12.12.23 Flowouts (informally, see pp. 217 - 227 for details/proofs) The Masmosth mfld, 5= Memb k-diml submfld, $V \in \mathcal{X}(\mathcal{M})$ nowhere tangent to S. Let $\Theta : \mathcal{A} \longrightarrow \mathcal{M}$ be the flow of V, $\mathcal{O} = (\mathbb{R} \times S) \cap \mathcal{D}$, $\overline{\mathcal{E}} = \Theta |_{\mathcal{O}}$. $(\alpha) \notin \Phi \otimes O \longrightarrow M$ is an immersion (b) $\frac{\partial}{\partial t} \in X(0)$ is $\overline{\mathcal{F}}$ -rulated to V (c) $\exists \delta: 5 \longrightarrow \mathbb{R}_{>0}$ smooth st. $\mathfrak{F}|_{O_{\xi}}$ is injective, where $Q_{g} = f(t_{p}) \in O \left[\frac{1}{t} < S(p) \right]$ Thus $\mathfrak{F}(O_s)$ is an immersed submitted of M containing 5, and V is tangent to $\mathfrak{F}(O_s)$.

(d) If codim 5=1, then $\overline{\Phi}|_{O_S}$ is a differ onto an open submitted of M. $= \overline{\cancel{F}(0_s)}$

Boundary Florrout Thm M smooth mfld with 2M#0, $N \in \mathcal{X}(M)$ inward pointing on ∂M . $\exists S: \partial M \longrightarrow \mathbb{R}_{>0}$ smooth and smooth emb $\exists : \mathcal{P}_{S} \longrightarrow M$ where $\mathcal{P}_{S} = \left| (t,p) \right| p \in \partial M, o \in t < S(p) \right|$ ER*OM S.I. E(PC) is a nobed of OM, and the OM, $t \mapsto \overline{\Phi}(t,p)$ is an integral curve of N starting at p. Me V M

A nord of ∂M is called a collar norm if it is the image of a smooth emb $[0,1) \times \partial M \longrightarrow M$ s.t. $(0,p) \longmapsto p$ $\forall p \in \partial M$. Collar Nohd Thm If M is a smooth mfld w/ 2M # Ø, this 2M has a collar nobal. If By HW, J N € X(M) inward pointing on ∂M. Take S, I as in pravious them, define N: (0,1) × 2M → P5 $(t,p) \mapsto (t \& Cp), p)$ I. J. does the job. □ Applications (1) Every smooth mfld is htpic to its interior (2) Whitney approximation for mflds w/2:

ets maps blu inflds ild are htp-ie to smooth maps. (3) Homotopic smooth maps are smoothly htps: (H) If h: IN → IM, then the top'l mfld MyN has a smooth structure with naturely emb submiller M,N intersecting in IM=IN MUNI (5) Smooth connect sum 2 doubles of mflds. () \$ {

Regular points, singular points, & canonical form $V \in \mathcal{X}(M)$ pe M is a singular point of V when Vp=0 and a regular point of V when V, 70 Prop $V \in \mathfrak{X}(M)$, $\Theta : \mathfrak{Q} \longrightarrow M$ flow gen'd by V. If pEM is a singular point of V, then D^(P) = R and $O^{(p)}$ is the constant curve $O^{(p)}(t) = p$. If p is a regular point, then $O^{(p)}: D^{(p)} \longrightarrow M$ is a smooth immersion. Pf sing pts Suppose O(P) is not a smooth immersion. We show that p is

singular in this case (whence QCP) is in fact constant at p) Know $\Theta^{(p)'}(s) = 0$ for some $s \in D^{(p)}$ let $q = \Theta^{(p)}(s)$. Then D(9)= R and O(9)(t)=q UteR. But then D(P) = R as well and $O^{(r)}(t) = O_t(p) = O_{t-s}(O_s(p)) = O_{t-s}(q) = q$ For t=0, get p=q. If $\Theta: D \rightarrow M$ is a flow, a point per is an equilibrium point of Θ is $\Theta(t,p) = p$ $\forall t \in D^{(p)}$. In this case, p is a singular point of the infinitesimal generator of Θ . Thin (Canonical Form Naeir a Regular Point) VEX(M), pEM regular pt of V. Frmosth coords

