the dimension of the F-vector

space Hn(Xs; F) measures the number of

n-dimensional “holes” in Xs .

as a good summary of the features of Xs. Functoriality of homology then

provides us with F-linear transformations

(ιts)∗ : H∗(Xs; F) −→ H∗(Xt; F)

for s ≤ t and ιts : Xs ⊆ Xt, and these maps (it
s)∗ provide our comparisons of

features. Packaging all of the homologies and comparisons maps together

produces a persistence module PH∗(X ; F), the F-persistent homology of X ,

which is our scale independent summary of the shape of our data.

The miracle here is that persistence modules admit a convenient and

complete invariant called a barcode or (after a mild but tremendously ben-

e�cial transformation) persistence diagram. To give the �avor of barcodes,

we will consider a simpli�ed scenario in which we have F-vector spaces

{Vi}i∈N and linear transformations ι
j
i : Vi → Vj for 0 ≤ i ≤ j such that

(1) ιii = idVi for all i, and

(2) for 0 ≤ i ≤ j ≤ k, ιkj ◦ ι
j
i = ιki .

The essential data here is of the form

V0 → V1 → · · · → Vi → Vi+1 → · · ·

and we may view the persistence module ({Vi}i∈N, {ιj
i}i≤j) as a functor

V = {Vi}i∈N from the category associated with the partially ordered set

(N,≤) to the category of F-vector spaces and linear transformations. Such

a persistence module might arise from a point cloud by considering Čech

complexes at scales s0 < s1 < · · · .
Let F[t] denote the ring of polynomials in variable t over F, graded so

that |t| = 1, and set

Θ(V ) :=
⊕
i∈N

Vi.
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Then we may endow Θ(V ) with the structure of a graded F[t]-module by

setting the action of the polynomial generator t to be

t · (vi)i∈N := (ιii−1vi−1)i∈N

where v−1 := 0. In fact, Θ is an equivalence of categories between N-

persistence modules and graded F[t]-modules.
3 3

The inverse functor takes M∗ to {Mi}i∈N

with ι
j
i given by multiplication by tj−i

.A common capstone theorem of a �rst course in algebra is the classi�ca-

tion of �nitely generated modules over a principal ideal domain. A graded

version of this theorem holds mutatis mutandis, and so it behooves us to

understand which persistence modules correspond to �nitely generated

graded F[t]-modules. Call a persistence module V = {Vi}i∈N tame when

every Vi is �nite-dimensional and ιi+1
i is an isomorphism for su�ciently

large i. One may prove that V is tame if and only if Θ(V ) is �nitely gener-

ated over F[t].
By the classi�cation theorem for �nitely generated graded modules

over a PID, if V is tame then there are (essentially unique) integers

i1, . . . , im, j1, . . . , jn, `1, . . . , `n and an isomorphism

Θ(V ) ∼=
m⊕

s=1

Σis F[t]⊕
n⊕

t=1

Σjt F[t]/(t`t)

where Σr
denotes a grading shift upwards by r.

4
Translating this into the

4

That is, (Σr M∗)s = Ms−r

world of persistence modules, we learn that every tame persistence module

decomposes (essentially uniquely) as

V ∼=
N⊕

j=0

I[bj, dj]

where each bj is a nonnegative integer, dj ∈ N ∪ {∞}, and I[bj, dj] is the

interval persistence module with

I[bj, dj]i =

F if bj ≤ i ≤ dj,

0 otherwise,

and ιi
′

i = idF for bj ≤ i ≤ i′ ≤ dj.

For an interval persistence module I[b, d], we refer to b as the birth
and d as the death scale. We may then visualize the decomposition of V

as a multiset of intervals [bj, dj] called the barcode of V . The following

illustration is taken from Ghrist.
5

Beware, though, that it uses the Vietoris–
5

Ghrist, R. (2008). Barcodes: the persistent

topology of data. Bull. Amer. Math. Soc.
(N.S.), 45(1):61–75

Rips �ltration instead of the Čech �ltration; we will study VR in detail

later.
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While barcodes prevailed in the early days of TDA, experience has

shown that persistence diagrams are better suited to statistical analysis. The

persistence diagram of V consists of the multiset of points (bj, dj) lying on

or above the diagonal of N× (N∪ {∞}).
The Vietoris–Rips �ltered complexes of the data sets P and Q from our

initial discussion have the following persistence diagrams (with PH0 in blue

and PH1 in orange):

Focusing on the blue PH0 classes, we see that in both cases all connected

components are born at time 0, and at scales above ≈ 0.7 there is a single

connected component that persists to +∞. This last class is analogous to

the red bar of in�nite length in the previous diagram.

Looking at orange PH1 classes, we can readily observe signi�cant

di�erences between the point clouds. In each, there is a highly persistent

class born around scale 0.75, but Q detects the small scale structure as well,

giving a cluster of short-lived PH1 classes born around scale 0.1. These

classes witness the small radii circles (arranged around the unit circle) from

which Q is sampled.

It is often claimed that classes with large persistence d− b (i.e., those high
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above the diagonal) represent the “true” topology of the data, while small

persistence classes correspond to noise. The point clouds P and Q illustrate

that this is not necessarily the case.

1.1 Future topics

One of our primary tasks will be the development of pseudometrics allow-

ing us to compare persistence diagrams. We leave this to future develop-

ment, along with the many foundational details elided or overlooked in this

introduction. Once the foundations are established, the rest of the course

will focus on the following:

(1) applications of persistent homology to particular data modalities,

(2) extending persistent homology to �ltrations indexed by more exotic

partially ordered sets, and

(3) re�ning PH0 via hierarchical clustering.

See the syllabus for a detailed (but �exible) schedule of topics.

1.2 Notes

The content of this introduction was primarily drawn from the Oudot’s

textbook
6

and Carlsson’s survey article.
7

The original images were pro-
6

Oudot, S. Y. (2015). Persistence theory:
from quiver representations to data analysis,
volume 209 of Mathematical Surveys and
Monographs. American Mathematical

Society, Providence, RI

7

Carlsson, G. (2009). Topology and data.

Bull. Amer. Math. Soc. (N.S.), 46(2):255–308

duced in Python using the Ripser persistent homology package.
8

We will

8

Tralie, C., Saul, N., and Bar-On, R. (2018).

Ripser.py: A lean persistent homology

library for python. The Journal of Open
Source Software, 3(29):925

use Ripser extensively when exploring examples and applications, and

you should follow the installation instructions at https://ripser.
scikit-tda.org/ to get it working on your personal computer. You

can �nd the Jupyter notebook used to produce diagrams from this and

future lectures at https://github.com/kyleormsby/math583.

1.3 Exercises

(1) Install the necessary software and run the demos from today’s class on

your personal computer.

(2) Determine the smallest
9

point cloud in R3
whose Čech �ltered complex

9

Smallest in terms of cadinality — the least

number of points.
exhibits nonzero PH2 as some scale. What about in R2

?

https://ripser.scikit-tda.org/
https://ripser.scikit-tda.org/
https://github.com/kyleormsby/math583
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2 Spaces, complexes, and homology — 27 March 2024

2.1 Topology

From the Kleinian perspective, geometry is the study of properties invariant

Felix Klein (1849–1925)

under isometries, that is, distance-preserving transformations. Indeed, when

a geometer says that two triangles are the same (or congruent or isometric),
they do not mean that each triangle consists of exactly the same points,

but rather that one may translate, rotate, and re�ect one triangle until it

matches the other.

Topology plays a similar game, but with a much coarser notion of

“sameness”. We say that two spaces — the objects of topology — are home-
omorphic when there are continuous functions between them that are

mutually inverse. In this sense, topology is the study of properties that are

invariant under homeomorphism. Such properties include such notions as

connectivity and compactness, but exclude more rigid properties such as

angle, distance, or volume.

We will generally assume that the reader is familiar with point-set

topology, but will quickly recall some of the basic de�nitions. The standard reference for point-set

topology is Munkres; see also the recent

graduate text of Bradley–Bryson–Terilla.

Munkres, J. R. (2000). Topology. Prentice

Hall, Inc., Upper Saddle River, NJ, second

edition; and Bradley, T.-D., Bryson, T., and

Terilla, J. (2020). Topology—a categorical
approach. MIT Press, Cambridge, MA

De�nition 2.1. A topological space is a pair (X, U ) consisting of a set X
and a collection of subsets U ⊆ 2X

called open sets such that

(1) ∅ and X are in U ,

(2) U is closed under arbitrary unions: Uα ∈ U for α ∈ A implies⋃
α∈A Uα ∈ U , and

(3) U is closed under �nite intersections: Ui ∈ U for i in a �nite set I
implies

⋂
i∈I Ui ∈ U .

We will write X for (X, U ) when the topology U is clear from context.

A subset U ⊆ X is called open when it belongs to U , and a subset C ⊆ X
is called closed when X r C is open. These properties are not mutually

exclusive, as exhibited by the clopen sets ∅ and X.

Example 2.2. In the standard topology on Euclidean space Rn
, a subset

U ⊆ Rn
is open if and only if it is a union of open balls Br(x) := {y ∈ Rn |

|y− x| < r. This is equivalent to saying that U is open if and only if for each

x ∈ U there exists r > 0 such that Br(x) ⊆ U.

Example 2.3. Suppose X is a topological space and Y is a subset of X. We

may endow Y with the subspace topology (relative to X) by declaring that

the open sets of Y are exactly those sets of the form U ∩Y for U ⊆ X open.

As a subexample of subspaces, consider the interval [0, 1] ⊆ R, where R

carries the standard topology. Then (1/2, 1] = (1/2, 3/2) ∩ [0, 1] is open in

[0, 1], but not in R.
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De�nition 2.4. A function f : X → Y between topologyical spaces is

continuous when the preimage f−1U over every open set U ⊆ Y is open in

X. A continuous function f : X → Y is a homeomorphism when it admits The categorically inclined reader will note

that topological spaces and continuous

functions form a category, and the isomor-

phisms in this category are exactly the

homeomorphisms.

a continuous inverse g : Y → X. In this case, we say that X and Y are

homeomorphic and write X ∼= Y.

Example 2.5. If X is a topological space and f : X → R is continuous, then

the sublevel set f−1(−∞, u) = {x ∈ X | f (x) < u} is open in X since the

interval (−∞, u) = {t ∈ R | t < u} is open in R. Similarly, f−1(−∞, u] is

closed.
10 10 Exercise: For f : X → Y any continus

map and C ⊆ Y closed, check that f−1C is

closed in X.It will frequently be important to study a yet weaker notion of “same-

ness” in topology call homotopy. This is a two-step de�nition that �rst

identi�es when two continuous functions are homotopic, and then proceeds

to spaces.

De�nition 2.6. Continuous functions f , g : X → Y are homotopic when

there exists a continuous function H : X × [0, 1] → Y such that the We may think of H is a “movie” continu-

ously interpolating between f and g.
restriction of H to X × 0 agrees with f and the restion to X × 1 agrees

with g. Such a map H is called a homotopy between f and g and we write

H : f ' g.

Recall that spaces X and Y are homeomorphic when there are contin-

uous functions f : X → Y and g : Y → X such that g ◦ f = idX and

f ◦ g = idY . The following de�nition formalizes the notion a map admitting

an inverse “up to homotopy”.

De�nition 2.7. Two spaces X and Y are homotopic when there exist

continuous functions f : X → Y and g : Y → X such that g ◦ f ' idX and

f ◦ g ' idY .

Example 2.8. We check that the circle S1
is homotopic to the cylinder

S1 × [0, 1]. Take

'

f : S1 −→ S1 × [0, 1]

z 7−→ (z, 0)

and

g : S1 × [0, 1] −→ S1

(z, t) 7−→ z.

Then g ◦ f = idS1 (which is clearly homotopic to idS1 ) and f ◦ g : (z, t) 7→
(z, 0). We de�ne

H : (S1 × [0, 1])× [0, 1] −→ S1 × [0, 1]

((z, t), s) 7−→ (z, ts).

