Flowouts (informally; see pp. 217 - 227 for details/proofs)
Thm M a smosth $m f l d ; S \subseteq M$ emb k-dim (submfld, $V \in X(M)$ nowhere tangent to S. let $\theta: \mathcal{D} \rightarrow M$ be th flow of $V, D=(\mathbb{R} \times S) \cap D, \Phi=\left.\theta\right|_{\theta}$:
(a) $\Phi: O \longrightarrow M$ is an immersion
(b) $\frac{\partial}{\partial t} \in \notin(0)$ is Φ-rilated to V
(c) $\exists \delta: S \rightarrow \mathbb{R}>0$ smooth s.t. $\left.\Phi\right|_{0_{S}}$ is injective, where

$$
O_{s}=\{(t, p) \in O| | t \mid<\delta(p)\}
$$

Thus $\Phi\left(O_{S}\right)$ is an immirsid submfld of M containing S_{1}, and V is tangent $+\Phi\left(O_{5}\right)$.
(d) If codim $S=1$, then $\left.\Phi\right|_{O_{S}}$ is a diffeo onto anopen submfld of M.

Boundary Flowout Thm M smooth infld with $\partial M \neq D$, $N \in X(M)$ inward printing on ∂M : $\exists \delta: \partial M \rightarrow \mathbb{R}_{>0}$ smooth and smooth emb $\Phi: P_{\delta} \rightarrow M$ whire $P_{\delta}=\left\{\left.(t, p)\right|_{p \in \partial M,}, \delta t<\delta(p)\right\}$ $\subseteq \mathbb{R} \times \partial M$ s.t. $\Phi\left(P_{\odot}\right)$ is a nbhd of ∂M, and $\forall p \in \partial M$, $t \mapsto \Phi(t, p)$ is an intogral curva of N starting at p.

A ubhd of ∂M is called a collar nbhd if it is the image of a smooth emb $[0,1) \times \partial M \longrightarrow M$ s.t. $(0, p) \longmapsto p \quad \forall p \in \partial M$.
Collar Nbhd Thm If M is a smooth infle $w / \partial M \neq \varnothing$, thin ∂M has a collar nibhe.
If $P_{2 y} H W, \exists N \in X(M)$ inwerd pointing on ∂M.
Take δ, Φ as in pravious thm, dfine $\psi:[0,1) \times \partial M \stackrel{\approx}{\approx} P_{\delta}$ $\Phi .4$ das the job.

$$
(t, p) \longmapsto(t \delta(p), p)
$$

Applications (1) Every smooth $m f l d$ is hitpic to is interior.
(2) Whitnuy approximatton for $m f / d s w / \partial$:
cts maps b/w inflds wi ∂ ara htpic to smooth maps.
(3) Homstopic smooth maps are sinoothly lutpic:
(4) If $h: \partial N \xrightarrow{\approx} \partial M$, then the top'' mfld $M \cup N$ has a smooth structure with naturally emp submflds M, N intersecting in $\partial M=\partial N$

(5) Smooth connect sum x doubles of inflds

Regular points, singular points, \& canonical form
$V \in x(M)$
$p \in M$ is a singular point of V whin $V_{p}=0$ and a regular point of V whin $V_{p} \neq 0$
Prop $V \in X(M), \theta: D \longrightarrow M$ flow gen'd by V. If $p \in M$ is a singular point of V, then $D^{(p)}=\mathbb{R}$ and $\theta^{(p)}$ is the constant curve $\theta^{(p)}(t)=p$. If p is a regular pint, thin $\theta^{(p)}: D^{(p)} \longrightarrow M$ ir a smooth immersion.

Pf sing pts
Suppose $\theta^{(p)}$ is not a smooth immersion: We show that p is
singular in this case (whence $\theta^{(p)}$ is in fact constant at p). Know $\theta^{(p)}(s)=0$ for soma $s \in D^{(p)}$. Let $q=\theta^{(p)}(s)$. Thin $D^{(q)}=\mathbb{R}$ and $\theta^{(q)}(t)=q \quad \forall t \in \mathbb{R}$. But thin $D^{(p)}=R$ as well and

$$
\theta^{(p)}(t)=\theta_{t}(p)=\theta_{t-s}\left(\theta_{s}(p)\right)=\theta_{t-s}(q)=q
$$

For $t=0$, get $p=q$.
If $\theta: D \rightarrow M$ is a f low, a point $p \in M$ is an equilibrium point of θ is $\theta(t, p)=p \quad \forall t \in \mathcal{D}^{(p)}$. In this case, p is a singular point of the infinitesimal generator of θ.
Thu (Canonical Form Near a Regular Point) $V \in \notin(M), p \in M$ regular pt of V. \exists smooth coords
$\left(s^{\prime}, \ldots, s^{n}\right)$ on a noted of p in which V has coordinate rep'n $\frac{\partial}{\partial s^{\prime}}$. If $S \subseteq M$ is an embedded hypersurface with $p \in S$ and $V_{p} \nsubseteq T_{p} s$, then the coords can also be chosen so that s^{\prime} is a local defining function for S.

