10 1, 23 Integral curves & flows $\gamma: J \longrightarrow M$ a smooth curve has valocity $\Upsilon(t) \in T_{\gamma(t)} M$ interved smooth for each $t \in J$. interved smooth in R mfld If VEX(M), an integral curve of V is a smooth curve $\mathscr{X}: \mathcal{T} \longrightarrow \mathcal{M}$ r.f. $\mathscr{X}'(t) = V_{\mathcal{X}(t)} \quad \forall t \in \mathcal{T}$.

 $\overline{\mathbf{5}}_{\mathcal{J}} \qquad \mathbf{W} = \mathbf{x} \frac{\partial}{\partial y} - \mathbf{y} \frac{\partial}{\partial \mathbf{x}} \in \mathcal{L}(\mathbb{R}^2)$ $\gamma: \mathbb{R} \longrightarrow \mathbb{R}^2$ smooth t \longrightarrow (k(t), y(t)) Integral when $x'(t) \frac{\partial}{\partial x} \Big|_{Y(t)} + y'(t) \frac{\partial}{\partial y} \Big|_{Y(t)} = x(t) \frac{\partial}{\partial y} \Big|_{Y(t)} - y(t) \frac{\partial}{\partial x} \Big|_{Y(t)}$ **(**t) x(t) = a cos(t) - b sin(t)I..., X'(t) = -y(t)y'(t) = x(t) $y(1) = a \sin(t) + b \cos(t)$ i.e. $\gamma(t) = (x t - sin t) (a) with \gamma(0) = (a, b)$ sin t cos t $\binom{b}{b}$

so circles = ci	ir inlating integral flows.	
Mora generally	, if $V \in \mathcal{X}(M)$, $\mathcal{Y}: \mathcal{J} \to M$ sim	osthe, UEM smooth
coord patch, the	$\gamma = (\gamma^1, \ldots, \gamma^n) \text{ on } \mathcal{U}$	
	$V = (V'_{j}, v') \text{on } U$	
and $\delta'(t) = V_{S(t)}$	becomis	$\mathcal{O}_{\mathcal{O}}$, $\mathcal{O}_{\mathcal{O}}$
	$\sum_{i} \left. \dot{\gamma}^{i}(t) \frac{\partial}{\partial x^{i}} \right _{\gamma(t)} = \sum_{i} V^{i}(\gamma)$	$(11) \frac{\partial}{\partial x} _{\chi(t)}$
Thus is	$V'(t) = V'(Y'(t), y^{*}(t))$	autonomous system
· · · · · · · · · · · · · · · · · · ·	$^{n}(t) = \sqrt{^{n}(t'(t), \ldots, t''(t))}$	egns (ODEs)
Prop VEX(M)	$r \in M \exists z > 0$, smooth $Y: (-z, c)$	$ \mathcal{M} \mathcal{M} \xrightarrow$

that is an integral curve of V starting at p. $(\mathcal{J}(0) = p)$ PF Appendix D.1. \Box
A global flow on M (or one-parameter group action) is a cts left R -action on M, $\Theta: \mathbb{R} \times \mathbb{M} \longrightarrow \mathbb{M}$.
• For $t \in \mathbb{R}$, get $\Theta_t : M \xrightarrow{\cong} M$ with $\Theta_t \circ \Theta_s : \Theta_{t+s}$ $p \longmapsto \Theta(t,p)$ $\Theta_o : id_M$
• For $p \in M$, get $\Theta^{(P)} : \mathbb{R} \longrightarrow M$ with $\hat{m} \Theta^{(P)} = \mathbb{R} p$ $t \longrightarrow \Theta(t, p)$
If Θ is smooth, define $V = V(\Theta) \in \mathfrak{X}(M)$ by $V_p = \Theta^{(p)'}(o)$, then V is the infinitessimal generator of Θ .

