
MATH 546: MANIFOLDS
MONDAY WEEK 1

Let R2×2 ∼= R4 denote R4 with its standard smooth structure. Denote the usual determinant
function by

det : R2×2 −→ R(
a b
c d

)
7−→ ad− bc.

Problem 1. Why is det : R2×2 → R a smooth function? Where does it have rank 1, and where does
it have rank 0?

Problem 2. Why is GL2(R) = {M ∈ R2×2 | detM 6= 0} an open submanifold of R2×2?

Problem 3. Why are the multiplication GL2(R) × GL2(R) → GL2(R), (A,B) 7→ AB and inversion
GL2(R)→ GL2(R), A 7→ A−1 smooth?

When a group has a smooth manifold structure with smooth multiplicaiton and inversion, it’s
called a Lie group; you just proved that GL2(R) is a Lie group.

Problem 4. Check that det : GL2(R) → R× is a smooth group homomorphism of constant rank 1.
(This follows pretty directly from Problem 1.)

Problem 5. Show that the special linear group

SL2(R) := ker(det : GL2(R)→ R×)

is an embedded subgroup of GL2(R) with smooth multiplication and inversion maps.

We now turn to the Iwasawa decomposition of SL2(R). Consider the following three subgroups of
SL2(R):

K =

{(
cos t − sin t
sin t cos t

) ∣∣∣∣ t ∈ R
}
, A =

{(
λ 0
0 1/λ

) ∣∣∣∣ λ > 0

}
, N =

{(
1 x
0 1

) ∣∣∣∣ x ∈ R
}
.

Problem 6. Check that K ≈ S1, A ≈ R>0, and N ≈ R as embedded submanifolds of SL2(R).

The Iwasawa decomposition theorem says that the assignment

K ×A×N 7−→ SL2(R)
(k, a, n) 7−→ kan

is a diffeomorphism. Note: It is not a group isomorphism. Proving this would take a bit too long
for class, but you can check on your own time that a smooth inverse to this map is given by the

following rules. For g =

(
a b
c d

)
∈ SL2(R), set r(g) :=

√
a2 + c2 and

k(g) =

(
a/r(g) −c/r(g)
c/r(g) a/r(g)

)
, a(g) =

(
r(g) 0
0 1/r(g)

)
, n(g) =

(
1 (ab+ cd)/(a2 + c2)
0 1

)
.

Then g 7→ k(g)a(g)n(g) is inverse to the above assignment.

Problem 7. Use the Iwasawa decomposition to argue that SL2(R) is diffeomorphic to S1×R>0×R,
which is in turn diffeomorphic to the interior of a solid torus.
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Now define an action of R on SL2(R) via
R× SL2(R) −→ SL2(R)

(t, A) 7−→
(
exp(t) 0

0 exp(−t)

)
A.

Problem 8. Verify that this is a smooth left action of R (under addition) on SL2(R).

The orbits RA of elements A ∈ SL2(R) under this action are one-dimensional submanifolds of
SL2(R).

Problem 9. Call A =

(
a b
c d

)
∈ SL2(R) hyperbolic when |a+ d| ≥ 2. Check that hyperbolic matrices

in SL2(R) diagonalize over the reals so that there exists P ∈ SL2(R) such that

PAP−1 = ±
(
exp(t0) 0

0 exp(−t0)

)
for some t0 ∈ R.

Working in the above setup, consider the lattice P (Z2). This is a rank 2 discrete subgroup of R2.

In fact, if P =

(
a b
c d

)
, then this lattice is generated by (a, c) and (b, d), and the fundamental paral-

lelepiped spanned by these vectors has area one. A deep theorem of Quillen (utilizing the Eisenstein
series G4 and G6) tells us that the space of unimodular (area one) lattices is diffeomorphic to the
complement of a trefoil knot in S3. (Whoah!)

Now consider the R-orbit of P (Z2) in the above setup. These are the points(
exp(t) 0

0 exp(−t)

)
P (Z2), t ∈ R.

At t = t0, we have (
exp(t0) 0

0 exp(−t0)

)
P (Z2) = PAP−1 · P (Z2) = PA(Z2).

Problem 10. Prove that A ∈ SL2(R) fixes the lattice Z2 — i.e., A(Z2) = Z2 — if and only if A has
integer entries, i.e., A ∈ SL2(Z).

We now see that if A ∈ SL2(Z) is hyperbolic, then at t = t0 we get(
exp(t0) 0

0 exp(−t0)

)
P (Z2) = P (Z2).

In fact, the periodic orbits of the modular flow on unimodular lattices are in bijection with conjugacy
classes of hyperbolic elements of SL2(Z)! In class, I’ll show some animations of these orbits.

Recalling Quillen’s theorem on the space of unimodular lattices, we can view these periodic or-
bits as links for which one component is the trefoil knot. Etienne Ghys has proved some marvelous
theorems about these links:

· The linking number of these flows with the trefoil knot equals the Rademacher function of
the corresponding matrix in SL2(Z).
· The periodic orbits of the modular flow are the same as the knots occuring in the Lorenz

equations.
I could go on and on about this topic, so please ask questions. As we continue this term, you’ll

see that a lot of these objects are examples of the structures we’ll be studying: Lie groups, Lie
subgroups, smooth actions on manifolds, flows, . . . .
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