Tenser bundles, tensor fields

$$
\begin{aligned}
& T^{k} T^{*} M:=\left(T^{*} M\right)^{\otimes k}=\bigcup_{p \in M}\left(T_{p}^{*} M\right)^{\otimes k} \\
& T^{k} T M:(T M)^{\otimes k}=\bigcup_{p \in M}\left(T_{p} M\right)^{\otimes k} \\
& T^{(k, l)} T M:=(T M)^{\otimes k} \otimes\left(T^{+} M\right)^{\otimes l}
\end{aligned}
$$

Suctions of tensor bundle = tensor fields.
Spacial case: $T^{k}(M):=\Gamma\left(T^{k} T^{k} M\right)$
Note $T^{h}(M)$ is a $C^{\infty}(M)$-module :

$$
A \in \sigma^{k}(M), f \in C^{\infty}(M),(f A)_{p}=f(p) A_{p}
$$

Now for $A \in T^{k}(M), X_{1}, \ldots, X_{k} \in \mathcal{X}(M)$ vector files, we have $A\left(x_{1}, \ldots, x_{k}\right): M \longrightarrow \mathbb{R}$

$$
p \longmapsto A_{p}\left(\left.x_{1}\right|_{p}, \ldots,\left.x_{L}\right|_{p}\right)
$$

a smooth function. (Exc)
Thus $A: X(M)^{\times k} \longrightarrow C^{\infty}(M)$ which is $C^{\infty}(M)$-multilinear
Lemma, The assignment $T^{k}(M) \longrightarrow\left\{C^{a}(n)\right.$-multilinar maps $\left.x(m)^{k} \rightarrow C^{a}(M)\right\}$ ir bijective.
Pf pr $318-319 \quad\left(V^{*}\right)^{\partial k} \xrightarrow{\text { bi }}\left\{\left\{\begin{array}{l}\operatorname{mult} \cdot \operatorname{lin} \operatorname{maps} \\ V^{* k} \rightarrow \mathbb{R}\end{array}\right\}\right.$

Pull hack of tensor fields
$F: M \longrightarrow N$ smooth
$\alpha \in T^{k}\left(T_{F(p)}^{*} N\right)$

$$
\left(T_{p} M\right)^{\otimes k} \cong\left(T_{\phi} M^{0 k}\right)^{*}
$$

Define $d F_{p}^{*} \alpha \in T^{k}\left(T_{p}^{*} M\right)$ via

$$
d F_{p}^{*} \alpha\left(v_{1}, \ldots, v_{k}\right)=\alpha\left(d F_{p}\left(v_{1}\right), \ldots, d F_{p}\left(v_{k}\right)\right)
$$

for any $v_{1}, \ldots, v_{k} \in T_{p} M$.
For $A \in \sigma^{k}(N)$, deific $F^{*} A \in \sigma^{k}(M)$ by

$$
\left(F^{*} A\right)_{p}=d F_{p}^{*}\left(A_{F(p)}\right)
$$

If $v_{1}, \ldots, v_{k} \in T_{p} M$, we have

$$
\left(F^{\star} A\right)_{p}\left(v_{i}, \ldots, v_{k}\right)=A_{\left.F_{(p}\right)}\left(d F_{p}\left(v_{1}\right), \ldots, d F_{p}\left(v_{k}\right)\right)
$$

Prop $M \xrightarrow{F} N \xrightarrow{G} P$ smosth, A, B covariant tinsor fields on $N, f \in C^{+}(N)$ then
(a) $F^{*}(f B)=(f \cdot F) F^{*} B$
(b) $F^{*}(A \otimes B)=F^{+} A \otimes F^{*} B$
(c) $F^{+}(A+B)=F^{+} A+F^{*} B$
(d) $F^{+} B$ is smasth if is smosth
(a) $(G \circ F)^{*} B=F^{*}\left(G^{*} B\right)$
(f) \quad id $N^{*} B=B$

