Note $\notin(M)=\Gamma(T M)$.
in fact, $C^{\infty}(M)$-module:

$$
\left(f_{\sigma}\right)(p)=f(p \mid \sigma(p)
$$

Reduction of Structure
Recall that a vector bundle $\underset{X}{E}$ map he specified by cocyel data: open cover $\left\{V_{\alpha} \mid \alpha \in A\right\}$ of $X+$ transition $f_{n s}$

$$
\tau_{\alpha / \beta}: V_{\alpha} \cap V_{\beta} \longrightarrow G L_{k} \mathbb{R}
$$

satisfying th cocycle condition : $\forall \alpha, \beta, \gamma \in A$

$$
\tau_{\alpha \gamma}=\tau_{\beta \gamma} \tau_{\alpha \beta}
$$

Dufn Let $G \leqslant G L_{k} \mathbb{R} ; \pi: E \rightarrow M$ vb of rank k on M. A reduction of the structure group of E to G is a
$G L_{k} \mathbb{R}$-cocych ruprusenting th iso class of E, all of whose transition maps ar valued in G.
E.g. $G=G L_{k}^{+} \mathbb{R}=\operatorname{drt}^{-1}\left(\mathbb{R}_{>0}\right) \leq G L_{k} \mathbb{R}$

If E admits a $G l_{h}^{+} \mathbb{R}$-cocycle call it orientablo.
If $T M$ is or ientable, call M orientable.
$\therefore G=O(k) \leq G L_{k} \mathbb{R}$
If E admits an $O(k)$-cocycle, then we can andow each of its fibers with an inner product and transition data will respect this.
If $T M$ has structure gp ruducel to $O C_{n}$, call
M a Piemannian manifold and say M has been given a Riemannian structure.
Fact Every smooth mf ld admits a Riamannian str.
Twisting Fix a representation (ie. homomorphism) $\rho: G L_{k}(\mathbb{R}) \rightarrow G L_{m}(\mathbb{R})$ Composing transition data for \sum_{M}^{E} with ρ gives new coyycler

$$
\begin{aligned}
& \rho^{\circ} \tau_{\alpha \beta}: V_{\alpha} \cap V_{\beta} \longrightarrow \operatorname{Gl}_{m} \mathbb{R} \\
& \tau_{\alpha \beta} \searrow \Gamma_{\beta} \\
& G Q_{k} \mathbb{R}
\end{aligned}
$$

The associated of on M is the p-twisting of E
E.g. \quad duet $: G L_{k}\left(R \longrightarrow G L_{1} R=\mathbb{R}^{x} \leadsto \operatorname{det} E\right.$ lin bundle on M $\Lambda^{k} E$

$$
\begin{aligned}
& \therefore G L_{n} \mathbb{R} \longmapsto G L_{n} \mathbb{R} \\
& A \mapsto E^{*} \text { dual of } E \\
&\left(A^{-1}\right)^{\top}
\end{aligned}
$$

Local 4 Global Frames
$U \subseteq M$ open $\frac{E l}{M} v b$ of rank k

$$
\begin{aligned}
& \left(\sigma_{1}, \ldots, \sigma_{k}\right) \in \underbrace{\Gamma(E, U)^{k}}_{\text {local sections of } E \text { our } U} \text { is a local frame if } \sigma_{1}(p), \ldots, \sigma_{k}(\eta) \text { is } \\
& U \subseteq M
\end{aligned}
$$

global frame when $U=M$.
Note Frame for $M=$ frame for $T M$.
Eg. Trivial bundles $M \times \mathbb{R}^{k}$ admit th global frame \downarrow
$\left(\tilde{e}_{1}, \ldots, \tilde{e}_{k}\right)$ whir $\tilde{e}_{i}(\underline{q})=\left(p, e_{i}\right)$.

- Local trivializations induce beat frames:

Prop. Every smooth local/glibal frame for a smooth ut is associated with a smooth local/global trivialization. Pf p. 259

Cor A smooth manifold is parallebizable iff TM is trivial \uparrow defined as TM admitting a global frame

The Cotangent Bundle
Duals V an \mathbb{R}-vector space:
$V^{*}:=\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R})=\{\underbrace{\omega: V \rightarrow \mathbb{R}}_{\text {a covector }} \mid \omega$ linear $\}$ is the deal spue of V.
Given basis v_{1}, \ldots, v_{n} of V lat $v_{1}^{*}, \ldots, v_{n}^{*} \in V^{*}$ be the connectors defined $b_{p} \quad v_{i}^{*}\left(v_{j}\right)=\left\{\begin{array}{lll}1 & \text { if } i=j & \text { (then extended } \\ 0 & \text { if } i \neq j & \text { (inearly). }\end{array}\right.$
Then $v_{1}^{*}, \ldots, v_{n}^{*}$ is the dual basis $\left(t,\left(v_{i}\right)\right)$ of U^{*}.
Given $A: V \rightarrow W$ linear, the dual of A is

$$
\begin{aligned}
& A^{*}: W^{*} \longrightarrow V^{*} \\
& W \prod_{R} \\
& V_{R}{ }^{A}{ }_{R}^{*} W
\end{aligned}
$$

i.e. $\left(A^{*} \omega\right)(v)=\omega(A v)$ for $v \in V, \omega \in W^{*}$.

