$$
\mathcal{Z}_{v} d u=d\left(\mathcal{L}_{v} u\right) \quad \text { Pf For } x \in X(M), f \in C^{\infty}(M) \text {; }
$$ direct calculation with limits gives

$$
\left.\left.\mathcal{L}_{v} \omega=v\right\lrcorner(d \omega)+d(v\lrcorner \omega\right),
$$

$$
\begin{aligned}
\left(\mathcal{L}_{v}(d f)\right)(x) & =\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(\Theta_{t}^{t}(d f)\right)(X)-d f(x)\right) \\
& =\left.\frac{d}{d t}\right|_{t=0} X\left(f \cdot \theta_{t}\right) \\
& =X \vee f
\end{aligned}
$$

i... $f i_{v}=V \perp()$, then

$$
\mathcal{L}_{v}=d \cdot i_{v}+i_{v} \cdot d .
$$

Meanuhile, $\mathcal{L}_{v} f=V f$ so

$$
\left(d\left(\mathcal{L}_{v} f\right)\right)(X)=d(\vee f)(X)=X \vee f
$$

so these an equal.

Homotopy invariance
Given $F, G: M \rightarrow N$ smooth maps, a collection of linear maps $h: \Omega^{P}(N) \longrightarrow \Omega^{p-1}(M)$ s.t. $d(h \omega)+h(d \omega)=G^{*} \omega-F^{*} \omega \quad \forall \omega$ is cared a cochain homotopy between $F$ and $C^{\prime}$.

Prop. If $\exists$ cochain htpy $b / \omega \quad F^{+}$and $G^{+}$, than $F^{+}=G^{*}: H_{d R}^{P}(N) \rightarrow H_{d R}^{p}(M)$ for all $p$.
if If $\omega \in Z^{P}(M)$, then $G^{2} v-F^{+} \omega=d(h \omega)+h(d, \omega)^{0}$

$$
\Rightarrow\left[G^{*} \omega\right]=\left[F^{*} \omega\right]
$$

For $t \in[0,1]$, lat $i_{t}: M \longrightarrow M \times[0,1]$.

Lemma J cochain homotoper batuven

$$
i_{0}^{*}, i_{1}^{*}: \Omega_{N}^{0}(M \times[0,1]) \rightarrow \Omega^{0}(M)
$$



If Let $S$ be th vector field on $M \times \mathbb{R}$ given by $S_{(q, s)}=\left(0,\left.\frac{\partial}{\partial s}\right|_{s}\right)$. For $\omega \in \Omega^{p}(M \times I)$, dafin $h \omega \in \Omega^{p-1}(M)$ by $\left.\quad h \omega=\int_{0}^{1} i_{t}^{*}(s\lrcorner \omega\right) d t$, ie. $\quad(h \omega)_{q}=\int_{0}^{1} i_{t}^{*}\left((s-\omega)_{(q, t)}\right) d t$
function of $t$ with


May differentiate under thin integral sign in local cords, so

$$
\left.d(h \omega)=\int_{0}^{1} d\left(i_{t}^{*}(S\lrcorner \omega\right)\right) d t
$$

Thus $h(d \omega)+d(h \omega)=\int_{0}^{1}\left(i_{t}^{*}(S \perp d \omega)+d\left(i_{t}^{*}(S \perp \omega)\right)\right) d t$

$$
\begin{aligned}
& \left.=\int_{0}^{1}\left(i_{t}^{*}(S-d \omega)+i_{t}^{*} d(s \Delta \omega)\right)\right) d t \\
& =\int_{0}^{1} i_{t}^{*}\left(z_{s} \omega\right) d t \quad \text { (magic) }
\end{aligned}
$$

Flow of $S$ on $\mu \times \mathbb{R}$ is $\theta_{t}(q, s)=(q, t+s)$ so $S$ is complete. Have $i_{t}=\theta_{t} \cdot i_{0}$, so

$$
\begin{aligned}
i_{t}^{*}\left(\mathcal{L}_{s} \omega\right) & =i_{0}^{*}\left(\theta_{t}^{*}\left(z_{s} \omega\right)\right) \\
& =i_{0}^{*}\left(\frac{d}{d t}\left(\theta_{t}^{*} \omega\right)\right) \quad \text { Prop } 12.3 \varphi \\
& =\frac{d}{d t} i_{0}^{*}\left(\theta_{t}^{*} \omega\right) \\
& =\frac{d}{d t} i_{t}^{*} \omega
\end{aligned}
$$

By, FTC, $\quad h(d \omega)+d(h \omega)=i_{1}^{*} \omega-i_{0}^{*} \omega$, as desired.

