Note $\mathcal{X}(M) = \Gamma(TM)$ in fact, C^o(M)-module: $(f\sigma)(p) = f(p)\sigma(p)$ 17、亚.23 Reduction of Structure Recall that a vector bundle in many he specified by cocycle data open cover {V_c acA} of X + transition fins T_{ap}: VanVp --> Gl_kIR satisfying the cocycle condition : Va, p, Y ∈ A Tay = TBY TLB Defn Let GEGLER, T: E -> M vb of rank k on M. A reduction of the structure group of E to G is a

GLER-cocycle representing the iso class of E, all of where
transition maps are valued in G.
\overline{G}_{q} • $G = GL_{k}^{\dagger}R = dut^{-1}(R_{>0}) \leq GL_{k}R$
If E admits a GLAR - cocycle call it orientable
IF TM is orientable, call Morientable.
• $G = O(h) \leq GL_k R$
If Eadmits an O(k) - cocycle, then we can andow
each of its fibers with an inner product and
transition deta vill respect this.
If MM has structure go reduced to Un, call

Ma Riemannian manifold and say M has been gaven a Riemannian structure Fact Every smooth mfld admits a Riumannian str. Twisting Fix a orpresentation (i.e. homomorphism) p: GL (IR) - GL (IR). Composing transition data for t with p gives new cocycles poty VanVo GLMR E - EP Tys I P GLKK Srhk frkm vb m Mf vb on Mf The associated vb on M is the p-twisting of E.

	E.g.	det: GL6R	$GL_{1}R = R^{*}$	→ det E	live bundle on	M
				\^⊭E		
	· · · · · · · ·	$\begin{array}{ccc} GL_n \mathbb{R} & \longrightarrow & GL_n \\ A & \longmapsto & (A^{-1}) \end{array}$	$R \rightarrow E^*$	dual of	E	
· · · · ·	Local & Glo	bal Frames				
	NEM	open E vb »f M	frank k			
· · · · · ·	(σ, ,, σ _μ , Ε , μπ , Ε) e $\Gamma(E, U)$ k local sactions	is a local for	rame if e	σ ₁ (p),, σ ₁ (q) ^{(s} of E _p <i>Υ</i> pε().	

global frame when U=M. Notre Frame for M = frame for TM. 69. Trivial bundles MXRt admit the global frame $(\tilde{e}_{1}, \ldots, \tilde{e}_{k})$ wher $\tilde{e}_{i}(p) = (p, e_{i})$ · Local trivializations induce bual frames : $\pi' \mathcal{U} \xrightarrow{\overline{\mu}} \mathcal{U} \times \mathbb{R}^k \quad \text{so define } \overline{\overline{\nu}} = \overline{\overline{\mu}}^{-1} \cdot \overline{\overline{e}}_{\overline{i}}$ Ţ,

Prop Every smooth local/global frame for a smooth ub is associated with a smooth local/global trivialization. <u>Pf</u> p. 259 🗆 Cor A smooth manifold is parable iff TM is trivial. defined as TM admitting a global frame The Cotangent Bundle Duals V an R-vector space

V* := Hom (V, R) = { W: V → R | W linear } is the deal space of V. a covector Given basis v,,.., v, of V let v,,..., v,* e V* be the covectors defined by $V_i^*(v_j) = \begin{cases} 1 & \text{if } i \neq j \\ 0 & \text{if } i \neq j \end{cases}$ (then extended (inearly). Then v^{*}, ..., v^{*}_n is the dual basis (+ (vi)) of U^{*} Given A: V-SW linear, the dual of A is A^{*} : W^{*} → V^{*} $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

i.e. $(A^*\omega)(v) = \omega(Av)$ for $v \in V$, $\omega \in W^*$ Have $(A \circ B)^* = B^* \circ A^*$ and $id_v^* = id_{v*}$ so duality is a functor Vect p --- Vect p. Double dual V** = (V*)*. Have $\xi = \xi_V : V \longrightarrow V^{**}$ $V \longmapsto V \longrightarrow R$ $\mathcal{F}(v) \downarrow \qquad \mathcal{J} \qquad \cdot$ $\mathbf{R} \quad \omega(\mathbf{v})$ Then ξ : id Vactor \Rightarrow ()** is a natural transformation: for A: V -> W linear