Prop V is really a smooth vector field, and QGP) is an integral curve of V typeM.
Pf For smoothness of V, suffices to check Vf smooth ∀ f ∈ C [∞] (U), U ∈ M
Now $Vf(p) = V_p f = \Theta^{(q)'}(0) f = \frac{d}{dt} \left f(\Theta^{(q)}(t)) = \frac{2}{2t} \left f(\Theta(t,p)) \right \right _{t \ge 0}$
Since $(t,p) \mapsto f(\theta(t,p))$ is smooth, so is its t-partial as a first p;
thus $V \in \mathfrak{X}(M)$.
Now show $\Theta^{(p)'}(t) = V_{O(p)(t)} \forall p \in M, t \in \mathbb{R}$. Fix to the and set
$g = \Theta^{(p)}(t_{\cdot}) = \Theta_{t_{\circ}}(p)$ WTS $\Theta^{(r)}(t_{\circ}) = V_{g}$
$\Theta^{(1)}$ V_{r} f R
$ \begin{array}{c} \mathbf{M} \\ \mathbf$

Now	Q (L) (L)	= 0 _t (z)	- 9 _t (Ot ()) = 8	r t+t,	(p	י גר	θ ^ι	۹ ^۱ (-	E+t,	,) .		
Thus	for f:(A→R sn	nooth on	geus	M op	en ,								
	V _q f=	⊖ ⁽ 2)′(_`))	$f = \frac{d}{dt}$	$- \int_{t=0}^{t} f(t)$	9 ⁽¹⁾ (6	.))								
	· · · · ·	$\frac{d}{dt}\Big _{t=0} f(\varepsilon)$	∋(b)(f ff	· · · ·										
	· · · · ·	0 (p) / (t.	.) f											
as a E.g.	distrad. For Wr	$rac{\partial}{\partial y} - c$	$\frac{1}{2}$	as globo	d flor									
	θ_{1}	(×,y) =	(x cos t	-ysin	l, ×s	in t	+ y	C05	• • • •)•					

 $= \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ 2/22 Not all smooth victor fields admit global flows! \overline{E}_{g} $W = \times^{2} \frac{\partial}{\partial x} \in \mathcal{L}(\mathbb{R}^{2})$ Integral curve starting at (1,0) has eqn Y(t) = (x(t), y(t))with x(0) = 1, y(0) = 0 $\mathbf{x}'(t) = \mathbf{x}(t)^{T}$ $\delta(t) = (\frac{1}{1-t}, 0)$ which cannot be y'(0)=0 extended past t=1.

A flow domain for M is an open set D ERXM s.t. for each
pEM, D''' = ItER ((t,p) eD) is an open iterval containing D.
A flow on M is a cts map
$\theta: \mathcal{O} \longrightarrow \mathcal{M}$ where $\mathcal{D} \in \mathbb{R}^{\times \mathcal{M} }$
is a flow domain and s.t. $\Theta(0,p)$ = p $Pp \in M$, and for all se $D^{(p)}$, te $D^{(O(s,p))}$ s.t. s+te $\mathcal{D}^{(p)}$,
$\Theta(t,\Theta(r,p)) = \Theta(t+r,p)$
For $\Theta = flow$, define $\Theta_t(p) = \Theta^{(p)}(t) = \Theta(t,p)$ for $(4,p) \in D$
Also $M_t = \{p \in M \mid (l, p) \in D\}$ so that
$p \in \mathcal{M}_{t} \iff t \in \mathcal{D}^{(p)} \iff (t, p) \in \mathcal{D}_{t} \qquad \qquad$

If Q is smooth, the infinitus mal generator of Q 1,	
$V_{p} := \Theta^{(p)'}(\delta)$	
Prop If O: D - M is a smooth fliw, thin the infinitusional generat	tor
V of 8 is a smooth vector field, and each curve O(P) is an	
integral curve of V.	
A maximal integral curve is one that can't be extended to a longer	· · · • · · • ·
open interval, and a maximal flow is a flow that admits no extension	on .
to a flow on a larger flow domain.	
Thm (Fundamental Theorem on Flows) Wt VE & (M),	
J! smooth maximal flow ∂: D → M whose infinitusional generator	is V
This flow has the following properties:	

