Tensors
Defoe (physicists) A tensor is anything that transforms like a tensor.
Duff (mathematicians). A tensor is a representing object for bilinear transformations.

Suppose V, W an k-vector spaces, k a field:
(If you wish, pritand $k=\mathbb{R}$ throughout, Or pratand $k: s$ a commutative ring and V, W ara k-modules!)
For U another $k-v s$, a map $V \times W \xrightarrow{B} U$ ir bilimar when

$$
\begin{aligned}
& -B\left(\lambda v_{1}, v_{2}, w\right)=\lambda B\left(v_{1}, w\right)+B\left(v_{2}, w\right) \\
& -B\left(v, \lambda w_{1}+w_{2}\right)=\lambda B\left(v_{1}, w_{1}\right)+B\left(v, w_{2}\right)
\end{aligned}
$$

iss. B ir linear in each variable
The job of $V \otimes W=V \otimes W$ is to turn bilinear maps into linear maps:

We now construct $V \otimes W$ and show it satisfies the universal property. (*).

Free vector spaces
Given a set S, the free k-vector space on \leq is

$$
\begin{aligned}
& f \quad k \cdot S=\left\{\begin{array} { l | l }
{ f : S \rightarrow k } & { \begin{array} { l }
{ \begin{array} { l }
{ \text { a function, } } \\
{ f (s) = 0 } \\
{ \text { but finitely ar many } s \in S }
\end{array} }
\end{array} \} \begin{array} { l }
{ (f + g) (s) = f (s) + g (s) } \\
{ (\lambda f | (s) = \lambda f (s) }
\end{array} } \\
{ \sum _ { s \in S } f (s) s }
\end{array} \quad \cong \left\{\begin{array}{l}
\text { formal } k-\text {-linear umbinations of } \\
\text { ells of } S, \sum_{s \in S} \lambda_{s} s
\end{array} \begin{array}{l}
\lambda_{s} \in k \text { is } 0 \text { for } \\
\text { all but finitely many } \\
s \in S
\end{array}\right.\right.
\end{aligned}
$$

For any function $F: S \longrightarrow V$ to a $k=v, \mathcal{F}!\tilde{F}: k: S \longrightarrow V$

Note - k.S has basis S

- k.S is functorial in S and is part of the "freu-forgetful" adjunction $F:$ Set \rightleftarrows Vet $_{k}: U$

In particular, $\operatorname{Vect}_{k}(k \cdot S, V) \cong \operatorname{Sut}(S, \underbrace{u(v)})$. set underlying V
Tensor products
Lat $R \subseteq k \cdot(V \times W)$ be the subspace spanned by

$$
\left.\begin{array}{l}
\text { - }\left(\lambda v_{1}+v_{2}, w\right)-\lambda\left(v_{1}, w\right)-\left(v_{2}, w\right) \\
\cdot\left(v, \lambda w_{1}+w_{2}\right)-\lambda\left(v, w_{1}\right)-\left(v, w_{2}\right)
\end{array}\right\} \text { formal sums }
$$

$\forall \lambda \in k, \quad v, v_{i} \in V, w, w \in W$.

Then $V \otimes W:=k \cdot(V \times W) / R$ is the tensor product of V, W.
Given, $v \in V$, we W, define the simple tensor

$$
v \otimes W:=(v, w)+R \in V \otimes W \text {. }
$$

(2) V®W is spanned by simple tensors; general elements ara k-linear combinations of simple tensors.
Note - $\left(\lambda v_{1}+v_{2}\right) \otimes w=\lambda\left(v_{1} \otimes w\right)+\left(v_{2} \otimes w\right)$

$$
\begin{equation*}
\cdot v \otimes\left(\lambda v_{1}+w_{2}\right)=\lambda\left(v \otimes w_{1}\right)+\left(v \otimes w_{2}\right) \tag{}
\end{equation*}
$$

The V*W satisfies universal property (®).
Pf Suppose $B: V \times W \longrightarrow U$ is bilinear: By the universal property of free vector spaces, un get an extension

$$
\begin{aligned}
& V \times W \xrightarrow{B} U \sum \lambda_{(v, w)} B(v, w) \\
& \downarrow \\
& k \cdot(V \times W) \underset{\tilde{B}}{\sum \lambda_{(v, w)}(v, w)}
\end{aligned}
$$

By bilinearity of $B, R \subseteq \operatorname{ker} \tilde{B}$, so \tilde{B} descends to this quotient $V \otimes W=k \cdot(V \times W) / R$:

The diagram forcus $\tilde{\tilde{B}}(v \otimes w)=B(v, w)$; so \tilde{B} is the unique linear map making $V \times W \xrightarrow{B} U$ commute.

