19.V.23

The de Rham Theorem Lemma Masmooth n-mfld. Suppose P(U) is a statement about open subsets of M, satisfying the following properties: (1) P(U) is true for $U \approx \mathbb{R}^n$ (2) P(u), P(v), $P(u v) \rightarrow P(u v)$ (3) $\{u_{\alpha}\}$ disjoint, $P(u_{\alpha})$ $\forall \alpha \implies P(\Pi u_{\alpha})$ Then P(M) is frue. PF Step 1 If M≈ open subset of IR", then PIM) is true. ULDG, M= open subset of R". By (1) + (2) + induction, PLU) is true for U = union of finite # of convex open subsets b/c $(U_1, \cup \dots \cup U_n) \cap U_{n+1} = (U_1 \cap U_{n+1}) \cup \dots \cup (U_n \cap U_{n+1}),$

Let $f: M \longrightarrow (0, \infty)$ be an exchanation. (f'(0, c) compact for c>0)Sut An = f'(n, n+1), which is compact. Cover An by finitely many convex opens in $f^{-1}(n-\frac{1}{2},n+\frac{3}{2})$ and let U_n be their union Then $A_n \in U_n \in f^{-1}(n-\frac{1}{2},n+\frac{3}{2})$. An a hild so the Venan are disjoint, as arn the Uodd. Since Un = fin union convue opens, P(Un) true Vn Sot U= UU2n, V= UU2n+1, By (3) P(u), P(v) true. But $U \cap V = (U u_{2n}) \cap (U u_{2n+1}) = \coprod (u_{2i} \cap U_{2j+1})$ Thus P(UNV) also true Buy (2), P(M)=P(UUV) finite union convert open1 is true.

Step 2 For the gen'l case, us may now substitute (1') P(U) 7 true for all U ~ open subset of R" for (1). Repeat the Step 1 proof raplacing "convex open rubset of R" with "open subset of R" ." We are interested in the statement $P(U) = "H_{dR}^{P}(U) \cong H^{P}(U, IR)$ " But for what iso? For M a smooth mfld, p?O, the de Rham homomorphism $d: H^{P}_{dR}(M) \longrightarrow H^{P}(M, \mathbb{R})$ is given by $[\omega] \longmapsto [c] \in H_{p}(M) \cong H^{\infty}_{p}(M)$ $z^{p}(m) \leq \Omega^{p}(M)$ $\int_{M} \omega$ smooth p-cycle representing [c]

Here if $\sigma: \Delta_p \to M$ smooth, then $\int U = \int \sigma^* \omega$ domain of integration in R? and $\int W := \sum c_i \int W$ $\sum c_i \sigma_i$ Stokes' Then for Chains If e is a smooth p-chain in a smooth ufld M and w is a smooth (p-1)-form on M, then $\int \omega = \int d\omega$ Pf Suffices to prove this for $c = \sigma : \Delta_p \longrightarrow M$ smooth. By Stokes' (w/ corners), $\int d\omega = \int \sigma^* d\omega = \int d\sigma^* \omega = \int \sigma^* \omega$.

Now $\int \sigma^* \psi = \sum_{i=0}^{\infty} (-i)^i \int F_{i,p}^* \sigma^* \psi$ (p. 481] $= \sum_{i=0}^{2} (-i)^{i} \int_{\Delta P^{-1}} (\sigma \circ F_{i})^{*} \omega$ $= \sum_{i=0}^{2} (-i)^{i} \int \omega$ ΞĴω so wire done!

We can now chuck well-defn of the de Rham homomorphism
$\mathcal{J}: H^{\mathcal{I}}_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}}(\mathbf{M}) \longrightarrow H^{\mathcal{I}}(\mathcal{M}; \mathbb{R})$
$Z^{P}(M) \rightarrow [H^{P}(M, R)] \qquad [c] \qquad H^{P}(M, R)$
$\int_{\tilde{c}} \omega R$
Inderd, if ë, ë mooth rap'g [e], then ë-c'= 0
for some smooth (p+1)-chain b. Thus
$\int_{\widetilde{e}} \omega - \int_{\widetilde{e}'} \omega = \int_{\widetilde{b}} \omega = \int_{\widetilde{b}} d\omega = 0$
Further, if $\omega = d\eta$ is exact, then $\int_{\tilde{c}} \omega = \int_{\tilde{c}} d\eta = \int_{\tilde{c}} \eta = 0$ ble $\partial \tilde{c} = 0$.

Sof $P(u) = d: H_{dR}^{p}(u) \stackrel{=}{\rightarrow} H^{p}(u; R) \forall_{p}$ Suffices to show (1) $P(u)$ is true for $U \approx R^{n}$ (2) $P(u), P(v), P(u \wedge v) \implies P(u \vee v)$ (3) $Ju_{\chi} \{ disjoint, P(u_{\chi}) \} \forall_{\chi} \implies P(\Pi U_{\chi})$	
(1) This is (essentially) the Poincard lemma! Both domain and codomain are TR concentrated in deg O. If $\sigma: D \rightarrow M$ (smooth), $f = constant fn 1 on M$, then	
$\mathcal{U}[f][r] = \int \sigma^{*} f = (f \circ \sigma)(o) = 1$ \mathcal{L}_{a}	

(2) Naturality of the chain level de Rham homomorphism + 5-lemma:	
Also write $Q: \Omega^{P}(M) \longrightarrow C^{P}(M; \mathbb{R})$ $ \stackrel{c}{\leftarrow} C_{P}(M) $	
$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	
This induce a commutative diagram	
$0 \leftarrow (V_{n}V) \cdot \mathcal{A} \leftarrow (V) \cdot \mathcal{A} \leftarrow (V_{n}V) \cdot \mathcal{A} \leftarrow (V_{n}V) \cdot \mathcal{A} \leftarrow \mathcal{A}$ $\downarrow \mathcal{A} \qquad \downarrow \mathcal{A} \qquad \downarrow \mathcal{A}$	
$ \rightarrow C^{\bullet}(U \cup V, \mathbb{R}) \longrightarrow C^{\bullet}(U, \mathbb{R}) \oplus C^{\bullet}(V, \mathbb{R}) \longrightarrow C^{\bullet}(U \wedge V, \mathbb{R}) \rightarrow 0 $	
of choin compliants and hince a map of Mayer-Vietoris	

Bz	Five Lemma +	, we see P(U)	P(V), P(U	ŋγ] ⊂	₹ P(U	(v V)	. ✓
(3)	$H^{p}_{dr}(\mu_{j})$	$\frac{(j)_{j}}{\varepsilon} = \prod_{i=1}^{p} \left(u_{j} \right)$	Con	mutus ⇒	so ri	ght of a	an No
			· · · ? · ·	. .			· ·
	$H^{p}(\sqcup U_{j}; \mathbb{R})$	$\stackrel{\cong}{=} \prod_{\substack{i \neq j \\ j \neq j}} \prod_{j \neq j} H^{P}(\mathcal{U}_{j}; \mathbb{R})$					
Fact	F: M -> N	smooth thin					
	$H^{P}_{dR}(N)$ -	$\xrightarrow{F^*}$ $H^p_{dr}(M)$					
		Jd					
	HP(N;R).	\rightarrow $H^{\prime}(M; \mathbb{R})$	comm	.ntes			