We have ((z, t), 0) 7→ (z, 0), which is f ◦ g, while ((z, t), 1) 7→ (z, t),
which is idS1×[0,1]. Thus H : f ◦ g ' idS1×[0,1], as needed to verify that

S1 ' S1 × [0, 1].
In fact, there was nothing special about S1

in this argument. Any space

X is homotopic to X× [0, 1], the cylinder on X.
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2.2 Geometric and abstract simplicial complexes

Let P = {x0, . . . , xk} ⊆ RN
be a point cloud in RN

. An a�ne combination
of P is a sum of the form

k

∑
i=0

λixk

where λi ∈ R and ∑ λi = 1. The collection of all a�ne combinations of P
is called the a�ne hull of P; it is always an a�ne linear subspace of RN

.

The point cloud P is a�nely independent if no x ∈ P is an a�ne combi-

nation of Pr {P}. This is equivalent to the set {x1− x0, . . . , xk − x0} being

a linearly independent set of vectors.

Image by user Rubybrian, CC BY-SA 3.0.

Recall that a subset M of RN
is convex when the line segment joining

any two points of M is a subset of M; the convex hull of M is the intersec-

tion Conv(M) of all convex sets containing M. When P = {x0, . . . , xk} ⊆
RN

is a�nely independent, we get barycentric coordinates on Conv(P).
The barycentric coordinates of a point x ∈ Conv(P) are the unique

λi ∈ [0, 1] such that

x =
k

∑
i=0

λixi and

k

∑
i=0

λi = 1.

We can now de�ne geometric simplicial complexes, whose basic building

blocks are geometric simplices:

De�nition 2.9. Suppose k, N ∈N with k ≤ N. A geometric k-simplex σ is

the convex hull of an a�nely independent point cloud P = {x0, . . . , xk} ⊆
RN

with k + 1 elements, i.e.,

σ = Conv(P).

The dimension of σ is k, and we will sometimes write σ = σk
to express

its dimension. The points x0, . . . , xk are the vertices of σ, its edges are the

convex hulls of pairs of vertices of σ, and, more generally, the convex hull

τ of any subset of P is called a face of σ. A face τ of σ is a facet when

dim τ = dim σ− 1.

De�nition 2.10. Let N ∈ N. A (�nite) geometric simplicial complex
K ⊆ RN

is a (�nite) collection of geometric simplices K that is closed under

taking faces (σ ∈ K and τ a face of K implies τ ∈ K) and compatible with

intersection (if σ, τ ∈ K, then σ ∩ τ is either empty or a common face of

both σ and τ).

The dimension of a geometric simplicial complex is the maximal dimen-

sion of its simplices. The body of K is

|K| =
⋃

σ∈K
σ.

In a standard act of laziness, we will often blur the distinction between K
and |K|.

https://commons.wikimedia.org/wiki/File:TriangleBarycentricCoordinates.svg
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De�nition 2.11. A triangulation of a subspace X ⊆ RN
is a geometric

simplicial complex K in RN
such that |K| ∼= X.

We warn the reader that not every subspace of RN
admits a triangu-

lation. But “reasonable” spaces do, and there is a tremendous amount of

interesting topology one can do with geometric simplicial complexes. Tri-

angulations are also essential in computer graphics, as illustrated by the

Stanford bunny pictured here.

While geometric simplicial complexes nicely match our intuition for how

spaces might be chopped up into simplicial pieces, they are very ine�cient

as data structures. By working with abstract simplicial complexes, we can

recover the homeomorphism type of (the body of) a geometric simplicial

complex far more e�ciently.

De�nition 2.12. Let P be a �nite set. An abstract simplicial complex L on P
is a family of nonempty subsets of P that is closed under taking nonempty

subsets: σ ∈ L and ∅ 6= τ ⊆ σ implies τ ∈ L.

Example 2.13. Every geometric simplicial complex K on vertex set P
determines an abstract simplicial complex L on P by declaring that σ ∈ L if

and only if Conv(σ) is a face of K.

We may also create a geometric simplicial complex from any abstract

simplicial complex, a process called geometric realization. The de�ning

feature of a geometric realization K of an abstract simplicial complex

L is that the abstract simplicial complex L′ associated with K (as in the

above example) is L again up to relabeling of vertices. When P is �nite,

constructing geometric realizaitons is fairly straightforward:

Proposition 2.14. Every abstract simplicial complex K with k vertices admits
a geometric realization in Rk−1.

Proof. The complex K is a subcomplex of the full (n − 1)-simplex on P,

which may be geometrically realized as the convex hull of 0, e1, . . . , en−1 ∈
Rn−1

.

It is actually the case that every abstract simplicial complex on k vertices

admits a geometric realization in R2k+1
, but we will not go into the proof.

One can also geometrically realize in�nite abstract simplicial complexes via

a colimit construction.

In order to compare simplicial complexes, we need an appropriate class

of maps.

De�nition 2.15. A simplicial map between abstract simplicial complexes K
and L is a function f : K(0 → L(0)

on vertices such that the image of every

abstract simplex in K is an abstract simplex in L.

De�nition 2.16. A simplicial map between geometric simplicial complexes

K and L is a function f : |K| → |L| such that the restriction of f to K(0)
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induces a simplicial map between associated abstract simplicial complexes

and which is linear on geometric simplices (in terms of barycentric coordi-

nates), i.e., if t0, . . . , tk ∈ [0, 1] with ∑ ti = 1 and v0, . . . , vk ∈ K(0)
, then

f
(
∑ tivi

)
= ∑ ti f (vi). (2.17)

Tracing through the de�nitions, one may check that simplicial maps

Image by user Studentofrationality show-

ing successive barycentric subdivisions of

an equilateral triangle, CC BY-SA 4.0.

between geometric simplicial complexes induce abstract simplicial maps,

and conversely, each simplicial map between abstract simplicial complexes

extends in a unique way to a simplicial map between geometric realizations

via (2.17). It is also the case that simplicial maps induce continuous func-

tions between bodies. Perhaps surprising, though, is that continuous maps

between (bodies of) geometric simplicial complexes can be approximated by

simplicial maps.

Theorem 2.18 (Simplicial approximation). Suppose f : K → L is a continuous
function between geometric simplicial complexes. Then there exist su�ciently
�ne subdivisions K′ of K and L′ of L, and a simplicial map f ′ : K′ → L′ such
that f ' f ′.

Here a subdivision of K is a geometric simplicial complex K′ such that

every face of K is a union of simplices of K′. The proof of the simplicial

approximation theorem is covered in many standard combinatorial or

algebraic topology texts and we won’t attempt it here.

We need one more crucial de�nition before we move on to simplicial

homology, namely that of orientation. This amounts to a choice of ordering

on vertices, taken up to a certain equivalence relation.

De�nition 2.19. An oriented simplex on vertices x0, . . . , xk is an ordered

(k + 1)-tuple σ = 〈x0, x1, . . . , xk〉 subject to the rule

σ = sgn(π)〈xπ(0), xπ(1), . . . , xπ(k)〉

where σ is a permutation of {0, 1, . . . , k} and sgn(π) is the signature of π:

sgn(π) = (−1)m

where m is the number of transpositions in a decomposition of σ as a

composite of transpositions.
11 11

Such decompositions always exist; the

number m is not unique, but all such m
have the same parity.

We also give each 0-dimensional simplex two orientations, 〈x〉 and

−〈x〉.
Finally, two k-simplices sharing a (k− 1)-dimensional face σ are consis-

tently oriented when they induce opposite orientations on σ.

2.3 Simplicial homology

We are now going to “measure” the “holes” in a simplicial complex with a

tool called homology. The slogan for homology is “cycles mod boundaries”.

https://commons.wikimedia.org/wiki/File:Barycentric_subdivision.svg
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Both cycles and boundaries are special types of “chains”, which are formal

linear combinations of oriented simplices. The cycles are those chains with

trivial boundary (so they properly “enclose” part of the complex), and the

boundaries are boundaries of chains. Crucially, the boundary of a boundary

is trivial, so every boundary chain is a cycle. The word “mod” means we

take a quotient, an algebraic operation which identi�es cycles when they

di�er by a common boundary. In particular, every boundary becomes 0. The

idea here is that when the region enclosed by a cycle can be �lled in (i.e.,
the cycle is a boundary), it is not a hole. Meanwhile, cycles that don’t bound

a lower dimensional chain are essential and do get counted as holes.

We now formalize these ideas. Let F be a �eld,
12

let K be an abstract
12

That is, a number system in which

you can add, multiply, and divide (by

nonzero numbers). Examples include the

rational, real, and complex numbers. We

will extensively use the �nite �elds Fp =
Z/pZ which encode “clock arithmetc”

on a clock with hours 0, 1, . . . , p − 1
for p prime. Our favorite case will be

F2 = {0, 1} in which 2 = 0 and 1 = −1.

simplicial complex of dimension n, and let k be a natural number between 0
and n.

De�nition 2.20. A k-chain is a formal F-linear combination ∑ λiσ
k
i of

oriented k-dimensional simplices in K subject to the rule (−1) · σ = −σ,

where the latter term indicates σ with the opposite orientation. The chain
group Ck(K; F) is the F-vector space of all k-chains. Make sure you know what the addition and

scalar multiplication rules for Ck(K; F) are.

Note that if K has nk many k-simplices, then Ck(K; F) ∼= Fnk with basis

given by the k-simplices.

We next formalize the notion of boundary. The rough idea is that the

boundary of an k-simplex consists of all its (k− 1)-dimensional facets added

together (as a (k− 1)-chain) with consistent orientations. We then extend

this assignment linearly to all of Ck(K; F). Given an oriented simplex

σ = 〈x0, x1, . . . , xk〉 and 0 ≤ i ≤ k, let

σ̂i := 〈x0, x1, . . . , xi−1, xi+1, . . . , xk〉

be the (k − 1)-dimensional facet of σ with xi removed with the induced

orientation.

De�nition 2.21. Let k ∈N. The boundary map

∂ = ∂k : Ck(K; F) −→ Ck−1(K; F)

is the unique F-linear transformation such that

∂kσ =
k

∑
i=0

(−1)iσ̂i.

If k = 0, we set ∂0 : C0(K; F)→ 0 to be the trivial map.

If our combinatorial algebra correctly captures geometric intuition, then

the boundary of a boundary should be trivial. This brings us to what Dennis

Sullivan
13

calls the most important equation in mathematics: ∂2 = 0.
13

Sullivan won the 2022 Abel Prize for

his contributions to algebraic topology,

geometric topology, and dynamics.Theorem 2.22. For k ≥ 1,

∂2 := ∂k−1 ◦ ∂k = 0.
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Proof. It su�ces to show that ∂2σ = 0 for σ = 〈x0, . . . , xk〉 an oriented

k-simplex. For 0 ≤ i < j ≤ k, let σ̂ij be the (k− 2)-dimensional simplex

with xi and xj removed. This term appears twice in the expansion of ∂2σ,

once with sign (−1)i(−1)j
and once with sign (−1)i(−1)j−1

. These terms

cancel so the total sum for ∂2σ is equal to 0.

It follows that the image of ∂k is contained in the kernel of ∂k−1. This

make the chain groups and ∂ into a chain complex:

· · · ∂−→ Cn(K; F)
∂−→ Cn−1(K; F)

∂−→ · · · ∂−→ C1(K; F)
∂−→ C0(K; F)

∂−→ 0.

[TODO: Add example with matrices representing boundary maps;

observe that consecutive matrices multiply to 0.]

We are now ready to implement our slogan of “homology equals cycles

mod boundaries”.

De�nition 2.23. Let K be an abstract simplicial complex, let F be a �eld,

and let k be a natural number. Then

» the group of k-cycles, Zk(K; F), is the kernel of ∂k, which is a subspace of

Ck(K; F),

» the group fo k-boundaries, Bk(K; F), is the image of ∂k+1, which is a

subspace of Zk(K; F), and

» the k-th homology group of K is the quotient vector space
14 14

If U is a vector supspace of V, then V/U
is the vector space of U-cosets of the form

v + U = {v + u | u ∈ U} for v ∈ V. Note

that if v− w ∈ U, then v + U = w + U.

Addition is given by (v + U) + (w + U) =
(v + w) + U and scalar multiplication

by λ(v + U) = (λv) + U. If you’re not

familiar with quotient vector spaces, you

should check that these operations are

well-de�ned. Observe that U = 0 + U is the

trivial (or zero) element of V/U. This is the

sense in which V/U “kills” the subspace U.