(s',...,s") on a noted of p in which V has coordinate reprin 35'. If SEM is an embedded hypersurface with pES and V, & Tps, this the coords can also be chosen so that s' is a local defining function for 5. r 7 / 1 Jocally

Pf Idea · If no S given, choose any smooth local courds (U, (x')) and let $S \in U$ be given by $X^{V=O}$ where $V^{J}(p) \neq O$ (exists since p is regular). · Now flow out from 5 to get open WEM containing 5 and product nother (-E,E) × Wo of (0,p) in of. · Choose smooth local param X: Sh -> S with image in Wo open Mi Rnot 52,, 52 coords Thin I: (-E,E) ~ I ~ ~ M $(t, s^2, \dots, s^n) \longrightarrow \mathcal{F}(t, X(s^2, \dots, s^n))$ with $\overline{\Psi}_{\star}\left(\frac{\partial}{\partial t}\right) = V = \overline{\Psi}_{\star}\left(\frac{\partial}{\partial t}\right)$

Lie derivatives		
In Enclidean space, we have directional derivatives:		
$\mathcal{D}_{v} W (p') = \frac{d}{dt} \Big _{t=0} W_{p+tv} = \lim_{t \to 0} \frac{W_{p+tv} - W_{p}}{t}$		
= [D, W'(p)] p+tr doesn't make sense on a gen'l manfld.		
Take $V, W \in \mathcal{X}(M)$, $p \in M$, Θ the flow of V .		

The Lin dirivative of W with respect to V is $(\mathcal{I}_{V}W)_{p} = \frac{d}{dt}\Big|_{t=0} d(\Theta_{-t})_{\Theta_{t}(p)}(W_{\Theta_{t}(p)})$ $=\lim_{t\to 0} d(\Theta_{-t})_{\Theta_t(p)}(W_{\Theta_t(p)}) - W_p$ provided the dirivative exists. (it always exists)

Lemma V, $W \in \mathcal{X}(M)$, V tangent to ∂M if $\partial M \neq \emptyset$, then $(\mathcal{Z}_V W)_p$ exists for every $p \in M$ and $\mathcal{Z}_V W \in \mathcal{X}(M)$. Pf idea Use would to express $d(Q_{-t})_{\Theta_t(x)}(W_{\Theta_t(x)})$ as a smooth function of (t,x). Then $V, W \in \mathcal{H}(M)$ then $\mathcal{L}_V W = [V, W]$. Pf let R(V) = M be the regular ptr of V Case 1 per(V) Choose coords (ui) with V= 2. In these coords, $\Theta_{\pm}(u) = (u' + t, u^2, ..., u^n)$. Gut

 $d(\Theta_{-t})_{\Theta_{t}(u)}(W_{\Theta_{t}(u)}) = d(\Theta_{-t})_{\Theta_{t}(u)}(\sum_{j} W^{j}(u'+t,u',...,u')\frac{\partial}{\partial u^{j}}|_{\Theta_{t}(u)}$ $= \sum_{j} W^{j} \left(u^{\prime} + t, u^{2}, ..., u^{n} \right) \frac{\partial}{\partial u^{j}} \Big|_{u}$ By defn of Lie derivative, $(Z_V W)_u = \frac{d}{dt} \Big|_{t=0} \sum W^{\dagger}(u' + t, u^{t}, ..., u^{r}) \frac{\partial}{\partial u^{j}} \Big|_{u}$ $= \sum_{n=1}^{\infty} \frac{\partial w^{n}}{\partial u^{n}} (u^{n}, u^{n}) \frac{\partial}{\partial u^{n}} \Big|_{u}$ = [V, W] u (by coord finde for Lin bracket).

Case 2 pe supp V Since supp V = R(V), this case fillows by continuity of both sides. Case 3 p & Mr supp V In this case, V=O on a night of p. so $d(\Theta_{t})_{\Theta_{t}(p)}(W_{\Theta_{t}(p)}) = W_{p}$ for t small $\implies (\mathcal{I}_{\mathcal{V}} W)_{p} = O = [V, W]_{p} \qquad \Box$