If Idea. If no S given, choose any smooth local words $\left(U,\left(x^{i}\right)\right)$ and lot $S \subseteq U$ be given by $x^{i}=0$ whir o $V^{\prime}(p) \neq 0$ (easts since p is regular).

- Now flow out from 5 to get open $W \subseteq M$ containing S and product nih $(-\varepsilon, \varepsilon) \times W_{0}$ of $(0, p)$ in of
- Choose smooth local param $X: \Omega \longrightarrow S$ with image in W_{0} open $n 1$

$$
\mathbb{R}^{n-1}
$$

$$
s^{2}, \ldots, s^{n} \text { cords }
$$

Thin $\Psi:(-\varepsilon, \varepsilon) \times \Omega \stackrel{\approx}{\leadsto} M$

$$
\left(t, s^{2}, \ldots, s^{n}\right) \longmapsto \Phi\left(t, X\left(s^{2}, \ldots, s^{n}\right)\right)
$$

with $\Phi_{k}\left(\frac{\partial}{\partial t}\right)=V=\Psi_{k}\left(\frac{\partial}{\partial t}\right)$.

Lie derivatives
In Euclidean space, wo have directional derivatives:

$$
\begin{aligned}
v \in T_{p} \mathbb{R}^{n} & \cong \mathbb{R}^{n}, W \in \mathcal{H}\left(\mathbb{R}^{n}\right) \\
D_{v} W(p) & =\left.\frac{d}{d t}\right|_{t=0} W_{p+t v}=\lim _{t \rightarrow 0} \frac{W_{p \neq t v}-W_{p}}{t} \\
& =\left.\Sigma D_{v} W^{i}(p) \frac{\partial}{\partial x}\right|_{p}
\end{aligned}
$$

2) $p+t v$ dousn't make sense on a gen'l manfld.

Tale $V, W \in \notin(M), p \in M, \theta$ the flow of V.

The Lie derivative of W with raspect to V is

$$
\begin{aligned}
\left(\mathcal{L}_{v} W\right)_{p} & :=\left.\frac{d}{d t}\right|_{t=0} d\left(\theta_{-t}\right)_{\theta_{t}(p)}\left(W_{\theta_{t}(p)}\right) \\
& =\lim _{t \rightarrow 0} \frac{d\left(\theta_{-t}\right)_{\theta_{t}(p)}\left(W_{\theta_{t}(p)}\right)-W_{p}}{t}
\end{aligned}
$$

provided the derivative exists.

Lemma, $V, W \in X(M), V$ tangent to ∂M if $\partial M \neq \varnothing$, thin $(\mathcal{L}, W)_{p}$ exists for every $p \in M$ and $\mathcal{L}_{v} W \in \mathcal{X}(M)$.
If ide a Use words to express $d\left(\theta_{-t}\right)_{\theta_{t}(x)}\left(W_{\theta_{t}(x)}\right)$ as a smooth function of (t, x).

Thu $V, W \in \forall(M)$ thin $\mathcal{L}_{V} W=[V, W]$.
If Let $R(V) \subseteq M$ be tho regular pts of V
Case 1 p $R(V)$ Choose coords (u^{i}) with $V=\frac{\partial}{\partial u^{\prime}}$. In the coors, $\theta_{t}(u)=\left(u^{\prime}+t, u^{2}, \ldots, u^{n}\right)$. Gut

$$
\begin{aligned}
d\left(\theta_{-t}\right)_{\theta_{t}(u)}\left(W_{\theta_{t}(u)}\right) & =d\left\{\theta_{-z}\right)_{\theta_{t}(u)}\left(\left[\left.\left.W_{j}^{j}\left(u^{\prime}+t, u^{2}, \ldots, u^{n}\right) \frac{\partial}{\partial u^{i}}\right|_{\theta_{z}(u)}\right|^{\prime}\right.\right. \\
& =\left.\sum_{j} W^{j}\left(u^{\prime}+t, u^{2}, \ldots, u^{n}\right) \frac{\partial}{\partial u^{b}}\right|_{u}
\end{aligned}
$$

By defn of Lie derivative,

$$
\begin{aligned}
\left(\mathcal{L}_{v} w\right)_{u} & =\left.\left.\frac{d}{d t}\right|_{t=0} \sum W^{j}\left(u^{i}+z, u^{2}, \ldots, u^{n}\right) \frac{\partial}{\partial u^{j}}\right|_{u} \\
& =\left.\sum \frac{\partial W^{j}}{\partial u^{\prime}}\left(u^{\prime}, \ldots, u^{n}\right) \frac{\partial}{\partial u^{j}}\right|_{u}
\end{aligned}
$$

$=[V, W]_{u}$ (by coord fila for (in bracket).

Case $2 p \in \operatorname{supp} V$. Since $\operatorname{supp} V=\overline{R(v)}$, this case follows by continuity of both sides.
Case 3 $p \in M \cdot \operatorname{supp} V$ In this case, $V=0$ on a ns hd of p. so $d\left(\theta_{-t}\right)_{\theta_{t} z_{p}}\left(W_{\theta_{t}(q)}\right)=W_{p}$ for t small

$$
\Rightarrow(\mathcal{L}, W)_{p}=0=[V, W]_{p} .
$$

