Tensors	2.4. 12 	. 23
Defin (physicist) A tensor is anything that transforms like a	tensor.
Dufn (mathemat bilinear transf	ormetions,	
Suppose V, W (If you wish,	are k-vector spaces, k a field. pratand k= 12 throughout, Or prahand k :5	
a commutative	ring and V, W are k-modules!)	
For U another B(x	$w(wv_{2}, w) = \lambda B(w, w) + B(v_{2}, w)$	hin

i.2. B 50	is linear in each variabl	e
The job	of VOW = VOW is to	turn bilinear maps into linear
maps:	$V \times W \xrightarrow{r_3} \mathcal{U}$	Hbilinear B:V×W -> U
· · · · · · · · · · · · · · · · · · ·	(⊗) 13 V⊗W	F! linear \tilde{B} : $V \otimes W \longrightarrow U$ making the diagram commute.
We now	construct VOW and	show it satisfies the universal
propert		

$f k \cdot S = \begin{cases} f: S \longrightarrow k & f a function, \\ f(s) = 0 \text{ for all} \\ but finitely, many s \in S \end{cases} \begin{pmatrix} (f+g)(s) = f(s) + g(s) \\ (\lambda f (s) = \lambda f(s) \end{pmatrix}$	
$\sum_{s \in S} formal k-linear combinations of \lambda_s \in k is 0 forsets all but finitely many sets sets$	(
For any function $F: S \longrightarrow V$ to a k-vs $V, \exists ! \tilde{F}: k: S \longrightarrow V$ linear such that $s S \xrightarrow{F} V \sum f(s) F(s)$ $\downarrow \qquad \downarrow \qquad$	
Note • k.S has basis 5	

· k.S is functorial in S and is part of the "tru-forgetful" adjunction F: Set > Vect : U $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum$ $g \downarrow \longmapsto \downarrow T \Sigma \lambda_{g}(s)$ In particular, $Vect_{k}(k \cdot S, V) \cong Sut(S, U(V))$. set undurlying V Tansor products Let R E k (V×W) be the subspace spanned by • $(\lambda V_1 + V_2, W) - \lambda (V_1, W) - (V_2, W)$ formal sums • $(v, \lambda w, + w_2) - \lambda(v, w,) - (v, w_2)$

$\forall \lambda \epsilon k, v, v, \epsilon V, w, W, \epsilon W$	bilinearity conditions.
Then $V \otimes W := k (V \times W) / R$ is the	le tensor product of V, W.
Given, veV, weW, define the s	imple tensor
$v \otimes \omega := (v, w) + R$	$\epsilon V \otimes W$
Vow is spanned by simple	tensors; general elements
Le are k-linear combinations of	simple tensors.
Note $(\lambda v_1 + v_2) \otimes w = \lambda (v_1 \otimes v_2)$	$(v_2 \otimes w) + (v_2 \otimes w)$
• $\vee \otimes (\lambda v_1 + w_1) = \lambda (v \otimes w_1)$	$(\star) + (\vee \otimes W_z)$

The VOW satisfies universal property (0).	
Pf Suppose B: V×W> U is bilinear. By the universal	
property of free vector spaces, we get an extension	
$\bigvee \times W \xrightarrow{\mathbf{B}} U \xrightarrow{\mathbf{C}} B(v, w)$	
$\frac{1}{2} \sum_{(v,w)} (v,w)$	
By bilinearity of B, $R \subseteq \ker \tilde{B}$, so \tilde{B} descends to t (in L Nord = $L(V \times W)$)	h
$\gamma \times \mathcal{W} \xrightarrow{13} \mathcal{U}$	
$\mathbf{z} = \mathbf{z} = $	

e e e e e e (V×₩) 2 **B** VOW The diagram forces $\tilde{B}(v \otimes v) = B(v, w)$, so \tilde{B} is the unique linear map making $V \times W \xrightarrow{B} U$ commute. V&W Exe If VXW - VõW is some other map satisfying (3) then ∃! iso V×W V&W ----- V&W ∃!≅ Exc Compute 2/m2 & 2/n2

Prop If V has basis v',, v" and W has basis w',, w"
then VOW has basis {viow] Isism, Isjen{. In particular,
$dim V \otimes W = (dim V) (dim W)$
(Only, for k a field.)
Pf We have already noted that simple tensors span, so the raches
(*) imply that the viewi span.
For linear independence, take Sqif dual to Svif,
145 dual to Swif
basis of V*, W*, respectively.

Nor define
$$\eta_{ij} : V \otimes W \longrightarrow k$$
 by univ property (\otimes):
 $(v,v) \longrightarrow \varphi^{i}(v) \cdot \psi^{i}(v) \ge (Chuch this is bilinear)$
 $V = W \implies k$
 $1 \qquad \gamma_{ij} =: \varphi^{i} \otimes \psi^{i}$
 $V \otimes W$
Then $\eta_{ij} (v^{k} \otimes w^{k}) = \begin{cases} 1 & \text{if } i = k, j = d \\ 0 & o f W \end{cases}$
Applying η_{ij} to an expression $\sum \lambda_{kk} v^{k} \otimes v^{k}$ revuels that
this is 0 iff $\lambda_{ij} = 0$ $\forall i, j$, so $\{v^{i} \otimes w^{j}\}$ is lin ind. \Box
Fact \otimes is naturally associative: $U \ni (v \otimes w) \cong (u \otimes v) \otimes W$ since
 $u \otimes (v \otimes w) \mapsto (u \otimes v) \otimes W$

both objects represent trilinear maps out of U×V×W. KEIN now. A covariant k-tunsor on V is an element of Turminlogy $\vee^* \otimes \cdots \otimes \vee^* = (\vee^*)^{\otimes k}$ h times E.g. det as a multilizear V** ---- R Equivalent data function of n vectors · element of (VD ··· DV)* k times dim V=n A contravariant k-tensor is an element of V®k $dit: V \xrightarrow{\sim} \mathbb{R}$ A mixed tensor of type (k, d) is an element of (V*)On

 $T^{(k,l)}(V) := V^{\otimes k} \otimes (V^*)^{\otimes l}$ (mathfrak)s)_k - symm gp Mora flavors • Symmetric tunsors: $V^{\otimes k} \mathcal{O} \mathcal{G}_{k}$ via $(v_1 \otimes \cdots \otimes v_k)^{\sigma} = v_{\sigma 1} \otimes \cdots \otimes v_{\sigma k}$ Fixed points are symmetric tensors $Sym^{k}(V) := (V^{\otimes k})^{G_{k}}$ = { x e V^{ok} | x" = x Hoeg This is a subspace of Vok admitting a natural projection map sym: $V^{\otimes k} \longrightarrow Sym^k V$ o (≥ homogeneous deg k polynomials in x,,..., x_n $\times \longmapsto \frac{1}{k!} \sum_{\sigma \in G_k} x^{\sigma}$

· Alturnating tensors	
Can also ask that x ~ sqn(o) x to EGk to form the	
keth alternating power of V, NV CVOR	
Equivalently, $x \in \Lambda^k V \iff x^{\sigma} = -x^{\sigma} + transposition \sigma \in G_k$.	
Alternation map alt: Vok -> Nk V	
$x \longmapsto \frac{1}{k} \sum_{k \in \mathcal{F}} \operatorname{sgn}(\sigma) x^{\sigma}$	
We will present the algebra of alternating tensors later.	