8. V. 23 Stokus' Thm Let M be an oriented smooth n-manifold with or without boundary, and let we set (M). Then $d\omega = \int \omega$ George Stokes Élie Cartan 1819-1903 1869-1951 OM has the induced or entertion Nota If IM = Ø, then RHS = O STOKES dw Topology

Pf Take a finite open cover IUal of supp W with Ud diffeomorphic to (i) (0,1) ×····× (0,1) (interior points) or ((2) (ii) (0,1] × (0,1) ×··· × (0,1) (boundary points). Let {Ma} be a smooth POU subordinate to {Ua}. Then $\int_{\partial M} \omega = \sum_{\alpha} \int_{\partial M} \int_{\partial M} \omega = \sum_{\alpha} \int_{\partial M} \int_{\partial M}$ We have $d(\eta_2 \omega) = (d\eta_{\alpha}) \wedge \omega + \eta_{\alpha} d\omega$ so $\sum_{\alpha} \int_{\Omega} d(\Lambda_{\alpha} \omega) = \int_{M} \left(\frac{\partial}{\partial \omega} \left(\sum_{\alpha} \Lambda_{\alpha} \right) \wedge \omega + \left(\sum_{\alpha} \Lambda_{\alpha} \right) d\omega \right)$ $= \int_{\mathbf{M}} d\omega$

Thus it suffices to show
$\int \psi_{\alpha} \omega = \int d(\psi_{\alpha} \omega)$
for all & I.L. We may assume w is supported on one Uz.
For simpliceity, consider the n=2 case (moral exercise : adapt
to n>2) Write W= f, dx' + f, dx". If Ux is a boundary
neighborhood, then
$\int_{\partial U_{a}} U = \int_{\partial U_{a}} f_{1} dx^{1} + f_{2} dx^{2} = \int_{0}^{1} f_{2}(1, x^{2}) dx^{2}$
Meanwhile,
$\int_{U_{a}} dW = \int_{U_{a}} \left(\frac{\partial f_{2}}{\partial x'} - \frac{\partial f_{1}}{\partial x^{2}} \right) dx' \wedge dx^{2}$

$= \int_{0}^{1} \left(\int_{0}^{1} \frac{\partial f_{1}}{\partial x} dx' \right) dx'^{2} - \int_{0}^{1} \left(\int_{0}^{1} \frac{\partial f_{1}}{\partial x^{2}} dx' \right) dx'^{2} dx'$	dx') dx'	
$= \int_{0}^{1} \left(f_{1}(1,x^{2}) - f_{2}(0,x^{2}) \right) dx^{2}$		
$-\int_{0}^{1} (f_{1}(x',1) - f_{1}(x',0)) dx'$		
$= \int_{0}^{1} f_{1}(1, x^{2}) dx^{2}$		
Thus $\int U = \int dU$ on boundary nobels. $\partial U_{\alpha} = U_{\alpha}$		
Now suppose Us is an interior noted. Then	JU2 =∅	

$s \int u = 0$. Meanwhile, ∂u_a	
$\int_{U_{x}} d\omega = \int_{0}^{1} (f_{1}(t, x^{2}) - f_{2}(0, x^{2})) dx^{2}$	
$-\int_{0}^{1}(f_{1}(x',1)-f_{1}(x',0))dx'$	
= 0 since $supp(\omega) \subseteq U_{\alpha}$. This concludes the proof! \Box	
Note We can recover the fundamental them for line integrals from Stoker Suppose V:[a,b] -> M is a smooth embedding, 5= V[a,b]	
$\leq M$ submitted w/ boundary. Orient 5 so that γ is or in preserve Then for $f \in C^{\infty}(M)$.	ing .

$\int_{Y} df = \int_{[a,b]} \gamma^{*} df = \int_{S} df = \int_{S} f = f(\gamma(b)) - f(\gamma(a)).$ (a,b] 5 25	
Cor If M is or d smooth mfld $W/o \partial$, then $\forall W \in \mathbb{D}^n$; (M),	
$\int d\omega = 0$ M	
Cor If $d\omega = 0$, then $\int_{\partial M} \omega = 0$.	
Cor M smooth w/or w/o 2. S=M or'd compact smooth k-din	
submitted who $J = W$ a closed k-form on M s.t. $\int W \neq D$, then $(dU = 0)$	
(a) w is not exact on M, and	
(b) StON for any or'd compact smooth NEM.	

E.g. $\omega = \frac{1}{x^2 + y^2} \left(x dy - y dx \right) has \int_{S^1} \omega \neq 0$, so
is not exact (no f s.t. $df = \omega$) and S' is not the
boundary of a submilled of R2. D. compact (w/or w/od)
Cor (Green's Thm) $D \subseteq \mathbb{R}^2$ compact regular domain, $P, Q \in \mathbb{C}^{\infty}(D)$
Then $\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial D} P dx + Q dy$
Note Stokes' Thm also holds on mflds w/ corners (pp. 415-421).

Planimeturs For DER ² a compact regular	r da	mair	· · · · · · · · · · · · · · · · · · ·			
$area(D) = \int_{D} dx \wedge dy$						
Call P, Q $\in C^{\infty}(D)$ planimetric when	$\frac{\partial Q}{\partial x}$	-10	P =	1°.		
(Equivalently, d(Pdx + Qdy) = dx Ady						
For planimetric P, Q, Green's Thin implies	 5 .					
area (D) = S P dx + Q dy, 20	· · ·					
TPS Find a planimetric pair P,Q smooth Q=x, P=D	 	R	· · · 1	2 = 2 Ρ = . 0	-x - - x - 7	

TPS Prove that this device accurately computer area: Polar Planimeter TPS Use Green's Thm to prove the surveyor's area formula: If the use of a simple polygon, listed counterclockwise around the perimeter, are (xo, yo), ..., (xn-1, yn-1), then the area of the polygon is

Area = $\frac{1}{2} \int dut \left(\begin{array}{c} x_i & x_{i+1} \\ y_i & y_{i+1} \end{array} \right)$ where (knigh) = (xo, yo) (2,8) (3,4) 18 (5,2) 36 (0 "shoulace \Rightarrow Area = $\frac{35}{2}$ 35 algorithm