de Sham cohomologys
Recall Exterior derivative

$$
d: \Omega^{p}(M) \rightarrow \Omega^{p+1}(M)
$$

satisfies $d o d=0$.

This every exact form $(\omega=d \eta$ for same $\eta)$ is closed $(d \omega=0)$. But closed forms are not necessarily exact :

$$
w=\frac{x d y-y d x}{x^{2}+y^{2}} \in \Omega^{\prime}\left(\mathbb{R}^{2}, 0\right)
$$

de Rham cohomology measures the extent to which closed forms can $f_{a} i l$ to be exact.

Defn For M a smooth infld w/ or who ∂ and $p \in \mathbb{N}$, sat $\begin{aligned} Z^{p}(M) & =\operatorname{ker}\left(d_{1} \Omega^{p}(M) \rightarrow \Omega^{p n}(M)\right)\end{aligned}=\{$ closed p-forms on $M\}$

$$
B^{P}(M)=\operatorname{im}\left(d: \Omega^{p-1}(M) \rightarrow د^{p}(M)\right)=\{\text { exact } p \text { forms on } M\}
$$

where $\Omega^{p}(M)=0$ for $p<0$ or $p>n=\operatorname{dim} M$.
The de Rham cohamologep of M in degree p is the \mathbb{R}-vs

$$
H_{d R}^{p}(M):=Z^{p}(M) / B^{p}(M)
$$

I.e. We have a cochain complex

$$
\Omega^{0}(M)=\left(\Omega^{0}(M) \xrightarrow{d} \Omega^{\prime}(M) \stackrel{d}{\longrightarrow} \Omega^{2}(M) \rightarrow \cdots\right)
$$

and $H_{d R}^{p}(M)=H^{p}\left(\Omega^{0}(M)\right)$.

Note : $H_{d R}^{p}(M)$ is concontrated in digrus $0 \leq p \leq \operatorname{dim} M$, i.i. $H_{d R}^{p}(M)=0$ outside this rang:

$$
H_{d R}^{\prime}\left(\mathbb{R}^{2} \backslash 0\right) \neq 0
$$

We will show . $H_{d R}^{P}$ is a functor \Rightarrow diffeo invt.

- In fact, $H_{d R}^{p}$ is homotopy invariant.
- $H_{d R}^{p}$ satisfius Mayer-Vietoris
- de Rham Thm : $H_{d R}^{p}(M) \stackrel{N}{=} \underbrace{H_{\operatorname{sing}}^{p}}(M ; \mathbb{R})$ singular cohomology with cufficients in \mathbb{R}

Notation For $\omega \in Z^{p}(M)$, lat $[\omega]:=\omega+B^{P}(M) \in H_{d R}^{p}(M)$. Whin $[\omega]=\left[\omega^{\prime}\right]$, call ω, ω^{\prime} cohomologous:

Functoriality
$F: M \longrightarrow N$ smooth induces a map of chain complexes

$$
\begin{aligned}
& F^{*}: \Omega^{\prime}(N) \longrightarrow \Omega^{\prime}(M): \\
& \Omega^{0}(N) \xrightarrow{d} \Omega^{\prime}(N) \xrightarrow{d} \Omega^{2}(N) \xrightarrow{d} \cdots \\
& F^{*} \downarrow \\
& F^{\prime} \mid \\
& \Omega^{\prime}(M) \xrightarrow[d]{ } \Omega^{\prime}(N) \xrightarrow[d]{ } \Omega^{2}(N) \xrightarrow[d]{\cdots}
\end{aligned}
$$

and thus
$\Omega^{P}(M) \stackrel{F^{*}}{\rightleftarrows} \Omega^{P}(N)$ induces a well-defined linear map

$$
\left.\begin{array}{lrl}
u_{1} & u^{p}(M) \& \cdots z^{p}(N) & F^{k}: H_{d R}^{p}(N)
\end{array}>H_{d R}^{r}(M)\right]
$$

$$
B^{P}(M)<\cdots B^{P}(N)
$$

Furthermore, if $M \xrightarrow{F} N \xrightarrow{G} P$ thin $(G \circ F)^{*}=F^{*} \circ G^{*}$ and id ${ }_{M}^{*}=i_{H_{A R}^{\prime}(M)}$, so $H_{d R}^{P}$ is a functor

Prop If $M=\Perp M_{j}$ for $\left\{M_{j}\right\}$ a countable collection of smooth mf (bs whorwlo ∂, then th inclusion maps $i_{j}: M_{j} \hookrightarrow M$ induce

$$
H_{d R}^{p}(M) \xrightarrow{\left(\left(_{j}^{*}\right)\right.} \cong H_{d R}^{p}\left(M_{j}\right)
$$

If In fact, $\Omega^{\prime}(M) \xrightarrow{\left(\iota_{j}^{*}\right)} \Pi \Omega^{0}\left(M_{j}\right)$ is already an io.

$$
\omega \longmapsto\left(\left.\omega\right|_{M_{j}}\right)
$$

Prop $H_{d R}^{0}(M)=\operatorname{ker}\left(d: \Omega^{\circ}(M)^{\prime \prime} \rightarrow \Omega^{\infty}(M)\right)$ is the \mathbb{R}.vs of locally constant functions on M, so

$$
H_{d R}^{0}(M) \simeq \mathbb{R}^{\left|\pi_{0}(m)\right|}
$$

Prop $H_{d R}^{*}\left(\frac{11}{n} p^{+}\right) \cong \mathbb{R}^{n}$ concentrated in degree 0 (n countable).

