The de Rham Theorem
Lemma M a smooth n-mild. Suppose $P(U)$ is a statement about open subsets of M, satisfying the following properties:
(1) $P(u)$ is true for $u \approx \mathbb{R}^{n}$
(2) $P(u), P(v), P(u n v) \Rightarrow P(u \cup v)$
(3) $\left\{u_{\alpha}\right\}$ disjoint, $P\left(u_{\alpha}\right) \forall \alpha \Rightarrow P\left(\Perp u_{\alpha}\right)$

Then $P(M)$ is true.
Pf Step 1 If $M \approx$ open subset of \mathbb{R}^{n}, thin $P(M)$ is true LOG, $M=$ open subset of \mathbb{R}^{n}. By $(1)+(2)+$ induction, $P(u)$ is true for $u=$ union of finite $\#$ of convex open subsets b / c

$$
\left(u_{1} \cup \cdots \cup u_{n}\right) \cap u_{n+1}=\left(u_{1} \cap u_{n+1}\right) \cup \cdots \cup\left(u_{n} \cap u_{n+1}\right)
$$

Lat $f: M \rightarrow[0, \infty)$ be an exhaustion. ($f^{-1}[0, c]$ compact for $c>0$) sat $A_{n}=f^{-1}[n, n+1)$, which is compact. Cover A_{n} by finitely many convex opens in $f^{-1}\left(n-\frac{1}{2}, n+\frac{3}{2}\right)$ and let U_{n} be their union Thin $A_{n} \subseteq u_{n} \subseteq f^{-1}\left(n-\frac{1}{2}, n+\frac{3}{2}\right)$. so the $U_{\text {evan }}$ ard disjoint, as ara the U odd.

Since $U_{n}=$ fin union corves opens.
$P\left(u_{n}\right)$ true $\forall n$. Sat $u=U u_{2 n}, V=U u_{2 n+1}, B_{y}$ (3), $P(u), P(v)$ true. But $U \cap v=\left(U u_{2 n}\right) \cap\left(U U_{2 n+1}\right)=\prod_{i, j} \underbrace{\left(u_{2 i} \cap U_{2 j+1}\right)})$ This $P(U \cap V)$ also true Bug $(z), P(M)=P(U \cup V)$ is true.

Step 2 For the gen'l case, u. may now substitute
(1') $P(u) \pi$ true for all $u \approx$ open subset of \mathbb{R}^{n}
for (1): Repent the Step 1 proof replacing. "convex open subset of \mathbb{R}^{n} " with "open subset of \mathbb{R}^{n} ".

We are interested in the statement $P(U)=" H_{d R}^{P}(U) \cong H^{P}(U ; \mathbb{R})$.
But for what iso? For M a smooth mfld, $p \geqslant 0$, the de Wham homomorphism $d: H_{d R}^{P}(M) \longrightarrow H^{p}(M ; \mathbb{R})$ is given by $[\omega] \longmapsto[c] \in H_{p}(M) \cong H_{p}^{\infty}(M)$

$$
z^{p}(M) \subseteq \Omega^{p}(M)
$$

$\int_{\tilde{c}} \omega \quad \int$ smooth p-cycle representing [c]

Here if $\sigma: \Delta_{p} \rightarrow M$ smooth, thin $\int_{\sigma} \omega:=\int_{\Delta_{p}} \sigma^{*} \omega$ and $\int_{\Sigma_{c_{i} \sigma_{i}}} \omega:=\sum c_{i} \int_{\sigma} \omega$

Domain of integration in $\mathbb{R}^{?}$.

Stokes' The for Chains If e is a smooth p-chain in a smooth ufle M and w is a smeoth $(p-1)$ form on M, then

$$
\int_{\partial c} \omega=\int_{c} d \omega
$$

Pf Suffices to prove this for $c=\sigma: \Delta_{p} \rightarrow M$ smooth By Stokes (ω corners), $\int_{\sigma} d \omega=\int_{\Delta_{p}} \sigma^{*} d \omega=\int_{\Delta_{p}} d \sigma^{+} \omega=\int_{\partial \Delta_{p}} \sigma^{*} \omega$.

$$
\text { Nov } \begin{aligned}
\int_{\partial \Delta_{p}} \sigma^{k} \omega & =\sum_{i=0}^{p}(-1)^{i} \int_{\Delta^{p-1}} F_{i, p}^{*} \sigma^{*} \omega \quad[p .481] \\
& =\sum_{i=0}^{p}(-1)^{i} \int_{\Delta^{p-1}}\left(\sigma \circ F_{i, 1}\right)^{*} \omega \\
& =\sum_{i=0}^{p}(-1)^{i} \int_{\sigma \circ F_{i, p}}^{\omega} \\
& =\int_{\partial \sigma} \omega
\end{aligned}
$$

So wire dome!

