12.12_23 PF For X EX(M), f E Com(M), $L_v du = d (L_v u)$ direct calculation with limits gives Iou $\left(\mathcal{I}_{v}(df) \right) (X) = \lim_{t \to 0} \frac{1}{t} \left((O_{t}^{*}(df))(X) - df(X) \right)$ Upshot This completer the proof of Cartan's magic fula, $= \frac{d}{dt} \Big|_{t=0} \chi \left(f \cdot \Theta_t \right)$ $= X \vee f$ $\mathcal{L}_{\vee} \omega = \vee \neg (d\omega) + d(\vee \neg \omega)$ Meanuhile, Zuf = Vf so i.a. $f i_v = V - ()$, then $(d(\mathcal{I}_{v}f))(X) = d(Vf)(X) = XVf$ $\mathcal{I}_{V} = d \cdot i_{v} + i_{v} \cdot d$ so these are equal.

Homotopy invariance Given F.G: M-SN smooth maps, a collection of linear maps $h: s!(N) \longrightarrow s!(M) \quad r.t. \quad d(h\omega) + h(d\omega) = G^*\omega - F^*\omega \quad \forall \omega$ is called a cochain homotopy between F and G' Prop If I cochain htpy blu Ft and Gt, then Ft=Gt: Hlp(N) -> Him for all p. Pf If $\omega \in \mathbb{Z}^{p}(\mathbb{M})$, thus $G^{*}\omega - \mathbb{F}^{*}\omega = d(h\omega) + h(d\omega)$ \implies (G* ω) = (F* ω]

For $t \in [0, 1]$, let $i_t : M \longrightarrow M \times (0, 1]$ $\times \longmapsto (\times, t)$ Lemma Frechain homotoppy batuaen i, i, :: S(M×io,1]) -> S(M) Pf let 5 be the vector field on Mx 12 given by $S_{(q,s)} = (0, \frac{2}{2s}|_{s})$. For $w \in \Omega^{p}(M \times I)$, define h $w \in \Omega^{p'}(M)$ by $h\omega = \int i_{t}(S - \omega) dt$, $(h\omega)_{q} = \int_{0}^{t} i_{t}^{*} ((5 - \omega)_{(q,t)}) dt$ i.e.

function of t with values in $\Lambda^{p-1}T^*_{T}M$ elt of APTT M May differentiate under the integral sign in local coords, so $d(h\omega) = \int d(i_t^*(S - \omega)) dt$ Thus $h(d\omega) + d(h\omega) = \int (i_{t}^{*}(S - d\omega) + d(i_{t}^{*}(S - \omega))) dt$ $= \int \left(i_{t}^{*} \left(S^{\perp} d \omega \right) + i_{t}^{*} d \left(S^{\perp} \omega \right) \right) \right) dt$ $= \int_{0}^{1} i_{t}^{*} (L_{S} \omega) dt$ (magie).

			Flor	, of	S on	M×R	5 O	+ (_{4,5})	= (q,	++s \	50	5 5	Com	plet	 •	
			Hav	- i _t	= Of o	í, , 50										
				ι ι ι ι	(L_5U	$) = \iota_{o}^{*} ($	$\Theta_t^*(\mathcal{X}_S)$	່ພ)) (
						= i,*	$\left(\frac{d}{dt}\right)$	$\left(\left(\omega_{t}^{*} \right) \right)$	· · · · · · · · · · · · · · · · · · ·	Prop 12	.30					
						= d	ι, (Θ _t c	م) ا								
						et = d	i									
		R		FTC_	. h(d	<i>ω</i>)+ d($(h\omega) =$	ί ι - [i, ω	, 45	disi	red.	· ·			
				 <u>.</u>	 <u>.</u>								· _			

Prop Homotopic smooth maps induce the Same maps on Har.
Pf If F=G: M→N then 3 smooth htpy H:M×I→N
with F= Hois, G= Hoi,. Thus
$F^* = i_0^* \circ H^* = i_0^* \circ H^* = G^*$
Imma Thun (Homotopy invariance of de Rhem ishomology)
If M, N are htpy equivelant smooth mflds W/or w/o 2, then
$H_{dp}^{*}(M) \cong H_{dp}^{*}(N)$ (with its induced by any smooth
$h_{\text{py}} = g_{\text{uv}} M \longrightarrow N J$

Pf Whitney approxin + above proposition. In parkinlar, Hope is a Cor de Rham whom factors Diff Har, Vector smooth, topological, and homotopy invariant. Top Note Have cannot distinguish smooth structures on the Hot Sime underlying top'l manifold.

Computations via http://invariance Them IF M is a contractible smooth mfld w/ or w/o 2, then Hope (M) = R concentrated in degree O Note This proves the Poincaré lemma for star-shaped. open subsets of Rⁿ. · Every closed form is locally exact!

 $H'_{dR} \rightarrow \pi$, $Dufine \int H'_{dR}(M) \times \pi_{1}(M,q) \longrightarrow \mathbb{R}$ $([\omega],[\gamma]) \longmapsto \int \omega$ where I is a pw smooth curve representing the path class of &. Then define . R-vs by pointwise +, in adomain $\overline{\mathcal{F}} : H'_{d\mathbf{R}}(\mathbf{M}) \longrightarrow Gp(\pi, (\mathbf{M}, q), \mathbf{R})$ $(\gamma) = [\gamma']$ $[\omega] \longmapsto ([\gamma] \longmapsto \int_{\overline{\gamma}} \omega)$ $\chi_{\gamma}^{(\bullet)} \simeq *$ The For M com'd smooth, J. M, J [0] = 0 E is a well-defined injective linear map. × × × × Later, we will see that I is an isomorphism.

Pf Sketch (7448) Well defined since [W] = [U']
$\implies \omega - \omega' = df \implies \int_{\widetilde{Y}} \omega - \int_{\widetilde{Y}} \omega' = \int_{\widetilde{Y}} df = f(q) - f(q) = 0.$
For injectivity, chuck $\overline{\Phi}[W] = 0 \implies W$ is conservative.
$\begin{array}{cccc} Mayer-Vietoris & UoV \stackrel{i}{\longrightarrow} U & \underline{\mathcal{D}}(M) \stackrel{k^{*}}{\longrightarrow} \underline{\mathcal{D}}(U) \\ U,V \in M & \text{open} & i \int \Pi & \int k & \overset{k}{\longrightarrow} & I & \int i^{*} \\ U \cup V = M & V & \overset{k}{\longrightarrow} M & \underline{\mathcal{D}}(V) \xrightarrow{i^{*}} \underline{\mathcal{D}}(UOV) \\ \end{pmatrix}$
$ \sim SES of chain complexes O \longrightarrow \Omega'(M) \xrightarrow{i^* \oplus l^*} \Omega'(U) \oplus \Omega'(V) \xrightarrow{i^* - j^*} \Omega'(U \cap V) \longrightarrow O . $

• For $n \ge 2$, $H_{dR}^{P}(\mathbb{R}^{n} \rightarrow pt) \cong \begin{cases} \mathbb{R} & \text{if } p = 0 \text{ or } n-1 \\ 0 & \text{o/u} \end{cases}$
The only non-formal part is checking dim $H'_{dR}(S') = 1$
Know >1 since J w +0 for any orientation form.
Since $Hom(\pi, (S'), \mathbb{R}) = \mathbb{R} \longleftrightarrow H'_{d\mathbb{R}}(S')$, get dim 1.
In gen'l, H ⁿ _{dr} (5 ⁿ) has basis the whom class of any smooth
or'n form for St.