Have $(A \cdot B)^{*}=B^{*} \cdot A^{*}$ and $i d_{v}^{*}=i d_{V^{*}}$ so duality is a functor $V_{\text {lect }}^{R}{ }_{R}^{q} \rightarrow V_{\text {rect }}^{R}$.

Double dual $V^{* *}=\left(V^{*}\right)^{*}$. Have

$$
\begin{aligned}
\xi=\xi v: V & V^{* *} \\
V \longmapsto & V^{*} \omega: V \rightarrow R \\
\xi(v) \downarrow & \mathbb{R} \omega(v)
\end{aligned}
$$

Then $\xi:$ id $_{V_{\text {act }}^{\mathbb{R}}} \Longrightarrow\left(1^{* *}\right.$ is a natural transformation: for $A: V \rightarrow W$ fimar,

$$
\begin{aligned}
& \left.V \xrightarrow{A}\right|_{W} \text { commutes. } \\
& \left.\xi_{V}\right|_{W} \\
& V^{* k} \xrightarrow[A^{* *}]{ } W^{* k}
\end{aligned}
$$

Prop If $\operatorname{dim} V<\infty$, then $\xi: V \stackrel{\cong}{\Longrightarrow} V * x$ is a natural isomorphism.
(2) : $V \triangleq V^{* *}$ for infinite dim'l vector spaces

Nev - $V \cong V^{*}$ for V finite dim'l, but the iso is not natural.
Tangent covectors on manifolds
$p \in M$ smooth $m f l d$, the cotangent space at p is

$$
T_{p}^{*} M:=\left(T_{p}\right)^{*}
$$

The transition for for $T^{*} M$ are invirse-transpose of those for TM. Write $X^{*}(M)=\Gamma\left(T^{*} M\right)$ for smooth corector fields on M.
The differential " $\Gamma\left(T^{*} M, M\right)$
For $f \in C^{\infty}(u)$, write $d f \in X^{*}(U)$ defined by open in. M

$$
\begin{aligned}
& d f: U \longrightarrow T^{*} M \\
& p \longmapsto T_{p} M \\
&\left.d f_{p}\right|_{\mathbb{R}} d f_{p}(v)=v f
\end{aligned}
$$

$u_{\sin } T_{p} M=\operatorname{Der}_{p}\left(C^{\infty}(u)\right)$
Call if the differential convector field of f.

Take (x^{i}) smooth words on $U \subseteq M$ open.
Gut a fame $\frac{\partial}{\partial x^{\prime}}, \ldots, \frac{\partial}{\partial x^{n}}$ of $\left.T M\right|_{u}$ with dual frame

$$
\lambda_{1}^{\prime}, \ldots, \lambda^{n} \text { if }\left.T^{*} M\right|_{u}\left(\left.\lambda_{i}\right|_{p}=\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p}\right)^{*}\right)
$$

Have $d f_{p}=\left.\sum A_{i}(p) \lambda^{i}\right|_{p}$ for some for $A_{i}: u \rightarrow \mathbb{R}$
By die of af,

$$
A_{i}(p)=d f_{p}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p}\right)=\left.\frac{\partial}{\partial x^{i}}\right|_{p}=\left.\frac{\partial f}{\partial x^{i}}\right|_{p}
$$

Thus $d f_{p}=\left.\sum \frac{\partial f}{\partial x^{i}}(p) \lambda^{i}\right|_{p} \quad .0 \circ\left\{\nabla f_{p}\right.$ in x^{i} cord system
In particular, applied to $x^{j}: u \rightarrow R$ word $f n$, get

$$
\left.d x^{j}\right|_{p}=\left.\sum_{i} \frac{\partial x^{j}}{\partial x^{i}}(p) \lambda^{i}\right|_{p}=\left.\lambda^{j}\right|_{p}
$$

Ina., $d x^{1}, \ldots, d x^{n}$ is the deal frame of $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}$
This $d f_{p}=\left.\sum \frac{\partial f}{\partial x^{i}}(p) d x^{i}\right|_{p} \in T_{p}^{*} M$
are $d f=\left[\frac{\partial f}{\partial x^{i}} d x^{i} \in t^{*}(U)\right.$
Why convectors? They give us coordinate-free vartions of gradients!

E.g.

$$
\begin{aligned}
& f: \mathbb{R}^{2} \longrightarrow \mathbb{R} \\
&(x, y) \longmapsto x^{2} y \cos x \\
& d f=\frac{\partial\left(x^{2} y \cos x\right)}{\partial x} d x+\frac{\partial\left(x^{2} y \cos x\right)}{\partial y} d y \\
&=\underbrace{\left(2 x y \cos x-x^{2} y \sin x\right)} d x+\underbrace{\left(x^{2} \cos x\right)} d y
\end{aligned}
$$

while $\nabla f=(r)$.
Rop $f, g \in C^{\infty}(M), a, b \in \mathbb{R}$
\cdots interval
(a) $d(a f+b g)=a d f+b d g$
(d) $\operatorname{im} f \subseteq J \subseteq \mathbb{R}, h: J \rightarrow M$
(6) $d(f g)=f d g+g d f$ $\Rightarrow d(h \cdot f)=\left(h^{\prime} \cdot f\right) d f$
(.) $d(f / g)=\frac{1}{g^{2}}(g d f-f d g)$ on $g \neq 0$
(e) f const $\Rightarrow d f=0$.