Now back to linear algebra.....
Tenser \& Exterior Algebras
The tensor algebra of a Foe dor space V is

$$
\begin{aligned}
& =\bigoplus_{n \geqslant 0} V^{冈 n}
\end{aligned}
$$

with malt'n induced by $\left(v_{1} \otimes \cdots \otimes v_{s}\right)\left(v_{s+} \otimes \cdots \otimes v_{t}\right)$

$$
:=v_{1} \otimes \cdots v_{t} .
$$

E.g. $T(F) \cong F[x]$

$$
T\left(F^{n}\right)=\text { "noncommuting polynomials in } n \text { variables". }
$$

 graded pine of $\operatorname{syn}(V) ; \operatorname{sgm}(V) \cong F\left[x_{1}, \ldots, x_{\text {dim }}\right]$.

Defy Let $I=(v o v \mid v \in V) \subseteq T(V)$ be the ideal of $T(V)$ gen'd by alts of the form vav. The exterior algelenen of $V i v=T(V) / I$. For $v_{1}, \ldots, V_{1} \in V$, set $v_{1} \wedge \ldots \wedge v_{k}=v_{1} \otimes \cdots v_{k}+I \in \Lambda v$. Els of Λv are lina ar combos of such terms.
Observe $v a v=0 \xlongequal[s_{0}]{\Longrightarrow} v_{1} \wedge \ldots n v_{k}=0$ if $a n y$ v_{i} is repeated or the v_{1}, \ldots, v_{1} ara lin dep

$$
\begin{aligned}
O & =\left(v_{1}+v_{2}\right) \wedge\left(v_{1}+v_{2}\right) \\
& =v_{1} \wedge v_{1}+v_{1} \wedge v_{2}+v_{2} \wedge v_{1}+v_{2} \wedge v_{2} \\
& =v_{1} \wedge v_{2}+v_{2} \wedge v_{1} \Longrightarrow v_{1} \wedge v_{2}=-v_{2} \wedge v_{1}
\end{aligned}
$$

Note $\Lambda^{k} V=$ digree k tarms of $\Lambda V \cong$ old $\Lambda^{k} v$. (bettor defn!

Prop If e_{1}, \ldots, e_{n} ir a basis for V, then $\Rightarrow A(\cdots, v, \ldots, v, \ldots)$

$$
\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n\right\} \begin{gathered}
\neq 2 \\
\text { is a basis of } \Lambda^{k} \vee
\end{gathered}
$$

Thus $\operatorname{dim} \Lambda^{k} v=\binom{n}{k}$ (in particular, $\operatorname{dim} \Lambda^{n} v=1$, and

$$
\left.\Lambda^{k} v=0 \text { for } k>n\right)
$$

Egg. For $\mathbb{R}^{3}, \Lambda^{0} \mathbb{R}^{3}=\mathbb{R}\{1\}$

$$
\text { Note } \Rightarrow
$$

$$
\begin{aligned}
& \Lambda^{1} \mathbb{R}^{3}=\mathbb{R}\left\{e_{1}, e_{2}, e_{3}\right\} \\
& \Lambda^{2} \mathbb{R}^{3}=\mathbb{R}\left\{e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{2} \wedge e_{3}\right\} \\
& \Lambda^{3} \mathbb{R}^{3}=\mathbb{R}\left\{e_{1} \wedge e_{2} \wedge e_{3}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Note } \Rightarrow \sum_{k=0}^{n}\binom{n}{k}=2^{n}
\end{aligned}
$$

Pf of Prop Spanning follows from universal property: reordering wadge factors changes sign at worst.
For linear independence, wa sech an alternating kemulthlinear map $V^{* k} \longrightarrow F$ taking the value 1 on a given $a_{i_{1}}, \cdots n e_{i_{k}}$ and 0 or all others. Observe that $T^{k}(v)$ has bris $\left\{e_{j_{1}} \otimes \ldots\right.$ Oe $\left.e_{k} \mid 1 \leq j_{1}, \ldots, j_{k} \leq n\right\}$

Exc Chuck that the composite $V^{\times k} \rightarrow F$ is alternating.