The quotient space V/U also enjoys a

universal property. First note that there is

a canonical quotient map q : V → V/U
taking v to v + U. If f : V → W is a linear

transformation such that f (U) = 0 — i.e.,
U ≤ ker f — then there is a unique linear

transformation f̃ : V/U → W such that

f = f̃ ◦ q. We say that linear transformation

killing U factor uniquely through V/U (via

q).

Hk(K; F) := Zk(K; F)/Bk(K; F).

We call dim Hk(K; F) the q-th F-Betti number of K, denoted bq(K; F).

One amazing feature of homology is that it is both a homemorphism and

homotopy invariant. Note that this is wildly false for chains, cycles, and

boundaries. Implicit in this claim is that homology is also functorial: given a

simplicial map f : K → L, the assignment

f∗ : Hk(K; F) −→ Hk(L; F)

[σ] 7−→

[ f (σ)] if f (x0), . . . , f (xk) are distinct,

0 otherwise

is a well-de�ned linear transformation. Moreover, (idK)∗ = idHk(K;F) and

if g : L→ M is another simplicial map, then (g ◦ f )∗ = g∗ ◦ f∗. Homotopy

invariance is now the following statement:

Theorem 2.24. If k ∈N and f : K ' L is a simplicial homotopy equivalence,
then f∗ : Hk(K; F) ∼= Hk(L; F).

In particular, if K is contractible,15
then H0(K; F) ∼= F and Hk(K; F) = 0 15 I.e., K is homotopy equivalent to a point,

written K ' ∗.
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for k > 0 simply by a quick computation of chains, cycles, and boundaries

for a point.

We now list some of the many properties one would prove about simpli-

cial homology in a full development of the subject:

» b0(K; F) is the number of connected components of K.

» Let Sn
denote the unit sphere in Rn+1

. For n ≥ 1,

Hk(Sn; F) ∼=

F if k = 0, n,

0 otherwise.

» Let Tn := S1 × · · · × S1
be the n-fold Cartesian product of the circle with

itself. Then

bk(Tn; F) =

(
n
k

)
for all �elds F.

» Let K q L denote the disjoint union of simplicial complexes K and L.

Then

Hk(K q L; F) ∼= Hk(K; F)⊕ Hk(L; F).

Crucially, homology also has excellent properties with respect to de-

compositions into subcomplexes. The so-called Mayer–Vietoris sequence is

a powerful method for computing the homology of A ∪ B in terms of the

homology of A, B, and A ∩ B when A and B are subcomplexes of A ∪ B.

We can think of this tool as a “derived” version of the inclusion-exclusion

theorem. Developing and even stating the theorem requires a fair bit of

homological algebra, so we will point the reader to Section 8.2 of Virk’s

notes
16

for details.
16

Virk, Ž. (2022). Introduction to persistent

homology. https://zalozba.
fri.uni-lj.si/virk2022.pdf.

Accessed on 19 March 20242.4 Notes

The presentation of simplicial complexes and homology is a compressed

version of Chapters 3 and 7 along with Section 4.2 of Virk’s notes. I strongly

recommend this text for those new to the subject!

2.5 Exercises

(1) Use chains, cycles, and boundaries to compute the homology of a circle,

modeled as the simplicial set {a, b, c, ab, bc, ca}. (Here we are writing x
for {x} and xy for {x, y}.)

(2) Triangulate the Klein bottle K and prove that

Hk(K; F2) ∼=


F2 if k = 0, 2,

F2
2 if k = 1,

0 otherwise.

https://zalozba.fri.uni-lj.si/virk2022.pdf
https://zalozba.fri.uni-lj.si/virk2022.pdf
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while

Hk(K; F) ∼=

F if k = 0, 1,

0 otherise

if F is a �eld in which 2 6= 0. This demonstrates that homology is

sensitive to the arithmetic of the �eld of coe�cients!

(3) De�ne the Euler characteristic of a �nte simplicial complex K with nk

many k-simplices to be the alternating sum

χ(K) = ∑
k≥0

(−1)knk.

Use a rank-nullity argument to prove that χ(K) is also equal to the

alternating sum of Betti numbers ∑k≥0 bk(K; F). Conclude (a) that

Euler characteristic is a homotopy invariant and (b) that the alternating

sum of Bett numbers does not depend on F. (Observe that this is

consistent with the F-Betti numbers of the Klein bottle, which has Euler

characteristic 0.)
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3 Persistence modules — 1 April 2024

Note: We didn’t cover homology during our last meeting, so the 1 April

lecture started with oriented simplices.

Recall fromt he �rst lecture the fundamental pipeline for persistent

homology of point clouds:

{point clouds} {�ltered spaces} {persistence modules}.

Č

VR

PH

Given a �ltered abstract simplicial complex X = {Xs}s∈R (with

ιts : Xs ⊆ Xt for s ≤ t), we may now apply the k-th homology functor

Hk(−; F) to get a persistence module

PHk(X ; F) := {Hk(Xs; F), (ιts)∗ | s ≤ t ∈ R}.

Our current goal is to understand the structure of such persistence modules.

De�nition 3.1. An R-persistence module V over a �eld F is a collection of Here’s a categorical take on persistence

modules: For any poset (P,≤), also write P
for the associated category. A P-persistence

module is a functor over F is a functor

P → VectF. Maps between P-persistence

modules are natural transformations.

F-vector spaces Vs, s ∈ R, along with linear transition maps ιts : Vs → Vt

for each pairs s ≤ t such that

(1) for s ∈ R, ιss = idVs , and

(2) for r ≤ s ≤ t, ιts ◦ ιsr = ιtr .

A map of persistence modules f : V → W is a collection of linear transfor-

mations fs : Vs →Ws such that the diagram

Vs Ws

Vt Wt

fs

ft

ιts ιts

commutes for all s ≤ t. (Here we are abusing notations and writing ιts
for the transition maps for both V and W .) Two persistence modules are

isomorphic, written V ∼= W , when there is a map of persistence modules

f : V → W which admits a two-sided inverse or, equivalently, has fs a

bijection for each s ∈ R.

We now follow the presentation in Section 4.5 of Carlsson–Vejdemo-

Johansson
17

in order to classify R-persistence modules.
18 17

Carlsson, G. and Vejdemo-Johansson,

M. (2022). Topological data analysis with
applications. Cambridge University Press,

Cambridge

18

Later, when we study multipersis-

tence, we will see that for most posets P,

P-persistence modules do not admit a clas-

si�cation (in the sense of being “wild type”

problems in the language of representation

theory).

We begin with the free R-persistence modules. Let X be a set and

consider a function ρ : X → R. We may view (X, ρ) as an R-�ltered set via

the sublevel �ltration with Xs := ρ−1(−∞, s] = {x ∈ X | ρ(x) ≤ s}. We

write V (X, ρ) for the R-persistence module with

V (X, ρ)s := F · Xs.
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Here F · Xs is the F-vector space with basis the set Xs; its elements are

formal linear combinations of elements of Xs. The linear transformations

ιts : V (X, ρ)s → V (X, ρ)t are the subspace inclusions induced by Xs ⊆ Xt.

De�nition 3.2. We say that an R-persistence module is free when it is iso-

morphic to an R-persistence module of the form V (X, ρ); it is additionally

�nitely generated when X is a �nite set.

Importantly, we can take quotients of R-persistence modules. If U ≤ V

is a sub-R-persistence module (meaning Us ≤ Vs for all s with compatible

transition maps), then V /U is the R-persistence module with s-th vector

space Vs/Us and

ιts(vs + Us) = ιts(vs) + Ut.

Given a map of a persistence modules f : V → W , we de�ne the cokernel of

f to be

coker f := W / im f

where im f is the sub-persistence module of W with (im f )s = im fs.

De�nition 3.3. We say that an R-persistence module is �nitely presented
when it is isomprhic to an R-persistence module of the form coker f where

f is a map between �nitely generated free R-persistence modules.

Recall from linear algebra that choosing bases for vector spaces V, W
allows us to write down a matrix A f

19
for every linear transformation

19

Importantly, A f depends on the choice of

bases, but we will not include the bases in

our notation. Also note that we are being

coy about the role that ordering of bases

plays.

f : V → W representing f . If the bases for V, W are v1, . . . , vn and

w1, . . . , wm, respectively, and f (vj) = ∑i λiwi, then the vj-column of

A f is (λ1, . . . , λm). If U is another vector space with basis u1, . . . , u` and

g : U → V is another linear transformation, then Ag◦ f = Ag · A f . This is

the purpose of matrix multiplication.

For a pair of �nite sets X, Y, de�ne an (X, Y)-matrix to be an array

[axy](x,y)∈X×Y of elements of F. Write r(x) for the row associated with x,

and c(y) for the column associated with y. Given a �nitely generated free

persistence module V (X, ρ), note that

V (X, ρ)s = F · Xs = F · X for s� 0

since X is �nite. Thus any map f : V (Y, σ) → V (X, ρ) of �nitely

generated free persistence modules induces a linear transformation

f∞ : F · Y → F · X with an associated (X, Y)-matrix [axy] := A f∞

where we work with the bases Y, X. This gives us an encoding of maps

between �nitely generated free R-persistence modules:

Theorem 3.4. Given f as above, the (X, Y)-matrix A f∞ = [axy] satis-
�es axy = 0 whenever ρ(x) > σ(y). Furthermore, any (X, Y)-matrix
A = [axy] satisfying this condition induces a map of R-persistence modules
fA : V (Y, σ) → V (X, ρ) and the correspondences f 7→ A f∞ and A 7→ fA

are mutually inverse.
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Proof. First suppose ρ(x) > σ(y). We have f∞(y) = ∑x∈X axyx. Such a

linear combination lies in V (X, ρ)s if and only if axy = 0 for ρ(x) > s.

Specializing to s = σ(y) gives the �rst claim. We leave the second and third

statements to the reader.

De�nition 3.5. Given R-�ltered �nite sets (X, ρ) and (Y, σ), call an

(X, Y)-matrix satisfying the condition of the theorem (ρ, σ)-adapted. Given

a (ρ, σ)-adapted (X, Y)-matrix A, de�ne

θ(A) := coker fA.

We see straightaway that θ(A) is a �nitely presented R-persistence mod-

ule, and the theorem implies that every �nitely presented R-persistence

module is isomorphic to one of the form θ(A). Thus to classify �nitely

presented R-persistence modules, it su�ces to understand for which

(X, Y)-matrices A, A′ we have θ(A) ∼= θ(A′).

Lemma 3.6. Let (X, ρ) be a �nite R-�ltered set. Then the automorphisms20 20

An automorphism is an isomorphism with

the same source and target.of V (X, ρ) can be identi�ed with the invertible (ρ, ρ)-adapted (X, X)-
matrices.21 21

Unpacking this, we have an invertible

(X, X)-matrix [axx′ ](x,x′)∈X×X satisfying

axx′ = 0 for ρ(x) > ρ(x′). If X is ordered

by increasing ρ values, this is an invertible

upper triangular matrix, so upper triangular

with no 0’s on the diagonal.

The following proposition now follows by abstract nonsense:

Proposition 3.7. Let (X, ρ) and (Y, σ) be �nite R-�ltered sets, and let A
be a (ρ, σ)-adapted (X, Y)-matrix. Let B be an invertible (ρ, ρ)-adapted
(X, X)-matrix and let C be an invertible (σ, σ)-adapted (Y, Y)-matrix. Then
BAC is a (ρ, σ)-adapted (X, Y)-matrix and

θ(A) ∼= θ(BAC).

We now establish notation that will allows us to state our classi�cation

theorem. For a ∈ R and b ∈ R∪∞ with a < b, de�ne

I[a, b)s :=

F if a ≤ s < b

0 otherwise

and ιts : I[a, b)s → I[a, b)t to be idF if a ≤ s ≤ t < b and 0 otherwise. This

is the interval R-persistence module associated with [a, b).

Lemma 3.8. The interval R-persistence module I[a, b) is �nitely presented.

Proof. For b < ∞, let (X, ρ) = ({x}, ρ(x) = a) and (Y, σ) =

({y}, σ(y) = b). One may check that the 1× 1 matrix [1] is (ρ, σ)-adapted

with I[a, b) = θ([1]). If b = ∞, then I[a, ∞) = V ({x}, ρ(x) = a) = θ(∅)

where ∅ is the 1× 0 matrix representing the map 0 → V({x}, ρ(x) =

a).

