Vector Bundles
Already seen :- TM tangent bundle with vector space

$$
l_{M} \quad T_{p} M \text { over } p \in M
$$

- For $M \leq \mathbb{R}^{n}$, $N M$ normal bundle with victor space

$$
N_{p} M:=\underbrace{\left(T_{p} M\right)^{\perp}} \text { over } p \in M
$$

orthogonal complement. of $T_{p} M \subseteq T_{p} \mathbb{R}^{n} \equiv \mathbb{R}^{n}$.
In each case, get a family of vector spaces smoothly parametrized by prints of M.
This is codified by th nation of a netor bundle over M :

A rector bundle (sf rank k) over M is a space E along with sur ats map $\pi: E \rightarrow M$ st.
(a) For $p \in M, E_{p}=\pi^{-1}\{p\}$ is endowed with th stricture of a $k-\operatorname{dim} L \mathbb{R}$-vector space.
(b) $\forall p \in M$ \exists nh U of p and a homes $\Phi: \pi^{-1} U \longrightarrow U \times \mathbb{R}^{k}$ s.b. $\quad \pi_{u} \circ \Phi=\pi \quad$ (for $\pi_{u}: u \times R^{h} \rightarrow u$ prog $\left.n\right)$

- $\forall q \in U,\left.\Phi\right|_{E_{q}}: E_{q} \rightarrow\{q\} \times \mathbb{R}^{k} \cong \mathbb{R}^{k}$ is a linear iso

Call I a local trivialization. If M, E are smooth inflect and π is smooth, call $\pi E \subset M$ a smooth vector bundle.
If π admits a global trivialization $\underset{\pi}{E} \xrightarrow[M]{\approx} M \times \mathbb{R}_{M}$
call π a (rank $k)$ trivial bundle.
Egg: - Trivial/product bundles $M \times \mathbb{R}^{k} \rightarrow M$.

- Tangent bundle $T M \rightarrow M$
- For $M \subseteq \mathbb{R}^{n}$, normal bundle $N M \rightarrow M$
- Mobius bundle: Equiv reln on $\mathbb{R}^{2}:(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ $\Leftrightarrow\left(x^{\prime}, y^{\prime}\right)=\left(x+n,(-1)^{n} y\right)$ for $\operatorname{som} x n \in \mathbb{Z}$.

For any $U \subseteq S^{\prime}$ exams covered by $\varepsilon, \tilde{U} \subseteq \mathbb{R}$ component of $\varepsilon^{-1} U$ evmly covered, $\quad \tilde{u} \times \mathbb{R} \underset{\sim}{\approx} \pi^{-1} u$ gives local triv'n of π.
Transition Functions \& Cocycles
Lemma E smooth l^{π} of $r k ~ k$, local trivializations

$$
\dot{M} \quad \Phi: \pi^{-1} U \longrightarrow U \times \mathbb{R}^{k}, \Psi: \pi^{-1} V \longrightarrow V \times \mathbb{R}^{k} \text { with } U n v \neq \varnothing
$$

There exists a smooth map $\tau:$ Inv $\rightarrow G L_{k} \mathbb{R}$ rit.
$\Phi \circ \mathbb{I}^{-1}:(u \cap v) \times \mathbb{R}^{k} \longrightarrow($ Inv $) \times \mathbb{R}^{k}$

$$
(p, v) \longmapsto(p, \underbrace{\tau(p) v)}_{\text {matrix } \tau(p) \text { acting on } v}
$$

If

$$
\begin{aligned}
& (u \cap v) \times \mathbb{R}^{k} \stackrel{\Phi^{\Psi}}{\leftarrow} \pi^{-1}(u \cap v) \stackrel{\Phi}{\perp}(u \cap v) \times \mathbb{R}^{k} \text { comm } \\
& \text { so } \quad \pi_{1} \circ\left(\Phi \circ \Psi^{-1}\right)=\pi_{1} \Rightarrow \Phi_{1} \cdot \Phi^{-1}(p, v)=(p, \sigma(p, v))
\end{aligned}
$$

commits
for some sincoth $\sigma:(U \cap V) \times \mathbb{R}^{k} \rightarrow \mathbb{N}^{k}$.
For $p \in U \cap V$ fixud, get $\mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ invirtiple linear nap

$$
\Rightarrow \exists \tau(p) \in G_{k}(\mathbb{R}) \text { st. } \sigma(p, v)=\tau(p) v
$$

Call $\tau: U \cap V \longrightarrow G L_{h} \mathbb{R}$ the transition function for U, V.
Eg. For the tangent bundle, $\tau: U \cap V \rightarrow G L_{n} \mathbb{R}$ is the Jacobian of to. φ^{-1} (smooth charts):

For $\begin{gathered}E \\ l_{\pi} \\ M\end{gathered} v_{b}$, wile $\tau_{u v}$ for the transition $f_{n} U \cap V \rightarrow G l_{k} \mathbb{R}$
Note $\tau_{v u}=\tau_{u v}^{-1}$ (pintwice matrix inverse) What happens on triple intersections InV $\cap W$?