$\bigvee A A W$						
Ev Su Sw commature						
$\bigvee^{**} \bigvee^{**} \bigvee^{*} \bigvee^{*} $						
\mathcal{A}^{\sharp}					· ·	
Prop If dim $V < \infty$, then $\xi: V \longrightarrow V^{**}$ is a	n	ature	し	rom	orph	.îsm
Or V ¥ V ** for infinite dim'l vector spaces						
In $V \cong V^*$ for V finite dim'l, but the iso	is	rof	na Na	ctur	al	
Transit conductors on magnifolds						
i) Pla II I		۰۰				
pEM smooth mfld, the cotangent space at	P	. 13				
$T_{p}^{*}M := (T_{p}M)^{*}$						

The transition for for T^*M are inverse transpose of those for TM. Write $X^*(M) = \Gamma(T^*M)$ for smooth corrector fields on M. The differential $\Gamma(T^*M, M)$ For $f \in C^{\infty}(U)$, write $df \in \mathcal{X}^{*}(U)$ defined by M ω_p:T_pM→R . . . open in M. $df: U \longrightarrow T^*M$ $P \xrightarrow{T_{p}M} V$ $df_{p} \downarrow J$ $R \quad df_{p}(v) = vf$ Using TpM = Der (C°(U)) Call of the differential corrector field of F.

Take (x') smooth coords on $U \subseteq M$ open. Gut a frame $\frac{2}{2x'}$, $\frac{2}{2x}$ of $TM|_{U}$ with dual frame $\lambda', ..., \lambda^n$, $f T^*M|_{\mathcal{U}}$ $(\lambda_i|_p = \left(\frac{\partial}{\partial x_i}|_p\right)^*)$ Have $df_p = \sum A_i(p) \lambda'|_p$ for some fins $A_i: \mathcal{U} \longrightarrow \mathcal{IR}$. By drfn of df, $A_{i}(p) = df_{p}\left(\frac{\partial}{\partial x_{i}}\Big|_{p}\right) = \frac{\partial}{\partial x_{i}}\Big|_{p}f = \frac{\partial f}{\partial x_{i}}\Big|_{p}$ Thus $df_p = \sum \frac{\partial f}{\partial x^i}(p) \lambda^i \Big|_p$ or $\sum \nabla f_p$ in x^i coord system In particular, applied to xi'U - R coord fn, get

 $dx^{j}\Big|_{p} = \sum_{i} \frac{\partial x^{j}}{\partial x^{i}}(p) \lambda^{i}\Big|_{p} = \lambda^{j}\Big|_{p}$ I.e., dx', ..., dx" is the dual frame of $\frac{2}{2x'}$, ..., $\frac{2}{2x'}$ Thus $df_p = \sum \frac{\partial f}{\partial x^i}(p) dx^i \Big|_p \in T_p^* M$ and $df = \sum \frac{\partial f}{\partial x^i} dx^i \in X^*(U)$ $\int f(x) dx$ Why correctors? They give us coordinate-free varions of gradients!

dF >TN TM df , TR = R × R $df \in \mathfrak{X}^*(\mathsf{M})$ ٧S $M \longrightarrow \mathbb{R}$ M --->N T*M $T, M \longrightarrow {p} \times R$ V I (pvf)

E.g. $f:\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ (x,y) $\longmapsto x^2y \cos x$ $df = \frac{\partial(x'y\cos x)}{\partial x} dx + \frac{\partial(x'y\cos x)}{\partial y} dy$ = (2xycosx-x²ysinx)dx + (x²cosx)dy while $\nabla f = ($,) interval $\frac{Prop}{f,j} \in C^{\infty}(M), a, j \in \mathbb{R}$ (d) in $f \in J \subseteq \mathbb{R}$, $h: J \to M$ $\Rightarrow d(h \circ f) = (h' \circ f) df$ (a) d(af+bg) = adf+bdg (d) (b) d(fg) = fdg+g df(-) $d(fig) = \frac{1}{g^2}(gdf - fdg)$ on $g\neq 0$ (e) f const \Rightarrow df = O .