This brings us to our classi�cation theorem for �nitely presented R-

persistence modules over F:
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Theorem 3.9. Every �nitely presented R-persistence module over F is
isomorphic to a �nite direct sum of the form

I[a1, b1)⊕ I[a2, b2)⊕ · · · ⊕ I[an, bb)

for some ai ∈ R, bi ∈ R∪∞, and ai < bi for all i. Moreover,⊕
i∈I

I[ai, bi) ∼=
⊕
j∈J

I[cj, dj)

for I, J �nite sets if and only if |I| = |J| and the multiset22 of intervals [ai, bi) 22

A multiset is a set “with multiplicity”.

This can be formalized as a set X together

with a function m : X → N counting

multiplicity.

equals the multiset of intervals [cj, dj).

Proof. First note that if A is the (ρ, σ)-adapted (X, Y) matrix with 1’s in

positions {(x1, y1), . . . , (xn, yn)} and 0’s elsewhere and there is at most

one 1 in every row and column, then

θ(A) ∼=
n⊕

i=1

I[ρ(xi), σ(yi))⊕
⊕

x∈Xr{x1,...,xn}
I[ρ(x), ∞).

Thus given an arbitrary (ρ, σ)-adapted (X, Y)-matrix A, it su�ces to

construct an invertible (ρ, ρ)-adapted (X, X)-matrix B and invertible (σ, σ)-

adapted (Y, Y)-matrix C such that every row and column of BAC has at

most one 1 with all other entries 0.

We accompish this task via (ρ, σ)-adapted row and column operations.
These are scalings of rows or columns by a nonzero element of F, adding a

multiple of r(x) to r(x′) when ρ(x) ≥ ρ(x′), and adding a multiple of c(y)
to c(y′) when σ(y) > σ(y′). The reader should check that these may be

accomplished by multiplying A on the left or right by the appropriate kind

of invertible matrix.

Now �nd y maximizing σ(y) over all y with c(y) 6= 0. Then �nd x The example following this proof imple-

ments the algorithm of this paragraph. The

reader may wish to read the example in

parallel with the proof.

maximizing ρ(x) over x such that axy 6= 0. We are free to add multiples of

r(x) to all other rows to cancel out c(y) except for axy. We are then further

free to add multiples of c(y) to cancel out r(x) except for axy. Multiplying

r(x) by 1/axy we get 1 in the xy-position. Now keep repeating the process

with the next largest σ(y) and ρ(x) with axy 6= 0, and we eventually get

the desired form.

We leave the uniqueness statement to the reader, who can also look at

Proposition 4.52 of Carlsson–Vejdemo-Johansson.

Example 3.10. Let us demonstrate the (ρ, σ)-adapted Gaussian elimination

algorithm from the above proof. Let X = {x1, . . . , x6} with

ρ(x1) = ρ(x2) = 0, ρ(x3) = ρ(x4) = ρ(x5) = 1, ρ(x6) = 2

and Y = {y1, . . . , y5} with

σ(y1) = 1, σ(y2) = σ(y3) = 2, σ(y4) = σ(y5) = 3.
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Using the natural orderings of X and Y, we see that

A =



0 4 16 12 4

6 14 2 0 0

0 0 2 4 0

0 2 0 2 2

0 2 4 2 4

0 1 2 1 2


is (ρ, σ)-adapted. (In fact, the only condition is that the (x6, y1)-entry

in the bottom left is 0.) We begin with the algorithm with the bottom

right (x6, y5)-entry and use the bottom row to cancel out the rest of the

rightmost column. This results in

0 2 12 10 0

6 14 2 0 0

0 0 2 4 0

0 0 −4 0 0

0 0 0 0 0

0 1 2 1 2


.

We then clear out the bottom row with the rightmost column and multiply

the bottom row by 1/2 to get

0 2 12 10 0

6 14 2 0 0

0 0 2 4 0

0 0 −4 0 0

0 0 0 0 0

0 0 0 0 1


.

We now work at the (x3, y4)-entry and clear out the rest of the y4-column

by adding −5/2r(x3) to r(x1) to get

0 2 7 0 0

6 14 2 0 0

0 0 2 4 0

0 0 −4 0 0

0 0 0 0 0

0 0 0 0 1


.

Now using c(y4) to zero out the rest of r(x3) and then multiplying r(x3) by
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1/4 we get 

0 2 7 0 0

6 14 2 0 0

0 0 0 1 0

0 0 −4 0 0

0 0 0 0 0

0 0 0 0 1


.

Moving on to the (x4, y3)-entry the next round of row and column opera-

tions produces 

0 2 0 0 0

6 14 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1


.

Now working in position (x2, y2) we �nally arrive at

0 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1


.

This implies that the interval decomposition of θ(A) is

θ(A) ∼= I[ρ(x1), ∞)⊕ I[ρ(x2), σ(y2))⊕ I[ρ(x3), σ(y4))⊕ I[ρ(x4), σ(y3))⊕ I[ρ(x5), ∞)⊕ I[ρ(x6), σ(y5))

= I[0, ∞)⊕ I[0, 2)⊕ I[1, 3)⊕ I[1, 2)⊕ I[1, ∞)⊕ I[2, 3)

As described in the �rst lecture, we will record the isomorphism type

of an R-persistence module with a barcode or persistence diagram. The

barcode of

I[a1, b1)⊕ I[a2, b2)⊕ · · · ⊕ I[an, bb)

is the multiset of intervals [ai, bi), typically drawn as stacked horizontal

intervals. The persistence diagram of the same R-persistence module is the

multiset of points (ai, bi) in the extended plane R× (R∪∞). Since ai ≤ bi,

all these points lie on or above the line of slope 1 through the origin. The

persistence diagram for the above example is displayed in the margin.

3.1 Notes

In the �rst lecture, we classi�ed tame N-persistence modules via the theory

of �nitely generated graded modules over a graded PID. Here we classi�ed
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�nitely presented R-persistence modules essentially through a modi�ed

Gaussian elimination algorithm. Gaussian elimination requires O(n3) arith-

metic operations, so the algorithm implicit in our proof is polynomial time

but still computationally expensive. Zomorodian
23

provides methods for
23

Zomorodian, A. (2010). The tidy set: a

minimal simplicial set for computing ho-

mology of clique complexes. In Proceedings
of the Twenty-Sixth Annual Symposium on
Computational Geometry, SoCG ’10, page

257–266, New York, NY, USA. Association

for Computing Machinery

speeding up these algorithms when working with the persistent homology

of particular types of simplicial complexes — called tidy sets — that include

Vietoris–Rips complexes of point cloud data. This is one reason for going

beyond Čech complexes when considering �ltered spaces induced by point

clouds, as we shall in the next lecture.

3.2 Exercises

(1) Let F = Q, X = {0, 2, 4}, Y = {1, 2, 3, 4}, ρ(x) = x, and σ(y) = y.

Check that

A =


2 1 2 0

0 2 4 3

0 0 0 6


is a (ρ, σ)-adapted (X, Y)-matrix (with the natural order of rows

and columns) and then implement the algorithm from the proof of

Theorem 3.9 to determine the persistence diagram associated with

θ(A).

(2) Your answer to the previous question should have a 1 in the (4, 4)-
position (so third row, fourth column), so one of the summands of the

interval decomposition of θ(A) is I[4, 4). How do we interpret this

R-persistence module?

(3) Suppose A is a (ρ, σ)-adapted (X, Y)-matrix and let xmax and ymax be

elements of X and Y maximizing ρ and σ, respectively. Assume that the

ymax column of A is nonzero. Prove that the interval decomposition of

θ(A) includes I[ρ(xmax), σ(ymax)).

(4) Suppose |X| = |Y| and the determinant of a (ρ, σ)-adapted matrix A is

nonzero. What can you say about the associated interval decomposition

of θ(A)?
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4 Čech and Vietoris–Rips �ltered complexes — 3 April 2024

Today we will analyze the two main �ltered spaces (abstract simplicial

complexes) that arise from point clouds, the Čech and Vietoris–Rips �ltered

complexes. In preparation, we will discuss the nerve construction and

lemma, a crucial tool guaranteeing that, under certain hypotheses, the

Čech complex recovers the homotopy type of a space from which points

are sampled. We will also recast point clouds as �nite metric spaces, a

framework that will allow us to apply persistence homology to additional

data types.

4.1 The nerve of an open cover

Let X be a topological space. An open cover of X is a collection U = {Uα | We have followed tradition in using

mathfrak U, U, for an open cover. When

we need another open cover we’ll use

mathfrak V, i.e., V. We leave the reason

for the incscrutability of this font as an

exercise for the reader.

α ∈ A} of open sets of X such that

X =
⋃

α∈A
Uα.

Given an open cover U, its nerve N(U) is the abstract simplicial complex

with vertex set U and a subset {Uβ | β ∈ B ⊆ A} in N(U) if and only if U

V

W

⋂
β∈B

Uβ 6= ∅.

Example 4.1. Suppose X = S1
and U = {U, V, W} as illustrated. Then

the vertices of N(U) are U, V, W (now viewed as 0-dimensional points),

the edges of N(U) are {U, V}, {V, W}, and {W, U}. There are no 2- or

higher-dimensional simplices as U ∩V ∩W = ∅.

The following Nerve Lemma tells us that nice open covers of nice spaces

have nerves homotopy equivalent to the original space.

Lemma 4.2 (Nerve Lemma). Suppose U is an open cover of a paracompact24 24

A space is paracompact when every

open cover has an open re�nement that

is locally �nite. Here V is a re�nement of

U when every set in V is a subset of a set

in U. A cover is locally �nite when every

point in X has an open neighborhood that

intersects only �nitely many sets in the

cover. Note that every subspace of RN
and

every metric space is paracompact.

space X. Suppose further that every nonempty intersection of �nitely many
elements of U is contractible. Then

X ' N(U).

Proof. This is Corollary 4G.3 of Hatcher.
25

The entirety of Section 4G is a

25

Hatcher, A. (2002). Algebraic topology.

Cambridge University Press, Cambridge

fun read which is secretly about homotopy colimits.

4.2 The Čech �ltered complex

We now recast
26

the Čech �ltered complex from the �rst lecture in terms of
26

In the �rst lecture, I used closed balls

instead of open balls to de�ne the Čech

complex. We are now switching to the

more standard convention of using open

balls.

nerves. Fix a point cloud P ⊆ RN
and a scale s ∈ R. Let Us(P) := {Br(x) |

x ∈ P} be the collection of radius r open balls centered at points in P; this

is (tautologically) a cover of the subspace

Xs :=
⋃

x∈P
Br(x) ⊆ RN .
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The Čech complex of P at scale s is the abstract simplicial complex

Čs(P) := N(Us(P)).

By labeling the vertices of Čs(P) by elements of P (rather than by open

balls Br(x) for x ∈ P), we see that there is a natural simplicial inclusion

Čs(P) ⊆ Čt(P) for s ≤ t. This makes

Č(P) := {Čs(P) | s ∈ R}

into an R-�ltered abstract simplicial complex which we call the Čech �ltered
complex of P.

Proposition 4.3. For s > 0,

Čs(P) '
⋃

x∈P
Bs(x).

Proof. This follows from the Nerve Lemma (Lemma 4.2) because the in-

tersection of Euclidean balls is a convex open subset of RN
and hence

contractible. One of your exercises is to check that

convex open subsets of RN
are contractible,

i.e., homotopy equivalent to a point.

4.3 The Vietoris–Rips �ltered complex

As demonstrated by the Nerve Lemma (Lemma 4.2), the Čech construction

has very desirable theoretical properties. It is not, though, always the best

tool for the job. First, it is computationally expensive to determine when

k-fold intersections of open balls are nonempty. Second, our “data” might

not come from a point cloud in RN
or indeed be sampled from any ambient

metric space. For these reasons, we introduce the Vietoris–Rips complex of

a (usually �nite) metric space P.

