Cor Every left -invt vector field on C is sarooth.
If If x is lefteinvt, thin $x=\underbrace{\left(X_{0}\right)^{L}}_{\text {smooth }}$.
Cor Every lie group admits a lift invariant smooth global frame.
If If e_{1}, \ldots, e_{n} is a basis of $T_{e} G$, then $e_{1}^{l}, \ldots, e_{n}^{l}$ is such a frame.
Examples of hie algebras of Lie groups
(0) $\operatorname{Lie}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}^{n} w($ trivial bracket:

For $b \in \mathbb{R}^{n}, L_{b}(x)=x+b$ and $d\left(L_{b}\right)=i d: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
Thus $\left[x^{i} \frac{\partial}{\partial x^{\prime}}: \in \operatorname{Lie}_{\text {ie }}\left(R^{n}\right]\right.$ of all x^{i} are constant.
Since $\left[\partial / \partial x^{i}, \partial / \partial x^{j}\right]=0$ and $[$,$] is bilinear, [1]=0$.

Note thin $[]=$,0 , we call the Lie algebra Abelian
(i) Lii $\left(T^{n}\right)=\mathbb{R}^{n}$ is Abelian.
(2) $\operatorname{Lin}\left(G l_{n} \mathbb{R}\right) \cong \sigma l_{n} \mathbb{R}:=\mathbb{R}^{n \times n} w([A, B]=A B-B A$:

Recall $G_{C_{n}} \mathbb{R} \subseteq \mathbb{R}^{n \times n}$ is an open submfld so admits global cords $X^{i j}$ of matrix entries. Then

$$
\begin{aligned}
& T_{L} G L_{n} \mathbb{E} \leadsto o l_{n} \mathbb{R} \\
& \sum A^{i j} \frac{\partial}{\partial x^{i j}} \longmapsto\left(A^{i j}\right)
\end{aligned}
$$

Given $A=\left(A^{i j}\right) \in o j l_{n} \mathbb{R}$, have $A^{L} \in L_{i} G L_{n} \mathbb{R}$ given by

$$
\left.A^{L}\right|_{X}=d\left(L_{x}\right)_{e}(A)=d\left(L_{x}\right)_{e}\left(\Sigma A^{j} \frac{\partial}{\partial x^{j i}}\right)
$$

Since L_{X} is the restriction of the linear map $A \longmapsto X A$ on $\begin{array}{r} \\ l_{n} \\ R\end{array}$ $d L_{X}$ is rap'd in cords by same map:

$$
\left(\left.A^{L}\right|_{X}\right)^{i k}=\left.\sum_{j} X^{i j} A^{j k} \frac{\partial}{\partial X^{i k}}\right|_{X}
$$

In Einstein notation, write this as

$$
\left.A^{i}\right|_{X}=\left.X^{i j} A^{j^{k}} \frac{\partial}{\partial x^{i k}}\right|_{X}
$$

Thus $\left.\left(A^{2}, B^{2}\right]_{x}=\left[x^{i j} A^{j k} \frac{\partial}{\partial x^{i k}}\right]_{X},\left.X^{p q} B^{q r} \frac{\partial}{\partial x^{p r}}\right|_{x}\right]$

$$
\begin{aligned}
& =X^{i j} A^{j l} \frac{\partial}{\partial x^{i k}}\left(X^{i q} \varepsilon^{q q^{r}}\right) \frac{\partial}{\partial x^{p r}} \\
& \quad-X^{p q} B_{B r}^{q r} \frac{\partial}{\partial x^{p r}}\left(x^{i j} A^{j k}\right) \frac{\partial}{\partial x^{k}}
\end{aligned}
$$

$$
\begin{aligned}
& =X^{i j} A^{j k} B^{k r} \frac{\partial}{\partial X^{i r}}-X^{p q} B^{r} A^{-k} \frac{\partial}{\partial X^{p k}} \\
& =\left(X^{i j} A^{j l} B^{k r}-X^{i j} B^{j k} A^{k r}\right) \frac{\partial}{\partial X^{i r}} \\
\text { and } \left.\left[A^{k}, B^{2}\right]\right]_{a} & =\left.\left(A^{j k} B^{k r}-B^{j k} A^{k r}\right) \frac{\partial}{\partial x^{r}}\right|_{c} \\
& =[A, B]^{L} \quad
\end{aligned}
$$

