15. 1.23 Overview of compactly supported ishomology Pp. 452-457 Poincare lemma with compact support game but with <u>R</u>" (M). For $n \ge p \ge 1$, $\omega \in \mathcal{IL}^{p}_{c}(\mathbb{R}^{n}) \cap \mathbb{Z}^{p}(\mathbb{R}^{n})$ E Gain well-defined integration functions [and if p=n also suppose $\int_{\mathbb{R}^n} \omega = 0$] 2^p = ker d $\exists \eta \in \Omega_{c}^{p-1}(\mathbb{R}^{n}) \text{ s.t. } d\eta = \omega$ I it's the compactly supported part that's new! (Proof uses computation of $H^*_{dR}(\mathbb{R}^n \cdot pt)$)

de Rham cohomology of M $H^{P}_{c}(\mathbf{m}) = \ker\left(d:\mathfrak{L}^{P}_{c}(\mathbf{m}) \longrightarrow \mathfrak{L}^{P^{+}}_{c}(\mathbf{m})\right) / \inf\left(d:\mathfrak{L}^{P}_{c}(\mathbf{m}) \longrightarrow \mathfrak{L}^{P}_{c}(\mathbf{m})\right).$ The For $n \ge 1$, $H^{r}_{c}(\mathbb{R}^{n}) \cong \begin{cases} \mathbb{R} & \text{if } p = n \\ 0 & 0/1 \end{cases}$ (Lost the \mathbb{R} in deg 0) If By compactly supported Poincari lemma. H_{e}^{P} is not functorial wit all smooth maps, rutriset to proper F: $M \rightarrow N$ to get $H_{e}^{P}(N) \xrightarrow{F} H_{e}^{*}(M)$ Vaguity Compare with Grothendieck's six functor formalism.

For M oriented smooth n-mfld, get linear map $\int_{M} : \mathfrak{L}^{*}_{c}(M) \longrightarrow \mathbb{R}$ If $\mathcal{M} = \emptyset$, then by stokes' Thm, $\int_{M} B^{2}(M) = O$ (i.e. $\int_{M} d\eta = \int_{\partial m} \eta = 0$) so $\int_{M} descends to H_{c}^{*}(M)$ $\int_{M} H^{*}(M) \longrightarrow \mathbb{R}$ $[\omega] \longmapsto \int_{M} \omega$ Then If M is a conn'd or'd smooth n-mfld, then $\int_M H^n_e(M) \cong \mathbb{R}$. Key lemma If $\omega \in SC_{c}(\mathbb{R}^{n})$ and $\int_{\mathbb{R}^{n}} \omega = 0$, then $\omega = d\eta$ for some $\eta \in SC_{c}(\mathbb{R}^{n})$. [Really Poincari again!]

Pf for n=2 flave w=f dx ndy. Defin g(x)= f f(x,y) dy By Fubin: + Ju= D, we know Jog(x) dx = D. Defin G(x,y) = ely)g(x) for E(y) a bump for w/total area 1. Then set $\eta(x,y) = -\left(\int^{T} (f(x,t) - G(x,t)) dt\right) dx$ $+ \left(\int_{-\infty}^{y} G(t, y) dt \right) dy \in SC_{c}(\mathbb{R}^{2}).$ Wa get dy = [f(x,y) - G(x,y)] dx ady + G(x,y) dx ady PF Thm Must show $\int_{M} \omega = 0 \implies \omega = d\eta$ Take $\{\mathcal{Y}_i\}$ a finite open cover

of supp W with each U; XR". Take {f; { smooth POU subordinate to JU_i so $\int_{M} U = \sum_i \int_{U_i} f_i \omega$ By Key Lemma, $[f_i \omega]_{u_i} = [\omega_i]_{u_i}$ where ω_i is supported on a small nobled of a point k; EM - i.e. W; is a bump n-form. Take U ~ R" and containing all the x; => IW; 15 compactly Supported in U with $0 = \int_{M} \omega = \int_{M} \Sigma \omega_{i} = \int_{M} \Sigma \omega_{i}$ Rⁿ so $\Sigma \omega_i = d\eta$ for some $\eta \in \mathfrak{L}^{-1}_{c}(\mathbb{R}^n)$. $f_i w = \omega_i + d\eta_i$ is $w = \sum f_i w = \sum w_i + d\eta_i = d\eta + \sum d\eta_i = d(\eta + \sum \eta_i)$