TPS For $\omega \in \Lambda^{h} V, \eta^{\in} \Lambda^{\lambda} V$, which sign appears in $\omega \wedge \eta= \pm \eta \wedge \omega$?
Hint Start with $k=1$ and think about $v \wedge W_{1} \wedge \cdots \wedge W_{l}$

$$
\begin{aligned}
\text { vs } & w_{1} \wedge \cdots \wedge w_{l} \wedge v \\
& =(-l)^{l} v \wedge w_{1} \wedge \cdots \wedge w_{l} \\
v_{1} \wedge \cdots & \wedge v_{l} \wedge w_{1} \wedge \cdots \wedge w_{l}
\end{aligned}
$$

$$
w \wedge \eta=(-1)^{k l} \eta \wedge \omega \quad \text { graded commutative }
$$

Functoriality T^{k}, Sym ${ }^{k}$, and Λ^{k} ard functorial in limar transformations:

$$
\begin{aligned}
& \varphi: V \underset{\{ }{\longrightarrow} W \\
& T^{k}(\varphi): v_{1} \otimes \cdots \otimes v_{k} \mapsto \varphi\left(v_{1}\right) \otimes \cdots \varphi\left(v_{m}\right) \\
& \operatorname{Sym}^{\kappa^{k}(\varphi)} \xrightarrow{n^{2}} \xrightarrow{\Lambda^{k}(\varphi)}
\end{aligned}
$$

Thise assemble to give gradud F-algelra homomor phisms

$$
\begin{aligned}
T(\varphi): T \vee & \rightarrow T \downarrow \\
\operatorname{sym}(\varphi): \operatorname{sgm}(V) & \rightarrow \operatorname{sym}(W) \\
\wedge \varphi: \wedge \vee & \rightarrow \wedge W
\end{aligned}
$$

Suppose $\operatorname{dim} V=n$ and $\varphi: V \rightarrow V$ ir a linear endomorphism.
Thin $\Lambda^{n} \varphi\left(e_{1} \wedge \ldots \wedge e_{n}\right)=\varphi\left(\imath_{1}\right) \wedge \cdots \wedge \varphi\left(e_{n}\right) \in \Lambda^{n} \vee$

$$
=D(\varphi) e_{1} \wedge \cdots \wedge e_{n}
$$

for same $D(\varphi) \in F$. Now End $(V) \cong V^{n}$.so this induces $D: V^{n} \longrightarrow F$ matrix ruin of endos

Thin D is alternating, multi linear, and $D\left(e_{1}, \ldots, e_{n}\right)=D(i d)=1$. By univ property of determinant, $D=$ deft !
Prop For φ as above, $\Lambda^{n} \varphi(w)=\operatorname{det}(\varphi) w \quad \forall w \in \Lambda^{n} V$.
Interior multan
For $v \in V, \quad i_{v}: \Lambda^{k}\left(V^{*}\right) \longrightarrow \Lambda^{k-1}\left(V^{*}\right) \quad$ ir called

$$
\varphi_{1} \wedge \cdots \wedge \varphi_{k} \longmapsto \varphi_{1}(v) \varphi_{2} \wedge \ldots \wedge \varphi_{k}
$$

interior multiplication by v. For $\omega \in \Lambda^{k}\left(V^{*}\right)$, write $v+\omega:=i_{v} \omega$ - race " into ω."

Limma For V finitu dim'l,
(a) $i_{v} \circ i_{v}=0$
(b) $w \in \Lambda^{k} v^{*}, \eta \in \Lambda^{l} v^{*}$ thin

$$
i_{v}(\omega \wedge \eta)=\left(i_{v} \omega\right) \wedge \eta+(-1)^{k} \omega \wedge\left(i_{v}\right)
$$

Pf pp. $258-359$