Functoriality of Lie
Thum Lie: Lielep \rightarrow LieAlg is a functor, i.,. . \forall Lie gp hom $F: G \longrightarrow H$ and $X \in g$; $\exists!F_{*} X \in h \quad$ Fralated to $X, F_{k}: o g \rightarrow h$ is a Lis alg hom, id $=i d$,
and $(G-F)_{*}=G_{*} \circ F_{*}$.
If Given $X \in$ of define $Y=F_{*} X=\left(d F_{e}\left(X_{a}\right)\right)^{L} \in \mathscr{H}$
Then $d F\left(X_{g}\right)=d F\left(d \operatorname{Lg}_{g}\left(X_{i}\right)\right) \quad\left(W T S=Y_{F(g)}\right)$
Since $F\left(g g^{\prime}\right)=F(g) F\left(g^{\prime}\right)$, get $F \cdot l_{g}=L_{F(g)} \circ F$

$$
\begin{aligned}
& \Rightarrow d F \cdot d l_{g}=d l_{-F(g)} \cdot d F \\
= & d L_{F(g)}\left(d F\left(X_{2}\right)\right) \\
= & d l_{F(g)}\left(Y_{2}\right) \\
= & Y_{F(g)} \quad \text { so } X, Y \text { Frilated }
\end{aligned}
$$

By naturality of Lie brackets,

$$
F_{*}[x, y]=\left[F_{2} x, F_{*} y\right]
$$

so $F_{k}: \sigma \rightarrow 1$ is a Lie alg hoo.
Moral exc: Check the rust (formal).

The $u: H \hookrightarrow G$ inclusion of a lie sulgep. Then

$$
h_{1}=i_{*} \operatorname{Lin}(H)=\left\{X \in \sigma \mid X_{e} \in T_{e} H\right\}
$$

w/ restricted bracket from of
Super helpful for daceribing lie alg of hie subgps of $G L_{n} R$!

Examples of $L_{i e}$ Alos of Lie Gps (d'd)
(3) $H(n)=\operatorname{LielO}(n)]=\{B \in o \mathcal{L}_{n} \mathbb{R}=\mathbb{R}^{n \times n} \mid \underbrace{B^{\top}+B=0}\}$ shew symmetric aig. $\left(\begin{array}{cc}0 & 3 \\ -3 & 0\end{array}\right) \in A(2)$
$\Phi: G L_{n} \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ thn $\Phi^{-1}\left\{I_{n}\right\}=O(n)$.
$A \longmapsto A^{\top} A$
Thus $T_{e} O(n)=k e r d \Phi_{e}$; furthurmore;

$$
\begin{aligned}
d \Phi_{c}: \mathbb{R}^{n \times n} & \longrightarrow \mathbb{R}^{n \times n} \\
B & B^{T}+B
\end{aligned}
$$

(4) $\quad j l_{n} \mathbb{C}=\operatorname{Lie}\left(G L_{n} \mathbb{C}\right)=\mathbb{C}^{n \times n} \quad \nu([A, B]=A B-B A$.
(Use above techniques and $G L_{n} \mathbb{C} \longrightarrow G L_{2 n} \mathbb{R}$. See p. 198.)
(5) Let's figure out the structure of $s l_{n} \mathbb{R}$ together!

$$
\begin{aligned}
& S L_{n} \mathbb{R}=\operatorname{ker}\left(\operatorname{det}: G L_{n} \mathbb{R} \rightarrow \mathbb{R}^{x}\right)
\end{aligned} \begin{aligned}
& G L, \mathbb{R} \\
& \text { so } T_{l} S L_{n} \mathbb{R}=\operatorname{ker}\left(\operatorname{ddet}_{e}: \operatorname{ojl}_{n} \mathbb{R} \longrightarrow \mathbb{R}\right) \quad \text { oj, } \mathbb{R}=\mathbb{R}^{(x)} \\
& {[a, b] }=a b-b a \\
&=0
\end{aligned}
$$

TPS show this map is the trace function.
This $\Delta l_{n} \mathbb{R}=\left\{B \in \sigma \ell_{n} R \mid \operatorname{tr} B=0\right\}$.

Hints

$$
\text { - } \operatorname{ddet}_{e}(A)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}\left(I_{n}+t A\right)
$$

polynomial in t - what is its linear term?

$$
\begin{aligned}
& \therefore \operatorname{det}\left(\begin{array}{cc}
1+t a & t b \\
t c & 1+t d
\end{array}\right)=1+t a+t d+t^{2}(a d-b c) \\
& \therefore \operatorname{det}\left(b_{i j}\right)=\sum_{\sigma \in G_{n}}^{(-1)^{n}} \prod_{i=1}^{\left(\frac{2}{n}\right.} b_{i} \sigma(i)
\end{aligned}
$$

$$
\begin{aligned}
&\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}(\underbrace{\left(I_{n}+t A\right)} \\
& \operatorname{det} t \cdot\left(\frac{1}{t} I_{n}+A\right)=t^{n} \operatorname{det}\left(\frac{1}{t} I_{n}+A\right) \\
&=t^{n} x_{-A}\left(\frac{1}{t}\right) \\
& \therefore \text { Vieta fmlaa } \\
&=\operatorname{tr}(A)
\end{aligned}
$$