Recall that a metric space is a set P equipped with a function d : P× P→
R≥0 such that

» d(x, y) = 0 if and only if x = y (identity of indiscernibles),

» d(x, y) = d(y, x) (symmetry), and

» d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

When P is a point cloud in RN
, we may endow it with the induced metric,

where d(x, y) = ‖y − x‖, but there are many other examples of metric

spaces, many of which do not embed isometrically in Euclidean space. (See

Morgan
27

for precise criteria on when this is possible.)
27

Morgan, C. L. (1974). Embedding matric

spaces in Euclidean space. J. Geom.,
5:101–107De�nition 4.4. The Vietoris–Rips complex of a metric space (P, d) at scale

s ∈ R, denoted VRs(P), is the abstract simplicial complex with vertex set

P and for which {x0, . . . , xk} ⊆ P is a k-simplex in VRs(P) if and only if

d(xi, xj) < s

for 0 ≤ i < j ≤ k.
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It is clear that VRs(P) ⊆ VRt(P) for s ≤ t. Further, we see that

{x0, . . . , xk} is in VRs(P) if and only if each {xi, xj} is in VRs(P). This

makes VRs(P) a �ag complex — a simplicial complex determined by its

1-skeleton.

Slightly more subtle is the relation between Vietoris–Rips and Čech

complexes:

Proposition 4.5. For a point cloud P ⊆ RN and scale s ≥ 0, we have

VRs/2(P) ⊆ Čs(P) ⊆ VR2s(P).

Furthermore, the �ag complex on Čs(P) is exactly VR2s(P). Every abstract simplicial complex K
induces a �ag complex F K determined by

the 1-skeleton of K. The set {x0, . . . , xk}
is a k-simplex of F K if and only if each

{xi , xj} is a 1-simplex of K. Of course, we

always have K ⊆ F K.

Proof. We begin by checking that Čs(P) ⊆ VR2s(P). We must verify

that {x0, . . . , xk} ∈ Čs(P) implies d(xi, xj) < 2s for all i, j. Since the

intersection of all the Bs(xi) is nonempty, we may choose some z in their

intersection. By the triangle inequality,

d(xi, xj) ≤ d(xi, z) + d(z, xj) < 2s,

as desired.

Next, suppose that {x0, . . . , xk} is a k-simplex of VRs/2(P). Since

d(x0, x1) < s/2, we may choose z ∈ Bs/4(x0) ∩ Bs/4(x1), in which case

d(z, x0) < s/4. For 0 ≤ i ≤ k we have d(z, xi) ≤ d(z, x0) + d(x0, xi) <

3s/4 < s. Thus z ∈ ⋂k
i=0 Bs(xi) 6= ∅, so {x0, . . . , xk} is a k-simplex of

Čs(P). This shows that VRs/2(P) ⊆ Čs(P).
For the �nal assertion, we already know that VR2s(P) is �ag and

contains Čs(P), so we automatically have F Čs(P) ⊆ VR2s(P). It remains

to show that if {x0, . . . , xk} is a k-simplex of VR2s(P), then each {xi, xj}
is a 1-simplex of Čs(P). We know that d(xi, xj) < 2s, so the midpoint of

the line segment connecting xi and xj witnesses that Bs(xi) ∩ Bs(xj) 6= ∅.

This completes the argument.

We may visualize the multiplicative interleaving of the Čech and

Vietoris–Rips �ltered complexes with the following diagram:

· · · Čs/2(P) Čs(P) Č2s(P) · · ·

· · · VRs/2(P) VRs(P) VR2s(P) · · · .

4.4 Notes

The presentation here follows Section 4.3 of Carlsson–Vejdemo-Johansson.
28 28

Carlsson, G. and Vejdemo-Johansson,

M. (2022). Topological data analysis with
applications. Cambridge University Press,

Cambridge

There are other �ltered complexes popular in TDA such as the alpha com-

plex, witness complex, and Delaunay complex, but we will not cover them

here.
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4.5 Exercises

(1) Suppose that U is an open cover of X that includes the open set X.

Prove that N(U) ' ∗.

(2) Prove the assertion in the proof of Proposition 4.3 that any convex open

subset of RN
is contractible.
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5 Distance and stability for persistent homology — 8 April 2024

We now investigate the stability properties of persistent homology. Our

goal is to demonstrate — in an appropriately precise fashion — that small

changes to point clouds result in only small changes to persistent homology

(with respect to Čech or Vietoris–Rips �ltered complexes).

Let K = {Ks}s∈R and L = {Ls}s∈R be R-�ltered abstract simplicial

complexes. Fix ε > 0. We say that K and L are ε-interleaved if there exist

simplicial map ϕs : Ks → Ls+ε and ψs : Ls → Ks+ε for all s ∈ R such that

the diagrams

· · · Ks Ks+ε Ks+2ε · · ·

· · · Ls Ls+ε Ls+2ε · · ·

ϕs

ψs

commute for all s ∈ R.

Example 5.1. Given a �nite metric space P, the log-Čech and log-

Vietoris–Rips �ltered complexes {Člog2(s)
(P)}s>0 and {VRlog2(s)

(P)}
are 1-interleaved.

The interleaving distance between K and L , denoted dI(K , L ), is the

in�mum of all values ε > 0 such that K and L are ε-interleaved. The

reader may check that dI is a metric on isomorphism classes of R-�ltered

simplicial complexes.

Given an R-�ltered simplicial complex K , let K∞ =
⋃

s∈R Ks and de�ne

the �ltration function of K to be f : K∞ → R, the simplicial function

which assigns to a simplex σ ∈ K∞ the smallest scale at which σ appears:

f (σ) = inf{s ∈ R | σ ∈ Ks}.

Then under a mild hypothesis
29

on K , we have that K is the sublevel
29

We require that for each scale s ∈ R

there exists s′ > s such that Ks′ = Ks . This

means that simplices have a de�nite birth

scale, as opposed to only existing on an

open half-in�nite interval (s, ∞).

�ltration for f :

Ks = f−1(−∞, s].

We may also de�ne a �ltration function on a simplicial complex K to be

a function f : K → R such that σ ⊆ τ =⇒ f (σ) ≤ f (τ). Then each

�ltration function gives rise to an R-�ltered simplicial complex via the

sublevel construction.

Proposition 5.2. Let K be a simplicial complex and suppose f , g : K → R are
�ltration functions. Then the sublevel �ltrations of K corresponding to f and g
are ‖ f − g‖∞ interleaved. Here ‖ f − g‖∞ = maxσ∈K | f (σ)− g(σ)|

measures the maximal di�erence between f
and g.Proof. Let ε = ‖ f − g‖∞, Ks = f−1(−∞, s], and Ls = g−1(−∞, s].

By the de�nition of ‖ ‖∞, we know that σ ∈ Ks implies σ ∈ Ls+ε and

similarly σ ∈ Ls implies σ ∈ Ks+ε. This allows us to de�ne the necessary

interleaving functions.
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Corollary 5.3. The interleaving distance between R-�ltered simplicial
complexes is bounded above by the ‖ ‖∞-norm of the di�erence between their
�ltration functions. Are they in fact equal? I don’t know.

Suppose the blue points are A ⊆ R2
and

the green points are B ⊆ R2
. The radius

of each blue disk is supa∈A d(a, B) and the

radius of each green disk is supb∈B d(A, b).
The larger of these values is dH(A, B).

There is an analogous notion of interleaving distance between R-

persistence modules. Fix ε > 0 and suppose V = {Vs}s∈R and W =

{Ws}s∈R are R-persistence modules. We say that V and W are ε-interleaved
if there exist linear transformations ϕs : Vs → Ws+ε and ψs : Ws → Ws+ε

for all s ∈ R such that the diagrams

· · · Vs Vs+ε Vs+2ε · · ·

· · · Ws Ws+ε Ws+2ε · · ·

ϕs

ψs

commute for all s. The interleaving distance between V and W is

dI(V , W ) := inf{ε > 0 | V , W are ε-interleaved}.

By functoriality of homology, we automatically have that ε-interleaved

�ltered complexes have ε-interleaved persistence modules, resulting in the

following proposition:

Proposition 5.4. If K , L are R-�ltered complexes, then

dI(PHp(K ; F), PHp(L ; F)) ≤ dI(K , L ).

While nice, this result is insu�cient for our purposes since interleaving

of simplicial complexes is too stringent a condition to demand. To remedy

this, we introduce the Hausdor� and Gromov–Hausdor� distances.

De�nition 5.5. If (X, d) is a metric space and A, B ⊆ X, then the Hausdor�
distance between A and B is

dH(A, B) := max

{
sup
a∈A

d(a, B), sup
b∈B

d(A, b)

}
where d(a, B) := infb∈B d(a, b) and similarly for d(A, b).

The reader may check that this is in fact a metric on subsets of X.

Remark 5.6. Write N(A, s) =
⋃

a∈A Bs(a) for the s-in�ation of A. Then

dH(A, B) = inf{s > 0 | A ⊆ N(B, s) and B ⊆ N(A, s)}.

The Gromov–Hausdor� distance bootstraps the Hausdor� distance into a

metric that compares compact metric spaces.

De�nition 5.7. Suppose A and B are compact
30

metric spaces. The Gromov– 30

A space is compact when every open

cover of that space has a �nite subcover.

We will be most interested in the case

where A and B are �nite.

Hausdor� distance between A and B is

dGH(A, B) := inf
µ,ν

dH(µ(A), ν(B))

where the in�mum is taken over all isometric embeddings µ : A → X,

ν : B→ X into a metric space X.
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While we will not give a proof, it turns out that dGH is a metric on

isometry classes of compact metric spaces, and the in�mum in its de�nition

is always attained.

Proposition 5.8. Let A, B be �nite metric spaces. Then for each p ∈N,

dI(PHp(Č(A), Č(B)) ≤ dGH(A, B) and dI(PHp(VR(A)), PHp(VR(B))) ≤ 2dGH(A, B).

Proof idea. Set ε = dGH(A, B). It su�ces to produce an ε-interleaving

of PHp(Č(A)) and PHp(Č(B)), and a 2ε-interleaving of PHp(VR(A))

and PHp(VR(B)). The idea is to set ϕs(a) equal to some b ∈ B with

d(a, b) < ε and similarly ψs(b) equal to some a ∈ A with d(a, b) < ε.

This won’t induce an interleaving of �ltered complexes, but will induce

appropriate interleavings of persistence modules. See Proposition 10.2.9 of

Virk
31

for more details, at least in the Vietoris–Rips, p = 1 case.
31

Virk, Ž. (2022). Introduction to persistent

homology. https://zalozba.
fri.uni-lj.si/virk2022.pdf.

Accessed on 19 March 2024

While interleaving distance of persistence modules has excellent formal

properties, it is challenging to compute. This is remedied by bottleneck
distance, which is equal to interleaving distance and computed purely in

terms of persistence diagrams.

Let D and E denote persistence diagrams, by which we mean multisets

of points in R
2 := R× (R ∪∞) that lie above the diagonal ∆ = {(x, x) |

x ∈ R}. For v = (x, y) ∈ R2
, set v := ((x + y)/2, (x + y)/2). A partial

matching between D and E is a bijection ϕ : D′ → E′ where D′ ⊆ D and

E′ ⊆ E.
32

The matching length of ϕ is de�ned to be
32

It is helpful to think of the points v in

D r D′ and E r E′ being paired with v.

Recall that ‖(x, y)‖∞ = max{|x|, |y|}.
`M(ϕ) := max

{
sup
v∈D′
‖v− ϕ(v)‖∞, sup

v∈DrD′
‖v− v‖∞, sup

v∈ErE′
‖v− v‖∞

}
.

A partial matching between red and

blue persistence diagrams is indicated.

The matching length is half of the side

length of the largest gray box. To get the

bottleneck distance, you would consider all

partial matchings and �nd the one with the

smallest largest gray box.

De�nition 5.9. Let D and E be persistence diagrams and write µ(D, E) for

the set of partial matchings from D to E. The bottleneck distance between

D, E is

dB(D, E) := inf
ϕ∈µ(D,E)

`M(ϕ).

Theorem 5.10. Suppose D is the persistence diagram for PHp(K ) and E is
the persistence diagram for PHp(L ). Then

dB(D, E) = dI(PHp(K ), PHp(L )).

We point the reader to Chazal et al33
and Bauer–Lesnick

34
for a proof of

33

Chazal, F., Cohen-Steiner, D., Glisse,

M., Guibas, L. J., and Oudot, S. Y. (2009).