Exc If $V \times W \rightarrow V \widetilde{\otimes} W$ is some other nap satisfying (©)

Prop If V has basis $v^{\prime}, \ldots, v^{n}$ and W has basic $w^{\prime}, \ldots, w^{n}$ then $V \otimes W$ has basis $\left\{v^{i} \otimes w^{j} \mid 1 \leqslant i \leq m, 1 \leq j \leq n\right\}$. In particular.

$$
\nearrow \operatorname{dim} V W=(\operatorname{dim} V)(\operatorname{dim} W)
$$

(only, for k a field.)
If We have already noted that simple tensors span, so the rules
(*) imply that the view span.
For liner independence, take $\left\{\varphi^{i}\right\}$ dual to $\left\{v^{i}\right\}$, $\{\psi j\}$ dual to $\{$ wi
base of V^{*}, W^{*}, respectively.

Now define $\eta_{i j}: V \otimes W \longrightarrow k$ by univ property (ब) :

Then $\eta_{i j}\left(v^{k} \otimes w^{l}\right)= \begin{cases}1 & \text { if } i=k, j=d \\ 0 & o / w\end{cases}$
Applying $1_{i j}$ to an expression $\sum \lambda_{k i} v^{k} \otimes v^{l}$ reveals that this is 0 iff $\lambda_{i j}=0 \forall i, j$, so $\left\{v^{i \otimes_{w}} j\right\}$ is lin ind.
Fact \otimes is naturally associative: $U \otimes(V \otimes W) \cong(U \otimes V) \otimes W$ since $u \otimes(v \otimes \omega) \mapsto(u \otimes v) \otimes \omega$
both objects reprisent trilinear maps out of $U \times V \times W$.
$k \in \mathbb{N}$ now.
Terminilogy A covariant k-tansor on V is an alement of $\underbrace{V^{*} \otimes \cdots \otimes V^{*}}_{h \text { times }}=\left(V^{*}\right)^{\otimes k}$.
Equivalent data: : multilinear $V^{* k} \rightarrow \mathbb{R}$
E.g. det as a

$$
\text { - alement of } \underbrace{\left(V_{0} \cdots \otimes V\right)^{*}}_{k \text { times }}
$$ function of n vectors $\operatorname{dim} V=n$

A confravariant k-fensor is an ulement of $V^{0 k}$ det: $V^{\times n} \rightarrow \mathbb{R}$ A mixed tansor of type (k, d) is an elament of $\left(V^{*}\right)^{8 n}$

$$
T^{(k, l)}(V):=V^{\otimes k} \otimes\left(V^{+}\right)^{\otimes l}
$$

Mora flavors $\operatorname{limathfrah}\} S\}_{-k}$ - sym gp

- Symmatric tansors: $V^{\otimes k} \circlearrowleft \mathcal{J}_{k}$ via $\left(v_{1} \otimes \cdots \otimes v_{k}\right)^{\sigma}=v_{\sigma 1} \otimes \cdots \otimes v_{\sigma k}$

Fixed points are symmetric tensors $S_{y m}^{k}(v):=\left(v^{\otimes k \mid}\right)^{G_{k}}$

$$
=\left\{x \in V^{\otimes k} \mid x^{r}=x \forall \sigma G G\right\}
$$

This is a subspace of $V^{\otimes k}$ admitting a natural projection map

$$
\begin{aligned}
\operatorname{syn}: V^{\otimes k} & \longrightarrow \text { Sym }^{k} V \\
x & \longmapsto \frac{1}{k!} \sum_{\sigma \in G_{k}} x^{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sym}^{k}\left(\mathbb{R}\left\{x_{1}, \ldots, x_{n}\right\}\right) \\
& \underline{=} \text { homogeneous deg } \\
& \text { polynomials in } \\
& x_{1}, \ldots, x_{n}
\end{aligned}
$$

- Alternating tensors

Can also ask that $x^{\sigma}=\operatorname{sgn}(\sigma) \times \forall \sigma \in \widetilde{\sigma}_{k}$ fo form the k-th alternating pouter of $V, \Lambda^{k} V \subseteq V^{\otimes k}$
Equivalently, $x \in \Lambda^{k} V \Leftrightarrow x^{\sigma}=-x \quad \forall$ transposition $\sigma \in \widetilde{S}_{k}$.
Alternation map $a\left(t: V^{\text {di k }} \longrightarrow \Lambda^{k} V\right.$

$$
x \longmapsto \frac{1}{k!} \sum_{\sigma \in E_{l}} \operatorname{sgn}(\sigma) x^{\sigma}
$$

We will present the algebra of alternating tensors later.