(a) Vp ∈ M, O(p): D(p) -> M is the unique maximal integral curve of (b) If se D^(p), then D^{(O(s,p))} is the interval D^(p)-s= It-s | t+0^(p) f, (i) $\forall t \in \mathbb{R}$, M_t is open in M, and $\Theta_t : M_t \longrightarrow M_{-t}$ is a diffeomorphism with inverse Θ_{-t} Pf First show that 8,8: J - M integral curves for V with J C IR open interval, Y(to) = & (to) for some to eJ, then $\gamma = \Im$. (Use an old trick: $\Sigma = \{t \in \mathcal{J}(\gamma_{H}) = \Im(t)\} \subseteq \mathcal{J}$ is nonempty, open, and closed.) Nou for pe M define $D^{(p)} = U J$ $Define \Theta^{(p)}(t) = Y(t)$ for some (any) such & **∃**8: **Γ→**Μ int for V w(Ylo)=p

Sut $D = i(t,p) \in \mathbb{R} \times M$ $t \in \mathcal{D}^{(p)}$, $\Theta : \mathcal{D} \longrightarrow M$ $(+,p)\mapsto \Theta^{(p)}(t)$ (a) V Group action : $p \in M$, $s \in \mathcal{D}^{(p)}$, $q \in \Theta(s, p) = \Theta^{(p)}(s)$, Then $\begin{aligned} &\mathcal{F}: \mathcal{Q}^{(p)} \to \mathcal{F} \to \mathcal{M} \\ & f \mapsto \mathcal{Q}^{(p)}(f_{+s}) \end{aligned}$ is an integral curve of V starting at q By uniqueness of ODE solves, Y = O(q) on their common domain Thus O(t, O(s,p)) = O(t+s,p) (and O(0,p) = p is cluer). Also D^(p)-s = D^(q) by maximality. O ∈ D^(p) = -s ∈ D^(q) and $O^{(q)}(-s) = p$. Same argument w((-s,q) for (s,p) implies $\mathcal{D}^{(q)} + s \in \mathcal{D}^{(p)} \Longrightarrow \mathcal{D}^{(q)} \in \mathcal{D}^{(p)} - s$, so (6) \vee .

Dopen, (c): p-213-214.
Call VEX(M) complete if it generates a global flow.
Uniform time lemma VEX(M) with flow Q. 2-M. If JEZO s.t.
$(-\varepsilon,\varepsilon) \times M \subseteq \mathcal{D}$, then V is complete.
If Suppose for 2 3 p EM with D(1) bdd above let b= sup P(1)
$b - \varepsilon < t_{s} < b$, $q = \Theta^{(p)}(t_{s})$. Know domain of $\Theta^{(q)}$ contains $(-\varepsilon, \varepsilon)$
Define $\mathcal{X}: (-\varepsilon, t_{\delta} + \varepsilon) \longrightarrow \mathcal{M}$ $\mathcal{D} \in \mathcal{D}^{(p)}(t) - \varepsilon < t < b$
$t \mapsto \int \Theta(\Psi(t-t_*) - \varepsilon < t < t_* + \varepsilon)$
These agree or overlap b/c $\Theta^{(q)}(t-t_o) = \Theta_{t-t_o}(q) = \Theta_{t-t_o}(\Theta_{t_o}(p))$
$=\Theta_t(p)=\Theta^{(p)}(t)$,

By translation lemma, & is an integral course for V starting at 7. Since $t_0 + \varepsilon > b$, 2. M. The Every compactly supported smooth vector field is complete. FF K= supp V. For p∈K have εp>O with flow on (-ε, εp)×Up. Use compactness to find a valid uniform time. I

Cor On a compact smooth mfld, every smooth vector field is complete. I The For G a lin group, every X e Lin (G) is complete PF Choose & that works at e. Push the integral curves at a around w/ the group action to see that a works everywhere I