Proximity of persistence modules and their

diagrams. In Proceedings of the Twenty-Fifth
Annual Symposium on Computational
Geometry, SCG ’09, page 237–246, New

York, NY, USA. Association for Computing

Machinery

34

Bauer, U. and Lesnick, M. (2014). Induced

matchings of barcodes and the algebraic

stability of persistence. In Proceedings
of the Thirtieth Annual Symposium on
Computational Geometry, SOCG’14, page

355–364, New York, NY, USA. Association

for Computing Machinery

this theorem. Our classi�cation of �nitely presented R-persistence modules

allows one to reduce to interval modules, and then the key fact is that

I[a, b) and I[a′, b′) are ‖(a, b)− (a′, b′)‖∞-interleaved.

We conclude by exploring stability with an example. The following four

pictures show di�erent collections of 100 points sampled with noise from

the same circle, along with their persistence diagrams (simultaneously

https://zalozba.fri.uni-lj.si/virk2022.pdf
https://zalozba.fri.uni-lj.si/virk2022.pdf
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depicting PH0 and PH1 of Vietoris–Rips complexes). Since the point

clouds are close to each other in terms of Gromov–Hausdor� distance, the

bottleneck distance between the persistence diagrams is small.

5.1 Notes

The presentation here follows Chapter 10 of Virk
35

and Section 5.1 of
35

Virk, Ž. (2022). Introduction to persistent

homology. https://zalozba.
fri.uni-lj.si/virk2022.pdf.

Accessed on 19 March 2024

Carlsson–Vejdemo-Johansson.
36

36

Carlsson, G. and Vejdemo-Johansson,

M. (2022). Topological data analysis with
applications. Cambridge University Press,

Cambridge

https://zalozba.fri.uni-lj.si/virk2022.pdf
https://zalozba.fri.uni-lj.si/virk2022.pdf
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5.2 Exercises

(1) What does the open ball of radius s centered at a given persistence

diagram look like in the bottleneck distance?

(2) Emulate the examples at the end of this section but with points sam-

pled with noise from a sphere. Make sure to include PH2 by setting

maxdim equal to 2.
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6 Morse functions and zigzag persistence — 10 April 2024

6.1 Zigzag diagrams and their persistence

A zigzag diagram of spaces is a sequence

X : X1 ↔ X2 ↔ · · · ↔ Xn−1 ↔ Xn

where each Xi is a space and each arrow↔ represents a continuous map

Xi → Xi+1 or Xi ← Xi+1. Applying homology Hp( ; F) to this diagram There is exactly one arrow between Xi
and Xi+1 for 1 ≤ i < n. The directions of

arrows for di�erent indices can change.

results in a zigzag module

Hp(X ; F) : Hp(X1; F)↔ Hp(X2; F)↔ · · · ↔ Hp(Xn−1; F)↔ Hp(Xn; F).

A theorem of Gabriel
37

classi�es the �nite-dimensional zigzag modules as
37

Gabriel, P. (1972). Unzerlegbare Darstel-

lungen. I. Manuscripta Math., 6:71–103;

correction, ibid. 6 (1972), 309,

direct sums of interval modules

Izz[b, d] : I1 ↔ I2 ↔ · · · ↔ In

where Ii = F for b ≤ i ≤ d, Ii = 0 otherwise, and every map F → F

or F ← F is the identity. The list of summands in a decomposition V ∼=⊕
i Izz[bi, di] is unique up to reordering.

The p-th zigzag persistence diagram of X is the multiset of intervals

[bi, di] appearing in the interval decomposition of Hp(X ; F).

6.2 Morse type functions and levelset zigzags

Suppose X is a space and f : X → R is a continuous function. For t ∈ R,

write Xt := f−1{t}; for I ⊆ R an interval, write XI := f−1 I. We

say that the pair (X, f ) is Morse type when there are �nitely many real

numbers a1 < a2 < · · · < an — called critical values of f — such that for

I = (−∞, a1), (a1, a2), . . . , (an−1, an), (an, ∞), there is a homeomorphism

YI × I
∼=−→ XI for some space YI via which f becomes projection onto the

second factor; further, we require that the homeomorphism extends to a

continuous function YI × I → XI where I is the closure of I in R. We also

assume that each Xt has �nitely generated homology.

Example 6.1. Before investigating how Morse type functions produce

an important case of zigzag persistence, we brie�y recall their archetype,

namely Morse functions on a smooth manifold.

Let M be a di�erentiable manifold and f : M→ R be a smooth function.

If d fp = 0, then we call p a critical point and f (p) a critical value; non-

critical points and values are called regular. If t is a regular value of f , then

Mt := f−1{t} is a di�erentiable submanifold of M, but the �bers over

critical values have singularities.

When d fp = 0, the Hessian of f at p is well-de�ned. In local coordinates,

this is the symmetric matrix of second order partial derivatives. When the

Hessian is nonsingular, we call p a non-degenerate critical point. The smooth
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function f is called a Morse function when it has no degenerate critical

points and all of its critical values are distinct. In this case, each critical

point has a chart U with coordinates (x1, . . . , xn) such that each xi(p) = 0
and

f (x) = f (p)− x2
1 − · · · − x2

γ + x2
γ+1 + · · ·+ x2

n

on U. We call γ the index of f at p. Note that index 0 corresponds to a local

minimum of f , while index n (the dimension of M) is a local maximum;

when 0 < γ < n the critical point is a saddle with γ decreasing directions

and n− γ increasing directions.

When [a, b] is an interval in R containing no critical values of f , we have

that M[a,b] := f−1[a, b] is di�eomorphic to Ma × [a, b] ∼= Mb × [a, b] in

a manner compatible with f .
38

If [a, b] contains a single critical value t = 38

One proves this by choosing a Rieman-

nian metric on M (smoothly varying choice

inner product on tangent spaces) and

employing gradient �ow.

f (p) and p has index λ, then Mb is di�eomorphic to Ma with a λ-handle

attached; this means that Mb
∼= Ma ∪ϕ H where H = Dλ × Dn−λ

and

ϕ : ∂Dλ × Dn−λ → Ma is an embedding. We also have Mb ' Ma ∪ψ Dλ

for some ψ : Sλ−1 → Ma.
39 39

While only true up to homotopy —

instead of di�eomorphism — this �nal

statement is useful for producing CW

decompositions and making computations

on manifolds.

Given a space X and function f : X → R of Morse type with critical

values a1 < · · · < an ∈ R, we may choose s0, . . . , sn ∈ R such that

s0 < a1 < s1 < a2 < · · · < sn−1 < an < sn.

Setting X j
i := X[si ,sj ]

we get a zigzag diagram

X : X0
0 → X1

0 ← X1
1 → X2

1 ← · · · → Xn
n−1 ← Xn

n .

We de�ne the level set zigzag persistent homology of (X, f ) to be H∗(X ; F).

Image from (Carlsson–de Silva–Morozov,

2009).

Due to the product structure between critical values, it does not depend on

the choice of si. As such, we make the convention that Xi
i−1 is labeled by

ai, and each Xi
i is labeled by the interval (ai, ai+1) containing it (where

a0 = −∞ and an+1 = ∞). The zigzag persistence intervals of X are then

labeled by the union of the labels of the supporting X j
i :

[Xi
i−1, X j

j−1]←→ [ai, aj]

[Xi
i−1, X j−1

j−1 ]←→ [ai, aj)

[Xi
i , X j

j−1]←→ (ai, aj]

[Xi
i , X j−1

j−1 ]←→ (ai, aj).

Example 6.2. The diagram on the right depicts a Morse function on a

surface with boundary in which f is projection onto the horizontal copy of

the real line. Let’s consider the zigzag persistence associated with

X0
0 → X1

0 ← X1
1 → X2

1 ← X2
2 → · · ·

when we apply H1. This gives the zigzag of vector spaces

0→ F{α, β} ← F{α, β} → F{α, β} g←− F{γ} → · · ·
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where α, β, γ are the 1-cycles indicated in the diagram and g(γ) = α + β.

This has direct sum decomposition as

0 F{α} F{α} F{α} 0 · · ·

0 F{α + β} F{α + β} F{α + β} F{γ} · · · .

⊕ ⊕ ⊕ ⊕⊕

The upper summand gives interval [X1
0 , X2

1 ] ↔ [a1, a2] in the decomposi-

tion of H1(X ; F). The full collection of intervals for H1(X ; F) is

{[X1
0 , X4

4 ], [X
1
0 , X2

1 ], [X
3
2 , X4

3 ]} ↔ {[a1, a5), [a1, a2], [a3, a4]}.

6.3 Time series analysis via zigzag persistence

Imagine that we have a simplicial complex evolving in time and we are able

to sample what the complex looks like at discrete time steps resulting in a

sequence of simplicial complexes K0, K1, K2, . . . , KN .
40

We will additionally
40

It seems more likely that we might

sample a point cloud at discrete time

steps. After committing the cardinal sin of

choosing a scale, we could get a time series

of simplicial complexes. In later sections

we will encounter two potential remedies

to this embarassing state of a�airs. First,

it seems quite plausible that we might be

sampling a network (graph) at discrete time

steps. In this case, the associated sequence

of clique complexes will have the desired

data type. Alternatively, we might generate

a generalized persistence diagram from a

time series of point clouds: each discrete

time could have an associated R-�ltered

complex. We will consider the inherent

complexities of this situation when we

discuss multipersistence.

assume that each Ki is a subcomplex of some ambient complex K, whence it

makes sense to consider the unions of consecutive complexes Ki ∪ Ki+1.

Zigzag persistence o�ers a method for detecting when the sequence (Ki)

undergoes topological changes. We consider the zigzag diagram

K : K0 ↪→ K0 ∪ K1 ←↩ K1 ↪→ K1 ∪ K2 ←↩ · · · ↪→ KN−1 ∪ KN ←↩ Kn

and the associated zigzag modules Hp(K ; F). By indexing Ki by i and

Ki ∪ Ki+1 by i + 1/2, the intervals at play are of the form [b, d] for 0 ≤
b < d ≤ N with b, d both integers or half-integers. We may also take b, d
natural numbers between 0 and N and then work with open and half-open

intervals where, e.g., [b, d) = [b, d− 1/2].
The following image from Myers et al41

depicts a zigzag analysis of a
41

Myers, A., Muñoz, D., Khasawneh, F. A.,

and Munch, E. (2023). Temporal network

analysis using zigzag persistence. EPJ Data
Science, 12(1):6

time series of simplicial complexes extracted from the British rail network.

The highly persistent H0 class with birth time 0 and death 6 indicates

that some component of the network remains connected Monday–Saturday.

Meanwhile, the daily periodicity of the H1 persistence diagram with mid-

day “peaks” indicates that many loops exist in the network midday but are

destroyed overnight when the trains are snuggled into bed.
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6.4 Notes

The presentation here is primarily based on Carlsson–de Silva–Morozov.
42 42

Carlsson, G., de Silva, V., and Morozov,

D. (2009). Zigzag persistent homology

and real-valued functions. In Proceedings
of the Twenty-Fifth Annual Symposium on
Computational Geometry, SCG ’09, page

247–256, New York, NY, USA. Association

for Computing Machinery

We did not discuss one of the most remarkable pieces of their paper, namely

the Pyramid Theorem which relates zigzag persistence to extended persistent
homology in the sense of Cohen-Steiner–Edelsbrunner–Harer

43
via a

43

Cohen-Steiner, D., Edelsbrunner, H., and

Harer, J. (2009). Extending persistence

using Poincaré and Lefschetz duality. Found.
Comput. Math., 9(1):79–103

diagram of Mayer–Vietoris diamonds.

Computing zigzag persistence is not supported by Ripser, but is available

in Dionysus; see https://mrzv.org/software/dionysus2/.

6.5 Exercises

(1) Work out the rest of the H1 persistence diagram for the Morse function

discussed in Example 6.2.

https://mrzv.org/software/dionysus2/
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7 Topological analysis of weighted graphs — 15 April 2024

7.1 Undirected graphs

A (simple) graph is a pair G = (V, E), where V is the set of vertices and

E ⊆ (V
2) is a collection of edges. A weighted (simple) graph is a triple Simple graphs have no self-loops, no

multiple edges between vertices, and no

direction on the edges.

