3. 7 22 Orientations of Hypersurfaces The Mor'd smooth n-mfld w/or w/o d, SEM immersed hypersonface w/or w/o d, Na vactor field along S (NS -> TM) non here tangent to 5. Tras Contractor M Then S has a unique or'n s.t. Upes, (E1,..., En.,) is an or'd basis for TpS iff (Np, E1, in, En.) is an or'd basis for TpM. IF $\omega \in \Lambda^{n}M$ is an or'n firm for M, then $t_{s}^{*}(N \perp \omega)$ is an or'n form for S urt this or'n.

₽F p. 385 □ E.g. 5" S primtable. Defin the standard orientation of 5" to be the on provided by N. Prop M ord sm mfld, SEM rug level set of f: M->R smooth. Thun S is orientable. of N=gradf|s works. (Here gradf is dual to df wit choice of Riemannian structure on M.] Boundary Orientations Prop M an or'd sm n-mfled with d, n>1. Then DM v arientable and all outward pointing vector fields on DM determine the same

or'n on DM. (called then induced or Stokes orientation.) PF For N a smooth outward-pointing of along M. Lom (N-10) orients M (W an or'n form of M). Independence from choice of N: p. 386. Note Std or'n on 5ⁿ = induced or'n on 3Bⁿ⁺¹. 5ⁿ Eig. Induerd or'n on 241"= R" is gos ord iff [-2, 2, 2, 1, 2,] $= -\left[\frac{2}{3x^{n}}, \frac{2}{3x^{n}}, \dots, \frac{2}{3x^{n}}\right] = (-1)^{n} \left[\frac{2}{3x^{n}}, \dots, \frac{2}{3x^{n}}\right]$ is poss or'd for std or'n P−1² , *i*⊢1³ 2 ") 3 2473 = R2 $\rightarrow 2H^2 : \mathbb{R}^1$

Orientations and Couring Maps Prop If $\pi: E \longrightarrow M$ is a smooth covering, map and M is orientable, then E is also orientable. 9: M liffuo N Mf T is a local diffus. φ^{*} O_N G a fie gp acting smoothy on a sm ord mfld E Call the action orientation-preserving if Lg is orientation preserving VgEG, x -> g x The E a conn'd or'd smooth mfld, $\pi: E \rightarrow M$ smooth normal covering map. Then M is orientable iff action of $Aut_{\pi}(E) = E$ is orientation preserving.

Pf lat O_E = or'n of E. (=) M his two or'ns Pick some q E. Let On be the or n s.t. dr. TE => T M preserves or n. Since $\pi^* O_{\mu}$ agrees with O_{E} at q, they must be the same or 'n. Now take $\Psi \in Aut_{\pi}(E) := E \xrightarrow{\Psi} E$ π Since 1-9 = 17, $\varphi^* \mathcal{O}_E = \varphi^* (\pi^* \mathcal{O}_M) = (\pi \circ \varphi)^* \mathcal{O}_M = \pi^* \mathcal{O}_M = \mathcal{O}_E$ so P is or 'n pracerving. (⇐) Aut (E) & E or'n pruserving Pick pEM. IF CIEM is an eventy convert noted of p, then \exists smooth section $\sigma: \mathcal{U} \longrightarrow \mathcal{E}$ inducing or $n \ \sigma^* \mathcal{O}_{\mathcal{E}}$ on \mathcal{U} .

By normality of T, Aut (E) acts transitively on fibers of T.
Thus if o, : U -> E is another smooth section we can take
QEAut, (E) ct. o. (p) = P(olp)) Poor is a smooth
section agreeing with r, at p, so r, = por.
Since is is or'n praserving,
$\mathcal{O}_{i}^{*}\mathcal{O}_{E} = \mathcal{O}_{i}^{*}\mathcal{O}_{E} = \mathcal{O}_{i}^{*}\mathcal{O}_{E}$
This about us to globalize the orr.
TPS For which n is RPn orientable?
A n=0 or n>0 odd : 5 ⁿ -> RP ⁿ has antipodal map as automorphism, preserves or n iff n odd.

$ \begin{array}{c} \cdot \\ \cdot $				
E.g. (Mobius bundfer) R ² ~ E				
Thobius bin	dle			
· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·				
$A \rightarrow (m^2) \simeq 7$ it () () () ()				
Aut $q(\mathbb{R}^2) = \mathbb{Z}$ with $n(x,y) = (x+n, (-1)^n y)$				
For nodd, (x,y) > n. (x,y) pulls dxndy	 			
	/ 10 ¹] ·	; · · · · · · · · · · · · · · · · · · ·		
back to - dendy, so the action of Acity preserving => E is not orientable.	L /^ J.	is not	orn	
preserving - G is not or untable				

Orientation Covering Call $\pi: N \longrightarrow M$ a generalized conving map if it satisfies all the covering map conditions except possibley connected N. M= conn'd smooth n-mfld, n>0 $\hat{M} := \{(p, O_p) \mid p \in M, O_p \text{ an or 'n of } T_p M \}$ A (p, Op) M P 2-1 mp - the orientation cover of M Prop Can give M the structure of a smooth or'd mfld st

 (a) f: M → M is a gen'lized smooth cover map. (b) conn'd open UEM is evenly covered by fiff U is orientable
U is orientable
(c) if U = M evenly covered, then or ins of U = pullback or'n induced by local sections of Fi over U.
Pf pp. 394-395 D
E.g. If M is orientable, then $\widehat{M} = M = 2/22$. If n is even, $5^n = \widehat{RP}^n$. $SU(2) = \widehat{SO(3)}$
In gen'l, if M is non-orientable, \hat{M} is conn'd and $\hat{\pi}$ is a 2-sheeted smooth covering map

Then Maconn'd smooth mfld. If IT, M has no subgp of index 2, then M is orientable. (In particular, simply conn'd => orientable T, M finite of odd order => orientable nonorientable \implies \exists $H \leq \pi_i G s. b. [G: H] = 2$.) PF Suppose M nonorientable, consider universal and orientation Aut_{fi}(m) = Cr, gon'd by covers - M $(p, O_p) \longrightarrow (p, -O_p)$ If H= A, T, A thin $\operatorname{Aut}_{\widehat{\pi}}(\widehat{M}) \cong \pi_{i}M/H$