We can now chick wal-chfn of the de Ream homomorphism

Indeed, if $\tilde{c}, \tilde{c}^{\prime}$ smooth ropy $[c]$, thin $\tilde{c}-\tilde{c}^{\prime}=\partial \tilde{b}$ for some smooth ($p+1$)-chain \tilde{b}. Thus

$$
\int_{\tilde{c}} \omega-\int_{\tilde{c}} \omega=\int_{\partial \tilde{b}} \omega=\int_{\tilde{b}} d \omega=0
$$

Further, if $\omega=d \eta$ is exact, thin $\int_{\tilde{c}} \omega=\int_{\tilde{c}} d \eta=\int_{\partial \tilde{c}} \eta=0$ $b / c \quad \partial \hat{c}=0$.

Sot $P(u)={ }^{2}: \mathbb{H}_{d R}^{P}(u) \xlongequal{\cong} H^{P}(u ; \mathbb{R}) \forall_{p}$. Suffices to show
(1) $P(u)$ is true for $u \approx \mathbb{R}^{n}$
(2) $P(u), P(v), P(u n v) \Longrightarrow P(u \cup v)$
(3) $\left\{u_{\alpha}\right\}$ disjoint, $P\left(u_{\alpha}\right) \not \forall_{\alpha} \Rightarrow P\left(\Perp u_{\alpha}\right)$
(1) This is (essentially) the Poincare lemma!

Both domain and codomain are \mathbb{R} concentrated in deg 0 . If $\sigma: \Delta_{0} \rightarrow M$ (smooth), $f=$ constant $f_{n} 1$ on M, then

$$
\ell[f][\sigma]=\int_{\Lambda_{0}} \sigma^{*} f=(f \circ \sigma)(0)=1
$$

$$
\text { so } d: H_{d R}^{0}(M) \xlongequal{\rightrightarrows} H^{0}(M ; \mathbb{R}) \text {. }
$$

(2) Naturality of the chain led de Rham homomorphism + 5-limma:
Also write $\ell: \Omega^{p}(M) \longrightarrow C^{P}(M ; \mathbb{R})$

This induces a commutative diagram

$$
\begin{aligned}
& 0 \rightarrow \Omega^{0}(u \cup v) \rightarrow \Omega^{0}(u) \oplus \Omega^{\prime}(v) \rightarrow \Omega^{\prime}(u \cap v) \rightarrow 0 \\
& d \downarrow \\
& d \oplus d \\
& 0 \rightarrow C^{\prime}\left(u \cup V_{j} \mathbb{R}\right) \rightarrow C^{\prime}(u ; \mathbb{R}) \oplus C^{\prime}(V ; \mathbb{R}) \rightarrow C^{\prime}(u \cap v ; \mathbb{R}) \rightarrow 0
\end{aligned}
$$

of choir complexes and hence a map of Mayer-Vietor is
long exact sequences :

$$
\begin{aligned}
& \cdots \rightarrow H_{d R}^{p}(u \cup v) \rightarrow H_{d R}^{p}(u) \otimes H_{d R}^{p}(v) \rightarrow H_{d R}^{p}(U \wedge v) \rightarrow H_{d R}^{p+1}(U \cup V) \rightarrow \cdots \\
& \text { (1) } \quad\left\|\left._{v} d \Delta u\right|_{V} d\right\|_{\downarrow} \\
& \cdots \rightarrow H^{P}\left(U \cup V_{j} \mathbb{R}\right) \rightarrow H^{P}(U: \mathbb{R}) \oplus H^{P}\left(V_{j} \mathbb{R}\right) \rightarrow \mathbb{H}^{P}\left(U \cap V_{j} \mathbb{R}\right] \rightarrow H^{P+1}\left(U \cap V_{j} \mathbb{R}\right) \rightarrow \cdots
\end{aligned}
$$

From homo oligical algebra, wa have the
Five lemma If $A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{5}$ ir a

$$
\begin{aligned}
& f_{1} \cong f_{2} l \cong f_{3} \cong \\
& B_{1} \longrightarrow f_{4}\left|\rightleftharpoons f_{5}\right| \cong \\
& B_{3} \longrightarrow B_{4} \longrightarrow B_{5}
\end{aligned}
$$

commutative diagram of modules with exact rows and $f_{1}, f_{2}, f_{4}, f_{5}$ tiros, then f_{3} is an iso. (Prove it! 口)

By Firn Lemma + (F), we ser $P(U), P(V), P(U \cap V) \Rightarrow P(U \cup V)$.
(3)

$$
\begin{aligned}
& H_{d R}^{p}\left(\| u_{j}\right) \xrightarrow[\cong]{\left(i_{j}^{+}\right)_{j}} \Pi H_{d R}^{p}\left(u_{j}\right) \\
& d \mid \\
& H^{p}\left(\| u_{j} ; \mathbb{R}\right) \underset{\left(i_{j}\right)_{j}}{\cong} T H^{p}\left(u_{j} ; \mathbb{R}\right)
\end{aligned}
$$

commutes so right d an iso \Rightarrow left d an 1 po.

Fact $F: M \rightarrow N$ smooth thin

$$
\begin{aligned}
& H_{d R}^{P}(N) \xrightarrow{F^{*}} H_{d R}^{p}(M) \\
& \downarrow_{d} \\
& H^{P}(N ; \mathbb{L}) \xrightarrow[F^{k}]{\longrightarrow} H^{p}(M ; \mathbb{R}) \text { commutes. }
\end{aligned}
$$