G = (V, E, w) where (V, E) is a (simple) graph and w : E → R assigns a

weight to each edge.

Topologically, a graph is a 1-dimensional abstract simplicial complex.

Thus, if the graph is connected, it is homotopic to a bouquet of circles.
44 44 I.e., a wedge (one-point union),

∨
S1

.

There is another simplicial complex, though, that we may assign to a graph,

namely its clique or �ag complex CG. This complex has vertex set V and

contains a k-simplex {v0, . . . , vk} if and only if each edge {vi, vj} is in G;

in other words, the k-simplices of CG are exactly the (k + 1)-cliques of G. A clique is a complete induced subgraph.

Given a weighted graph G = (V, E, w), for each s ∈ R we de�ne a

simple graph

G(s) := (V, w−1(−∞, s]) = (V, {e ∈ E | w(e) ≤ s}).

This produces an R-�ltered graph {G(s)}s∈R and R-�ltered simplicial

complex

C G := {CG(s)}s∈R

called the clique �ltered complex of G. The following proposition follows

directly from de�nitions:

Proposition 7.1. If G is a �nite weighted graph, then for s su�ciently
negative, CG(s) is the 0-dimensional complex with vertices V, and there exists
S ∈ R such that for s ≥ S, CG(s) =

⋃
t≤S CG(t).

Remark 7.2. If the weight function w, viewed as a symmetric function

V × V → R, (u, v) 7→ w({u, v}), is a metric, then the clique �ltered

complex of G is identical to the Vietoris–Rips �ltered complex of the metric

space (V, w).

By applying Hp( ; F) to C G, we get an R-persistence module which we

denote PHp(G; F) and call the p-th persistent homology group of G (with

coe�cients in F). We automatically have that PHp(G; F) = 0 for p ≥ |V|.

7.2 Experiments

See the github repository for code generating the following table. What do

you notice? What do you wonder?

7.3 Directed graphs

A directed graph is a pair G = (V,~E) where ~E ⊆ V ×V r ∆ is the directed We are removing the diagonal ∆ =
{(v, v) | v ∈ V} to avoid self-loops.

edge set. We view (u, v) ∈ ~E as directed from u to v and may draw it as
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Table 1: Plots of longest (most per-

sistent) (birth, death) scales of PH1

and PH2 classes for 500 complete

weighted graphs with weights

sampled uniformly randomly from

[0, 1].
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u → v. A weighted directed graph is a triple G = (V,~E, w) where (V,~E) is

a directed graph and w : ~E→ R asigns a weight to each directed edge.

De�ne the in-degree of a vertex v to be

deg
in
(v) := |{u ∈ V | (u, v) ∈ ~E}|

and de�ne its out-degree to be

deg
out

(v) := |{u ∈ V | (v, u) ∈ ~E}|.

We call a vertex a source when its in-degree is 0, and a sink when its out-

degree is 0.

We would like to produce a directed version of the of the clique complex,

and thus need a notion of directed clique. To build up this notion, �rst recall

that a directed cycle is a sequence (v0, v1), (v1, v2), . . . , (vk−1, vk), (vk, v0)

of directed edged in G. We call G a directed acyclic graph (DAG) when it

contains no directed cycles. A directed k-clique of G is an induced subgraph

on k vertices {v1, . . . , vk} that is a DAG and such that there is exactly one

edge between any unordered pair of vertices. By reordering the vertices, we

may write a directed k-clique as an ordered k-tuple of vertices (v1, . . . , vk)

such that the edges between the vi are exactly vi → vj for 1 ≤ i < j ≤ n.

De�nition 7.3. If G = (V,~E) is a directed graph, then the directed clique
complex of G is the abstract simplicial complex ~CG whose k-simplices are

directed (k + 1)-cliques of G.

If G = (V,~E, w) is a weighted directed graph, then we may once again

threshhold to get an R-�ltered directed graph {G(s)}s∈R and R-�ltered

simplicial complex

~C G := {~CG(s)}s∈R.

Applying Hp( ; F), we get the persistence module PHp(G; F).

7.4 Application: the Blue Brain Project

The work of Reimann et al.45
with EPFL’s Blue Brain Project (https: 45

Reimann, M. W., Nolte, M., Scolamiero,

M., Turner, K., Perin, R., Chindemi, G.,

Dłotko, P., Levi, R., Hess, K., and Markram,

H. (2017). Cliques of neurons bound into

cavities provide a missing link between

structure and function. Frontiers in
Computational Neuroscience, 11

//www.epfl.ch/research/domains/bluebrain/) uses

directed clique complexes to analyze the neuronal connectivity of a digitally

reconstructed mouse brain. In vitro experiments on the brain connectome

are limited by the number of neurons that can be recorded simultaneously.

The Blue Brain Project synthesizes a mouse connectome in silica in order

to explore large scale structure in a synthetic connectome with ∼ 30, 000
neurons. A directed graph of neurons is determined by pre- and post-

synaptic structure of chemical (as opposed to electric) synnapses. In a

functional network, the authors plot the Euler characteristic and Betti

numbers of the network to detect time-variation in the network.

Using these methods, the authors discovered directed simplices up to

dimension 7 in the reconstructed connectome, and they also demonstrate

https://www.epfl.ch/research/domains/bluebrain/
https://www.epfl.ch/research/domains/bluebrain/
https://www.epfl.ch/research/domains/bluebrain/
https://www.epfl.ch/research/domains/bluebrain/
https://www.epfl.ch/research/domains/bluebrain/
https://www.epfl.ch/research/domains/bluebrain/
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that the topology of the network organizes spike correlations. They do not

employ zigzag persistence to analyze their time-varying network; it would

be interesting to see how this tool captures the evolving electrical activity

of the connectome.

The following �gure is copied from Reimann et al. (2017):

7.5 Notes

Some of this material is covered in Chapter 8 of Dey–Wang.
46

That source
46

Dey, T. K. and Wang, Y. (2022). Computa-
tional topology for data analysis. Cambridge

University Press, Cambridge

also describes path homology, an interesting alternative to simplicial

homology of directed clique complexes when working with data naturally

encoded as a weighted directed graph.

7.6 Exercises

(1) Adapt the code used to generate Table 1 so that it also plots results for

PH3.

(2) Keep playing with the code and generate some conjectures.
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(3) Prove your conjectures, write a paper, and get it published.
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8 Poset-�ltered objects and generalized persistence — 17 April 2024

We will spend the next couple of lectures delving into generalized and

multiparameter persistence. This is a rapidly developing research area that

considers situations in which data is �ltered by multiple parameters or,

more generally, a partially ordered set. The structure theory for generalized

persistence modules is wildly
47

more complicated, and the research com-
47

In a technical sense.

munity is actively searching for better invariants and hypotheses that will

permit the fruitful application of generalized persistence.

Today’s lecture will de�ne generalized persistence and then explore

several methods for producing poset-�ltered simplicial complexes from

data.

De�nition 8.1. A partially ordered set (or poset) is a pair (P,≤) of a set P We will commonly just write P for a poset

when the relation ≤ is understood by

context.

and a relation ≤ which is

» re�exive (x ≤ x),

» antisymmetric (x ≤ y and y ≤ x implies x = y), and

» transitive (x ≤ y and y ≤ z implies x ≤ z).

A partial order is total when every pair of elements x, y ∈ P is compa-

rable (x ≤ y or y ≤ x). Examples of total orders are (Z,≤) and (R,≤),
but there are many partial orders which are not total. For instance, consider

the set N = {0, 1, 2, . . .} with the relation x 4 y if and only if x divides

y (i.e., there exists a natural number z such that xz = y). There are many This is often denoted x | y, but the lack of

directionality in the pipe symbol can lead to

confusion.

incomparable numbers under the divisibility relation, but the reader may

check that 4 is still a partial order.

Example 8.2. Given posets P and Q there is an induced partial order on

P×Q given by (x, y) ≤ (x′, y′) if and only if x ≤ x′ and y ≤ y′. This will

be the standard partial order we consider on Z2
and R2

, and similarly for

higher Cartesian powers of these sets.

There is a category of partially ordered sets in which the morphisms

f : P → Q are the monotonic (also called nondecreasing) functions, i.e.,
those satisfying x ≤ y =⇒ f (x) ≤ f (y). An isomorphism of posets is

a monotonic function admitting a monotonic inverse; this is equivalent to

being a monotonic bijection.

Example 8.3. Write n := {1, 2, . . . , n} for the �nite linearly ordered chain

with 1 < 2 < · · · < n. By the construction of Example 8.2, we get an In general we write x < y for x ≤ y and

x 6= y.
induced partial order on m× n which we refer to as a rectangular grid poset.

It is amusing to note that m× n is isomorphic to {paqb | 0 ≤ a ≤ m, 0 ≤
b ≤ n} under divisibility.

Every poset P induces a category with objects the underlying set P and

a unique morphism x → y if and only if x ≤ y. We will abuse notation and

write P for the category induced by P.
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De�nition 8.4. Let P be a poset. A P-�ltered object in a category C is a func-

tor
48 P→ C. A morphism of P-�ltered objects is a natural transformation.

49 48

A functor F between categories C,D,

denoted F : C → D is a function from

the objects of C to the objects of D (also

denoted F) along with a function from

morphisms of C to morphisms of D (also

denoted F) such that f : c→ c′ in C implies

F f : Fc → Fc′ in D that also takes identity

morphisms to identity morphisms and

respects composition.

49

For functors F, G : C → D, a natural

transformation α : F =⇒ G is the data

of morphisms αc : Fc → Gc in D for each

object c of C such that for each morphism

f : c→ c′ in C the diagram

Fc Gc

Fc′ Gc′

αc

αc′

F f G f

commutes.

For any category C and poset P, we write CP
for the category of P-�ltered

objects in C and morphisms.

We will be particularly interested in P-�ltered spaces and P-�ltered

vector spaces. Write sCpx for the category of abstract simplicial complexes

and simplicial maps, and write VecF for the category of F-vector spaces

and F-linear transformations; the full subcategory of �nite-dimensional

F-vector spaces will be denoted vecF.

De�nition 8.5. For a poset P, a P-persistence module over F is a P-�ltered

F-vector space. If a persistence module lies in the subcategory vecP
F we call

it pointwise �nite-dimensional.

By taking p-th homology levelwise, we get a functor

We will often write {Kx}x∈P for a P-

�ltered object K : P → C. This omits the

morphisms Kx → Ky for x ≤ y from

notation, but we should not forget them!

sCpxP VecP
F

{Kx}x∈P {Hp(Kx; F)}x∈P.

Hp

We would like to study data via P-persistence modules. To do so, we

need methods that produce topologically meaningful P-�ltered simplicial

complexes from data, and we also need good invariants for P-persistence

modules. We’ll look at the �rst step today, and investigate invariants of

generalized persistence modules during our next meeting.

While it is interesting to study poset-�ltrations in general, the most

common posets arising in practice are Zn
and Rn

with ~x ≤ ~y if and only

xi ≤ yi for 1 ≤ i ≤ n. We will refer to both Zn
- and Rn

-�ltered objects

as multi�ltered. Among these, the n = 2, 3 cases of bi�ltered and tri�ltered
objects are most common. We will also use these terms when one or more

of the coordinate orders ≤ is replaced with ≥.

De�nition 8.6. For a �nite metric space (X, d), s ∈ R, and t ∈ N,

we de�ne VR
deg
s,t (X) to be the maximal subcomplex of VRs(X) whose

vertices have degree at least t − 1 in the 1-skeleton of VRs(X). Then

VRdeg(X) is an R ×Nop
-�ltered simplicial complex, where Nop :=

(N,≥). We call VRdeg(X) the degree-Vietoris–Rips bi�ltration.

De�nition 8.7. Suppose X is a �nite metric space and δ : X → R is a

function. We might think of δ as a density on the points of X (presumably

under the hypothesis that δ ≥ 0), and we might view denser points as those

which are more signi�cant or those in which we have more con�dence. For

s, t ∈ R, we de�ne

VR
↓
s,t(δ) := VRs(δ

−1[t, ∞))
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to be the radius s Vietoris–Rips complex on points in X of density at least

t. Then VR↓(δ) is an R × Rop
-�ltered simplicial complex called the

density-Vietoris–Rips bi�tration of (X, δ).