Cartan's Mayer Formula 1p.372-373
To pensive homotopy invariance, weill need a fact about Lin derivatives that we skipped.

Take $V \in \notin(M)$ generating flow θ. For $\omega \in \Omega^{P}(M)$, the $L_{\text {ie }}$ derivative of ω wit V is $\mathcal{L}_{V} \omega \in \Omega^{p}(M)$ given by

$$
\left(\mathcal{L}_{v} \omega\right)_{q}=\left.\frac{d}{d t}\right|_{t=0}\left(\theta_{t}^{*} \omega\right)_{q}
$$

Prop $\mathcal{L}_{v}(\omega \wedge \eta)=\left(\mathcal{L}_{v} \omega\right) \wedge \eta+\omega \wedge\left(\mathcal{L}_{v} \eta\right)$

of Exercise

Thin (Cartan's magic formula) $\forall V \in \notin(M), \omega \in \Omega^{P}(M)$,

$$
\left.\left.\mathcal{L}_{v} \omega=V\right\lrcorner(d \omega)+d(V\lrcorner \omega\right)
$$

Recall $V+\omega \in l^{p-1}(M)$ is determined by

$$
\left(V_{1}, \ldots, V_{p-1}\right) \longmapsto \omega\left(V, V_{1}, \ldots, V_{p-1}\right)
$$

Pf of The Proceed by induction on P : If $f \in \Omega^{0}(M)=C^{\infty}(M)$, thun $V\lrcorner(d f)+d(V \perp f)=V\lrcorner d f=d f(V)=V f=\mathcal{L}_{V} f$.

$$
\Omega^{-1}(M)=0
$$

Now let $p \geqslant 1$ and assume th magic fila holds for forms of degree $<p$. For $\omega \in \Omega^{p}(m)$, we have

$$
\omega=\sum \omega_{I} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}
$$

in local coordinates. Each term is of the form dunn for $u=x^{i_{1}}, \beta=\omega_{I} d x^{i_{2}} \wedge-1 d x^{i_{k}}$. Wi have $\mathcal{L}_{v} d u=d\left(\mathcal{L}_{v} u\right)$ $=d(V u)$, so

$$
\begin{aligned}
\mathcal{L}_{v}(d u \wedge \beta) & =\left(\mathcal{L}_{v} d u \wedge \beta\right)+d u \wedge(\mathcal{L} v \beta) \\
& =d(V u) \wedge \beta+d u \wedge(\underbrace{v\lrcorner d \beta+d(v\lrcorner \beta)}_{\text {induction hypothesis }})
\end{aligned}
$$

Meanwhile,

$$
\begin{aligned}
& V\lrcorner d(d u \wedge \beta)+d(V \perp(\operatorname{dun} \beta)) \text { Leibniz for }\lrcorner \\
& =V \perp(-d u \wedge d \beta)+d((V u) \beta-\operatorname{dun}(V+\beta))
\end{aligned}
$$

$$
\begin{aligned}
&=-(V u) d \beta+d u \wedge(V\lrcorner d \beta)+d\left(V_{u}\right) \wedge \beta+\left(V_{u}\right) \wedge d \beta \\
&+d u \wedge d(V-\beta)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=d\left(V_{u}\right) \wedge \beta+d u \wedge\left(V \rho_{\beta}+d(V\lrcorner \beta\right)\right) \\
& =\mathcal{L}_{v}(d u \wedge \beta)
\end{aligned}
$$

Cor $\mathcal{L}_{v}(d \omega)=d\left(\mathcal{L}_{v} \omega\right)$.
Pf By magic,

$$
\begin{aligned}
& \left.\left.\left.\mathcal{I}_{V}(d \omega)=V\right\lrcorner d(d \omega)+d(V\lrcorner d \omega\right)=d(V\lrcorner d \omega\right), \\
& \left.d\left(\mathcal{I}_{V} \omega\right)=d(V+d \omega)+d(d(V-\omega))=d(V\lrcorner d \omega\right) .
\end{aligned}
$$

Homotopy invariance
Given $F, G: M \rightarrow N$ smooth maps, a collection of linear maps $h: \Omega^{P}(N) \longrightarrow \Omega^{p-1}(M)$ s.t. $d(h \omega)+h(d \omega)=G^{*} \omega-F^{*} \omega \quad \forall \omega$ is cared a cochain homotopy between F and C^{\prime}.

Prop. If \exists cochain htpy $b / \omega \quad F^{+}$and G^{+}, than $F^{+}=G^{*}: H_{d R}^{P}(N) \rightarrow H_{d R}^{p}(M)$ for all p.
if If $\omega \in Z^{P}(M)$, then $G^{2} v-F^{+} \omega=d(h \omega)+h(d, \omega)^{0}$

$$
\Rightarrow\left[G^{*} \omega\right]=\left[F^{*} \omega\right]
$$

