Conservative Covector Fields
Defn · we &* (M) is exact when If E C (M) s.t. df= W. In this case, call f a potential for W (unique up to adding a locally
constant function), • Call W conservative when Ypw smooth closed surver &,
$\int_{Y} \omega = 0$, By FTLI exact \Rightarrow conservative.
Prop wis unservative iff its line integrals are path-independent

Then we X*(M) is exact iff its conservative	
If ⇒ V (FTLI)	
Kp, q e M. Write J ^q w for J w, Y any pw smooth path pass This is well-defined ble wis conservative. Now fix	Į.
$p_{e} \in M$ and define $f: M \longrightarrow IR$ $q \longrightarrow \int_{p_{e}}^{q} W$	

WTS: f smooth and df = W Take q. e.M., (U, (e')) smooth chart at q. Need to show $\frac{\partial f}{\partial x_i}(q_o) = \omega_j(q_o), \quad j=1,...,n$ (for $\omega = \sum \omega_i dx_i$ to conclude df = Wq. 100-05) Take $Y: [-\epsilon, \epsilon] \longrightarrow U$, set $p_1 = Y(-\epsilon)$. Nor define $t \longmapsto te_j$

 $\tilde{f}: M \longrightarrow R$ and note $f(q) - \tilde{f}(q) = \int_{p_{o}}^{q} \omega - \int_{p_{o}}^{q} \omega$ $q \longrightarrow \int_{p_{o}}^{q} \omega$ $= \int_{p_{0}}^{q} \omega + \int_{q}^{p_{1}} \omega$ Thus it suffices to show $\frac{\partial \tilde{f}}{\partial x_1}(q_0) = \omega_{\tilde{f}}(q_0)$. = j^P w is constant. Have $\delta'(t) = \frac{\partial}{\partial x_i} \Big|_{\delta(t)}$ by construction $\implies \omega_{\gamma(t)}(\gamma'(t)) = \sum_{i} \omega_{i}(\gamma(t)) dx_{i}\left(\frac{\partial}{\partial x^{j}}\Big|_{\gamma(t)}\right)$ $= \omega_j(\mathcal{V}(t))$

Further, $\tilde{f} \circ \mathcal{X}(t) = \int_{P_1}^{\mathcal{X}(t)} \omega = \int_{-s}^{t} \omega_{\mathcal{X}(s)}(\mathcal{X}'(s)) ds = \int_{-s}^{t} \omega_j(\mathcal{X}(s)) ds$ Thus $\frac{\partial \tilde{f}}{\partial x^{i}}(q_{o}) = \gamma'(o)\tilde{f} = \frac{d}{dt}\Big|_{t=0}\tilde{f}\circ\delta(t)$ $= \frac{d}{dt} \int_{t=0}^{t} \omega_j(\gamma(s)) ds = \omega_j(\gamma(o)) = \omega_j(\gamma_0).$ To de : • boundary points (p. 294) $|\pi_{\circ}M| > |$

Not every corrector field is exact. E.g. W: <u>xdy</u>-ydx e X*(P².0) has x*+y* $\int 0 = 2\pi \neq 0$ A simple obstruction to exactness: If $\omega = df$ then in local coords (x'), $\omega = \frac{2f}{2x}$ $\Rightarrow \frac{\partial \omega_i}{\partial x^j} = \frac{\partial^2 f}{\partial x^j \partial x^j} = \frac{\partial^2 f}{\partial x^j \partial x^j} = \frac{\partial \omega_j}{\partial x^j}$ f smooth

Defn Call WEX*(M) closed when I smooth local coords (xi)	
$ \widehat{\partial w_i} = \frac{\partial w_j}{\partial x^i} $	
Prop Exact \Rightarrow closed. \Box	
Charling $\frac{\partial \omega_j}{\partial x^i} = \frac{\partial \omega_i}{\partial x^j}$ on all local coords sounds hard. But:	
Prop. TFAE: (a) Wir closed	
(b) w ratisfies & in some smooth chart around each point	
(c) $\forall quen U \in M, V, W \in \mathcal{X}(U), X(u(Y)) - Y(u(X)) = u([X,Y])$	

 $Pf(a) \Rightarrow (b) \checkmark$ (b) \Rightarrow (c) In local words, $\omega = \Sigma W_i dx^i = X_i \frac{2}{3x_i}, \gamma = \Sigma \gamma_i \frac{2}{3x_i}$ so $X(w(Y)) = X(\Sigma w'Y_i) = \Sigma Y_i X w_i + w_i X Y_i$ $= \sum_{i} \left(Y_{i} \sum_{j} \left(X_{j} \frac{\partial \omega_{i}}{\partial x^{j}} \right) + \omega_{i} X Y_{i} \right)$ $\mathbb{Y}(\omega(X) = \sum_{i} \left(X_{i} \sum_{j} \left[Y_{j} \frac{\partial \omega_{i}}{\partial x^{j}} \right] + \omega_{i} \mathbb{Y}X_{i} \right)$ whence $X(w(Y)) - Y(w(X)) = \sum W_i(XY_i - YX_i)$ $= \omega([x, Y])$

 $(c) \Rightarrow (a) \quad X = \frac{\partial}{\partial x^{i}}, \quad Y = \frac{\partial}{\partial x^{j}} + \left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right] = 0$ gives 🛞 Nue $\sum_{x \neq y^2} \frac{1}{2} \exp \left(\frac{1}{2} \exp \left($ Closed to exact in general, The failure of closed => exact is related to the "hole" in R2 VO Call $U \subseteq \mathbb{R}^n$ star-shaped when $\exists p \in U \text{ s.t. line segment}$ $p \neq q$ is a subset of $U \neq q \in U$.

Poincaré Lemma for Corrector Fields on Star-shaped domains : If U ER or HI is open, star-shaped, then every closed vactor field on U is exact. PP. 276-277 With de Rham whomology, we'll build far more powerful answers to the closed = exact question.