De�nition 8.8. Given a �nite metric metric space X, de�ne

γ : X −→ R

x 7−→ 1
|X| ∑

y∈X
d(x, y)

to be the average distance from a point x ∈ X to the other points of X; we

call γ an eccentricity function and may de�ne VR↓(γ) in the same way as

the previous example; it is called the eccentricity-Vietoris–Rips bi�ltration of

X.

Of course, both the density- and eccentricity-Vietoris–Rips bi�ltrations

may be modi�ed to use sublevel instead of superlevel sets. In the following

example, we demonstrate how to build a direction-agnostic multi�ltration.

De�ne U to be the subposet of Rop ×R consisting of pairs (a, b) with a ≤ b.

Note that (a, b) ≤ (c, d) in U if and only a ≥ c and b ≤ d; we can think of

this as the interval [a, b] being a subinterval of [c, d].

De�nition 8.9. For a �nite metric space X and function f : X → R, we

de�ne the interlevel-Vietoris–Rips tri�ltration U ×R→ sCpx by

VR( f )(a,b),s := VRs( f−1[a, b]).

We conclude with a multi�ltered generalization of clique complexes.

De�nition 8.10. Supoose G = (V, E, w : E → Rn) is a multiweighted

graph. For s1, . . . , sn ∈ R, we may set

Cs1,...,sn(G) := C(G(s1, . . . , sn))

where G(s1, . . . , sn) is the simple graph with vertex set V and edges

E(s1, . . . , sn) = w−1((−∞, s1]× · · · × (−∞, sn]).

Then C (G) is an Rn
-�ltered simplicial complex called the multi�ltered

clique complex of G.

8.1 Notes

Some of the material here — especially the de�nitions of various multi�ltra-

tions — is drawn from Botnan–Lesnick.
50 50

Botnan, M. B. and Lesnick, M. (2023). An

introduction to multiparameter persistence.

arXiv:2203.14289

8.2 Exercises

(1) Find a monotonic injection of the divisibility poset (N,4) into the

product of countably many copies of {0 < 1 < 2 < · · · < ∞}. (Hint:
Prime factorization.)

https://arxiv.org/abs/2203.14289
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(2) For a poset P, check that Hp : sCpxP → VecP
F is really a functor. In

particular, check that it respects so-called vertical composition of natural

transformations.
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9 Structure and invariants for generalized persistence modules —
22 April 2024

In the case of �nitely presented Z- and R-persistence modules, we ob-

served that barcodes / persistence diagrams provide a complete invariant

in the sense that two such persistence modules are isomorphic if and only

if they have the same barcode (up to permuatation). The same was true for

zigzag persistence modules. The situation is far less well-behaved for more

general persistence modules, but a few pleasant properties persist to this

level of generality. Throughout, let P be a poset.

De�nition 9.1. A P-persistence module M : P → VecF is indecomposable
when it cannot be expressed up to isomorphism as the direct sum of two

nontrivial P-persistence modules.

De�nition 9.2. A P-persistence module is Noetherian when every ascending

chain of submodules stabilizes; it is Artinian when ever descending chain

of submodules stabilizes; it has �nite length when it is both Noetherian and

Artinian.

Theorem 9.3 (Krull–Schmidt). Let P be a poset. If a P-persistence module
M : P→ VecF has �nite length, then it has a decomposition into indecompos-
ables

M ∼=
⊕
λ∈Λ

Mλ

which is unique up to permuatation.

If P = Z or R or is of type An (a zigzag), then the indecomposables

are exactly the interval modules I[b, d). But — alas and alack — almost all

other posets have wild type representation theory. This is a consequence of

Gabriel’s theorem
51

on quiver representations. For the sake of simplicity,
51

Gabriel, P. (1972). Unzerlegbare Darstel-

lungen. I. Manuscripta Math., 6:71–103;

correction, ibid. 6 (1972), 309,

we limit the ensuing discussion to �nite posets, but the results adapt in�nite

posets in a natural way.

De�nition 9.4. Let P be a �nite poset. Then P has �nite representation type
when vecP

F has a �nite number of indecomposables up to isomorphism.

We say P has tame representation type when, up to isomorphism, all

but �nitely many indecomposables in vecP
F appear in one of �nitely many

one-parameter families
52

of representations.
52

We won’t de�ne this term precisely, but

you’ll get a feeling for it as soon as we look

at some examples.

Drozd’s theorem implies that for F alge-

braically closed, every P has �nite, tame, or

wild representation type.

We say P has wild representation type when, up to isomorphism, vecP
F

contains a two-parameter family of indecomposables.

For brevity, let’s start saying P-module instead of P-persistence module.

A common class of indecomposable P-module is an interval module.

De�nition 9.5. An interval53 I in a poset P is a nonempty subset of P such
53

We caution the reader that this is not
the most common de�nition of intervals

in posets. The standard version is either

(i) a pair x ≤ y in P or, equivalently, (ii)

[x, y] := {z ∈ P | x ≤ z ≤ y} for x ≤ y.

Standard version (ii) is a special case of the

intervals considerered in TDA’s boutique

de�nition.

that
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(1) x, y ∈ I and x ≤ z ≤ y implies z ∈ I, and

(2) if x, y ∈ I then there is a zigzag x = u0, u1, . . . , um = y of elements of

I such that each ui, ui+1 are comparable in P.

For P = R, we previously used the

notation I[b, d) for F[b,d) .
De�nition 9.6. If I is an interval in a poset P, then the interval module FI is

de�ned by

(FI)x =

F if x ∈ I,

0 otherwise

with transition maps idF whenever source and target are F and otherwise

0.

De�nition 9.7. A P-module M is interval-decomposable when it splits as a

direct sum of interval modules.

Previously, we learned that every �nitely presented n-persistence

module is interval indecomposable. Since n contains �nitely many intervals

(as does any �nite poset), this means that n has �nite representation type

with indecomposables completely classi�ed by intervals. The same is

true for �nite zigzags, and it is also the case that 2 × 2 has �nite type

representations with interval-decomposition.

Example 9.8. The poset 3× 2 has �nite type representations but some

of its indecomposables do not correspond to intervals. See Example 8.3 of

Botnan–Lesnick.
54 54

Botnan, M. B. and Lesnick, M. (2023). An

introduction to multiparameter persistence.

arXiv:2203.14289Example 9.9. The poset with Hasse diagram

•

• • • •
has tame representation type. See Example 8.4 of ibid.

Example 9.10. The poset with Hasse diagram

•

• • • • •

has wild representation type. See Example 8.5 of ibid. Indeed, for λ ∈ F, let

J(λ) denote the Jordan block

J(λ) =



λ 1 0 · · · 0

0 λ 1 · · · 0
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

0 · · · 0 λ 1

0 · · · 0 0 λ



https://arxiv.org/abs/2203.14289
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with λ on the diagonal, 1 on the superdiagonal, and 0 elsewhere. Now for

λ, µ ∈ F, consider the indecomposable persistence module Mλ,µ
given by

Fn ⊕Fn

Fn Fn Fn Fn Fn
A B C D E

where A = (In
0 ), B = ( 0

In
), C = ( In

J(λ)), D = ( In
J(µ)), and E = (In

In
). This is

what a 2-parameter family of representations and makes this “5-star poset”

wild type.

Here is why wild representation type is so, well, wild:

Theorem 9.11. A �nite poset P is wild type if and only if it satis�es any of the
following equivalent conditions:

(1) There exists a 2-parameter family of indecomposable P-modules.

(2) There exists an n-parameter family of indecomposable P-modules for any
n ∈N.

(3) For every �nite poset Q, there exists an exact functor F : vecQ
F → vecP

F

such that

(i) if M is indecomposable, then so is F(M);

(ii) F(M) ∼= F(N) if and only if F ∼= N; and

(iii) F(λ f + µg) = λF( f ) + µF(g) for all f , g : M→ N and λ, µ ∈ F.

We see, thus, that a full classi�caiton of indecomposable P-modules for P
wild type would yield a full classi�caiton of indecomposable Q-modules for

all �nite posets Q, which is simply too much to hope for.

We can embed the above 2-parameter family of indecomposable 5-star-

modules into the grid 5× 5 in the following manner:

Fn Fn ⊕Fn Fn ⊕Fn Fn ⊕Fn Fn ⊕Fn

0 Fn Fn ⊕Fn Fn ⊕Fn Fn ⊕Fn

0 0 Fn Fn ⊕Fn Fn ⊕Fn

0 0 0 Fn Fn ⊕Fn

0 0 0 0 Fn.

A id id id

B

B

id

id

id

id

id

C

C

id

id

id

D

D

id

E
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This settles matters. Nearly all �nite posets have wild type representa-

tions, and we cannot hope to fully classify them.

Continuing on undeterred, though, we may still seek robust and in-

formative invariants of generalized persistence modules. Here are a few

common examples. For each, consider what advantages and disadvantages

the invariant poses:

De�nition 9.12. The Hilbert function of M ∈ vecP
F is

HFM : P −→N

x 7−→ dimF Mx.

De�nition 9.13. The rank invariant M ∈ vecP
F is the function For P = Z or R, the rank invariant is

complete. In particular, you can recover

barcodes from the rank invariant.rkM : P2 −→N

(x ≤ y) 7−→ dimF im(Mx → My).

De�nition 9.14. For M ∈ vecRn

F , there is a minimal free resolution

0→ Fn → Fn−1 → · · · → F1 → F0 → M→ 0.

For x ∈ Rn
and 0 ≤ i ≤ n, set

βM
i (x) := dimF(Fi)x

where (Fi)x is the x-graded part of Fi. The functions βM
i : Rn →N are the

multi-graded Betti numbers of M.

The software RIVET (https:
//rivet.readthedocs.io/) al-

lows one to interactively explore �bered

barcodes and other invariants of bipersis-

tence modules.

De�nition 9.15. Call an a�ne line L ⊆ Rn admissible when the product

partial order on Rn
restricts to a total order on L. The �bered barcode of

M ∈ vecP
F is the function taking admissible lines L to the barcode of M ◦ γL

where γL : R→ L is an isometric parametrization of L.

There is a notion of interleaving distance on Rn
-persistence modules

that is both stable and universal. Unfortunately, its computation is also

NP-hard.

In the below discussion, for M ∈ VecRn

F and u ∈ P, write M(u) for the

u-shift of M with M(u)x = Mu+x and structure maps shifted accordingly.

Also, given ε ≥ 0, de�ne~ε := (ε, ε, . . . , ε) ∈ Rn

De�nition 9.16. Given ε ≥ 0, we say that M, N ∈ VecRn

F are ε-interleaved
when there exist morphisms f : M → N(~ε) and g : N → M(~ε) such that

g(~ε) ◦ f = φ2~ε
M and f (~ε) ◦ g = φ2~ε

N .

The interleaving distance between M, N, denoted dI(M, N) is the

in�mum of ε ≥ 0 such that M, N are ε-interleaved.

There is a precise notion of stability for (pseudo-) distances on persis-

tence modules. Not only is dI stable, but when the base �eld is prime (Q

https://rivet.readthedocs.io/
https://rivet.readthedocs.io/
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or Fp), it is also known that dI is maximal among stable distances; see

Theorem 6.7 of Botnan–Lesnick.

But alas, the following theorem of Bjerkevik–Botnan–Kerber
55

tells us
55

Bjerkevik, H. B., Botnan, M. B., and Ker-

ber, M. (2020). Computing the interleaving

distance is np-hard. Foundations of Computa-
tional Mathematics, 20(5):1237–1271

that interleaving distance is quite hard to compute.

Theorem 9.17. For F a �nite �eld, approximating the interleaving distance on
bipersistence modules within a factor of 3 is NP-hard.

Despite these challenges, research persists in further understanding the

structure and application of generalized persistence modules.

9.1 Notes

Everything in this lecture is a hasty and condensed permutation of material

from Botnan–Lesnick.
56 56

Botnan, M. B. and Lesnick, M. (2023). An

introduction to multiparameter persistence.

arXiv:2203.14289

9.2 Exercises

(1) For an interval I in a poset P, prove that the interval module FI is

indecomposable.

(2) What shape do intervals in R2
have?

(3) Download RIVET and use it to explore some bipersistence modules.

https://arxiv.org/abs/2203.14289
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