The Suppose Mir a consider-mild.
• If M is compact 2 orientable, then $H_{ep}^{n}(M) \cong \mathbb{R}$.
• If M is noncompact a orientable, then $H^n_{dR}(M) = 0 \int 455-457$
• If M is nonorientable, then $H^{n}_{c}(M) = H^{n}_{dR}(M) = 0$.
Digro Theory
Suppose M, N compact conn'd or'd smooth n-mflds (same n!)
Thin a smooth may F: M N induces

 $H_{dR}^{n}(N) \xrightarrow{F^{*}} H_{dR}^{n}(M)$ where k= J . F* . J is multiplication by some real number k, i.e. $\int_{\mathsf{N}} \int \Xi \int_{\mathsf{M}}$ R k R $\int_{M} F^* \omega = k \int_{N} \omega \quad \forall \omega \in \mathbb{Z}^n(M)$ The the constant $k = k_F$ is an integer, and if $g \in N$ is a regular value of F, then $k = \sum sgn(x)$ where $x \in F^{-1} \lg f$ $sgn(x) = \begin{cases} +1 & \text{if } dF_x \text{ is or in preserving} \\ -1 & \text{if } dF_x \text{ is or in reversing} \end{cases}$ Defn Call k = k_F =: deg (F) the degree of F

Pf It safficy to show k= [sgn(x). Take g « Na sugerler value
$\begin{array}{llllllllllllllllllllllllllllllllllll$
By inverse function theorem, $\forall i \text{ fopen } (l_i \Im x_i \text{ r.t. } F: U_i \cong W_i \Im g$.
Shrinking the U: if necessary, we may assume they are distinct.
Add'l point-set massaging: arrange
for q E W S N open with F'W = IIV;
with $x_i \in V_i \subseteq M$ open, $F: V_i \approx W$. $\downarrow F$
Note that F is either or'n prus or ver 2
on each V;

Let $w \in SC_{c}(W)$ with $\int_{N} w = \int_{W} w = 1$, so that $\int_{M} F^{*}w = k$. We have $k=\int_{M} F^{*}\omega = \sum_{i=1}^{m} \int_{V_{i}} F^{*}\omega = \sum_{i=1}^{m} sgn(x_{i}).$ $=\pm\int_{W}\omega=\mathrm{sgn}(k;)$ Now suppose F'12f=Ø. Take JW SN F(M) open nohd of q $\mathbb{T}f \cup \in \mathbb{R}^{\circ}_{c}(W)$, then $\int_{M} F^{*} \cup = O$, so $k = O = \sum \operatorname{sgn}(x_{i})$. Prop M, N, P compact conn'd or'd smooth nonflds, M = N & P month (a) deg (GoF) = deg (G) deg (F)

(b) If F is a diffus, thun dug (F) = ±1 (or'n prus vs rev) (c) If F. = F. M - N, then dig F. = dig F. F.* $\int_{N} \int_{R} \frac{d_{12}}{R} \frac{T_{0}}{R} R$ deg F, Recall Heart by Whitney approx'n, every ets F.M -> N is htpic to a smooth map M -> N.

This allows us to define $dug(F) := dug(any smooth map htpicts F)$
Fact deg: $\pi_n(S^n) \xrightarrow{\simeq} \mathbb{Z}$ for $n \ge 1$.
L based htpy classes of pointed maps $s^n \longrightarrow s^n$ (Milnor, Topelogy from the differentiable viewpoint)
the differentiable viewpoint)
Digression Degree Theory in Motivic Homotopy
Fix a base field k. For an algebraic function
$F: \mathbb{P}_{k}^{\prime} \longrightarrow \mathbb{P}_{k}^{\prime}$
(i.e. rational function $f \in k(z)$) and paragaler value of f and k point of P_k , define

 $dag^{A'}(f) = \sum \langle det Jf(q) \rangle \in GW(k)$ 2°f⁻¹}p} "sgn (q) GW(C) = ZHure $GW(h) := (regular symme billin forms / k, <math>\oplus$, $\otimes)^{\Im}$ GW (R.) = Z @ Z $\bigvee \bigotimes \bigvee \longrightarrow k$ (a): k×k - k din syn (x,y) - s axy v ≟ v* = Z[h] (h-2h) Moral proves dag A' is an A'-homotopy invariant and induces an iso -Kirsten Wickelgren -Marc Levine $[\mathbb{P}^{n}/\mathbb{P}^{n-1}] \longrightarrow GW(h)$ for $n \ge 2$