$\tau_{U W}$ is computed from $\Phi_{W} \cdot \Psi_{u}^{-1}=\underbrace{\Phi_{V W} \cdot \Phi_{V}^{-1}}_{\text {cocyelu condition }} \cdot \underbrace{\Phi_{v}}_{\tau_{U V}}{ }^{\circ} \Phi_{u}^{-1}$

$$
\text { so } \tau_{u w}(p)=\tau_{v w}(p) \tau_{u v}(p)
$$

Defy A $G L_{k} \mathbb{R}$-cocyele on M is an open cover $\left\{V_{\alpha} \mid \alpha \in A\right\}$ of M along with (cts or smooth) maps $\tau_{\alpha \beta}: V_{\alpha} \cap V_{\beta} \rightarrow C L_{k} \mathbb{R}$ $\forall \alpha, \beta \in A$ st. $\quad \tau_{\alpha \gamma}=\tau_{\beta \gamma} \tau_{\alpha \beta} \quad \forall \alpha, \beta, \gamma \in A$:

Get $G L_{k} \mathbb{R}$-cocyele from arming rank k vo on M.
Converse: Set $\tilde{E}=\prod_{\alpha \in A} V_{\alpha} \times \mathbb{R}^{k}$ and define equiv ruln

$$
\begin{aligned}
& (p, v) \sim(p, w) \text { whin } \tau_{\alpha \beta}(p) v=w \\
& \left(V_{\alpha} \cap V_{\beta}\right) \times \mathbb{R}^{k} \quad\left(V_{\alpha} \cap V_{p}\right) \times \mathbb{R}^{k}
\end{aligned}
$$

Let $\begin{aligned}\left.E=\tilde{E} / \sim \text { and produce } \begin{array}{rl}\tilde{E} & \longrightarrow E \\ H \pi_{i} & \downarrow \\ M & =M\end{array}\right)={ }^{\pi}\end{aligned}$
TPS Why is π a victor bundle?

- Two $G L_{k} \mathbb{R}$-cocyeles arr equivalent if $\exists G L_{2} \mathbb{R}$-cosyele in which both ara contained.
- $\{r k k$ vb on $M\} / \underset{=}{\sim} \underset{\text { win define later }}{\underset{\sim}{c}}\left\{G l_{k}(R)\right.$-cocycles on $\left.M\right\} / \sim$
- See ISM Lemma 10,6 for a less robust construction of vbr from local trivializing data.

Constructions

- Whitney sum: $\pi_{M^{\prime}}^{E}, E^{\pi^{\prime} \downarrow}$ vas over M

$$
\begin{array}{lll}
E \oplus E^{\prime} & \text { has } & \left(E \oplus E^{\prime}\right)_{p}=E_{p} \oplus E_{p}^{\prime} \\
\downarrow & \left(\begin{array}{cc}
\tau_{\alpha p} & 0 \\
0 & \tau_{\alpha p}^{\prime}
\end{array}\right)
\end{array}
$$

F has a vb morphism inverse ff it's by

- Tensor product : $\begin{gathered}E \otimes E^{\prime} \text { with }\left(E \otimes E^{\prime}\right]_{p}=E_{p} \otimes E_{p}^{\prime} . \\ \\ \quad \downarrow\end{gathered}$
- Pullback: $\quad N_{n} E \rightarrow E \quad$ with $N \times N=\{(n, 2) \mid F(n)=\pi(n)\}$

Note $\left(N_{m} E\right)_{n} \cong E_{F(n)}$
If $F: N \subseteq M$, this is the restriction of E to N.

- Duals : E^{*} with $E_{p}^{*}=R$-linear dual of E_{p}.

$$
\downarrow \quad \tau_{\alpha \beta}^{\alpha}=\tau_{\alpha \beta}^{\top}
$$

Sections A section of a $V_{b}^{E} \frac{l^{M}}{M}$ ir a map $E_{M \sigma}$ st.

$\{$ suctions of lin buneluy
\therefore are "generalized functions"
E.g. - Zero section $p \mapsto 0_{p} \in E_{p} \quad \forall p \in M$

- suctions of $T M=$ vector fields

Write $\Gamma(E)$ for foe R-vs of global sections of E.

$$
\text { Nofe } \notin(M)=\Gamma(T M) \quad \begin{aligned}
& \text { in fact, } C^{\infty}(M) \text {-modula: } \\
& \\
& \left(f_{\sigma}\right)(p)=f(p \mid \sigma(p)
\end{aligned}
$$