Prop. Homotopic smooth maps induce the same maps on $H_{d R}^{\top}$.
of If $F \cong G: M \rightarrow N$ than 3 smooth hope $H: M \times I \rightarrow N$ with $F=H 0 i_{0}, G=H 0 i_{1}$. Thus

$$
F^{*}=i_{0}^{*} \circ H^{2}=i_{1}^{*} \cdot H^{*}=G^{*}
$$

lamina.
The (Homotopy invariance of de Rham chomolegy)
If $M, N$ are htpy equivalent smooth inflds w/ or who $\partial$, then $H_{d R}^{*}(M) \cong H_{d R}^{\circ}(N)$ (with vo induced by any smooth hope equiv $M \rightarrow N)$.

Pf Whitney approx'n + above proposition.
Cor de Sham cohom factors. In particular, He is a
 smooth, topological, and homotery invariant.

Noble $H_{d R}^{*}$ cannot distinguish smooth structures on the same underlying top'l manifold.

Computation via Sty invariance
Thin If $M$ is a contractible smooth ufld w/ or who $\partial$, then $H_{d R}^{*}(M)=\mathbb{R}$ concentrated in degree 0 .

Note. This prows the Poincare lemma for star-shapled open subsets of $\mathbb{R}^{n}$.

- Every closet form is locally exact!

$H_{d R}^{\prime} \& \pi_{1}$ Define $\int: H_{d R}^{\prime}(M) \times \pi_{1}(M, q) \longrightarrow \mathbb{R}$

$$
([\omega],[\gamma]) \longmapsto \int_{\tilde{\gamma}} \omega
$$

whore $\tilde{\gamma}$ is a po smooth curve representing the path class of. $\gamma$. Then drin

Revs by pointivise + , in clemain

$$
\Phi: H_{d R}^{\prime}(M) \longrightarrow G_{p}\left(\pi_{1}(M, q), \mathbb{R}\right)
$$

$$
\left.[\omega] \longmapsto(i \gamma] \longmapsto \int_{\tilde{\gamma}} \omega\right) \text {. }
$$

Them For $M$ coned smooth, $I \in M$, I is a vall-defined ejective linear map.
Later, we will see that $I$ is an isomorphism.

If Sketch $(p 448)$ Well defined since $[\omega]=[\nu]$

$$
\Rightarrow \omega-\omega^{\prime}=d f \Rightarrow \int_{\tilde{\gamma}} \omega-\int_{\tilde{\gamma}} \omega^{\prime}=\int_{\tilde{\gamma}} d f=f(q)-f(q)=0 .
$$

For injectivity, chick $\Phi[\omega]=0 \Longrightarrow \omega$ is conservative. :

$\rightarrow$ SES of chain complexes

$$
0 \rightarrow \Omega^{0}(M) \xrightarrow{t^{*} \oplus l^{*}} \Omega^{\prime}(u) \oplus \Omega^{\circ}(v) \xrightarrow{i-j^{*}} \Omega^{\circ}(u n v) \rightarrow 0
$$

- For $n \geqslant 2, H_{d R}^{p}\left(\mathbb{R}^{n}-p t\right) \cong \begin{cases}\mathbb{R} & \text { if } p=0 \text { or } n-1 \\ 0 & 0 / v\end{cases}$

The only non-formal part is checking $\operatorname{dim} H_{d R}^{\prime}\left(S^{\prime}\right)=1$. know $\geqslant 1$ since $\int_{s^{\prime}} \omega \neq 0$ for any orientation form. Since $\operatorname{Hon}\left(\pi_{1}\left(s^{\prime}\right)^{S^{\prime}}, \mathbb{R}\right)=\mathbb{R} \longleftrightarrow H_{d \mathbb{R}}^{\prime}\left(S^{\prime}\right)$, get $\operatorname{dim} 1$. In genl, $H_{d r}^{n}\left(S^{n}\right)$ has basis the chon class of amps smooth or' $n$ form for $S^{n}$.

