Good news: X is functorial in diffeomorphirms!
I.e. $F: M \underset{\sim}{\approx} N$ and $x \in \notin(M)$ then $\exists!F_{*} X \in X(N)$
s.6: $\left.\left(F_{*} X\right)_{q}=d F_{F_{q}^{-1}} X_{F^{-1}(q)}\right)^{\text {n }}$ moreover, \quad id $*=X$ and
if $G: N \underset{\approx}{\longrightarrow}$ then $(G \circ F)_{*} X=G_{*}\left(F_{*} X\right)$.

$$
\begin{aligned}
& T M \frac{d F}{\approx} T N \\
& x\left(\underset{M}{\mid \pi_{M}} \underset{\sim}{\approx} \pi_{N} \downarrow\right) F_{*} x=d F \cdot x \circ F^{-1}
\end{aligned}
$$

Since X and $F_{*} X$ are F-ralated,

$$
X(f \circ F)=\left(\left(F_{*} X\right) f\right) \cdot F
$$

Call $F_{*} X$ the pushforward of X along F.

See ip. 183-184 for detailed comp'x of $F_{k} X$

Vector fields \& submanifilds
$S \subseteq M$ immersed or ambeddind submfld
For $p \in S, X \in X(M)$ call X tangent to S at p whin

$$
X_{p} \in T_{p} S \subseteq T_{p} M
$$

Note $S \subseteq M$ ism submfld, $X \in X(M)$ tangent to S;
thin $\left.3!X\right|_{s} \in x(5)$
that is i-related to X $(v: 5 \hookrightarrow M) \quad$. 185

Prop $S \subseteq M$ arb subuifld. Thin $X \in X(M)$ is tangent to S iff $\left.X f\right|_{s}=0 \quad \forall f \in C^{\infty}(M)$ st $\left.f\right|_{S}=0$.

CDiractional derive indirections $\}$ tangent to S ara O on
\therefore fans constant on S.

Lie brackets
Recall $\notin(m) \cong\left\{\right.$ derivations $\left.C^{\infty}(m) \rightarrow C^{\infty}(n)\right\}$

$$
X \longmapsto(f \longmapsto X f)
$$

Given $X, Y \in X(M)$, we may form $X Y \& Y X$ as composites:

$$
\begin{aligned}
& X Y: f \mapsto X(Y f) \\
& Y X: f \mapsto Y(X f)
\end{aligned}
$$

These are fans $X Y, Y X: C^{\infty}(M) \rightarrow C^{\infty}(M)$ but not derivations. Bat the Lie bracket

$$
[x, y]:=x y-y x: f \mapsto x(y f)-y(x f)
$$

is a derivation $C^{\infty}(M) \rightarrow C^{\infty}(M)$ so $[X, Y] \in \mathscr{X}(M)$!

Pf

$$
\begin{aligned}
& {[x, y](f g)=(x y)\left(f_{g}\right)-(y x)(f g)} \\
& =x(f(y g)+(y f) g)-y(f(x g)+(x f) g) \\
& =f \cdot X Y g+X f \cdot Y g+Y f \cdot X_{g} \cdot X Y f \cdot g \\
& -\left(f: Y X_{g}+M f / X g+X f Y g g+Y X f \cdot g\right) \\
& =f[x, y] g+[x, y] f: g
\end{aligned}
$$

ss $[x, y]$ is a derivation.
Later $[x, y]$ is the "Lie derivative" - directional derive of y along X.

Prop $x, y \in x(M), \quad x=\sum_{i} x^{i} \frac{\partial}{\partial x^{i}}, \quad y=\sum_{j} y j \frac{\partial}{\partial x^{j}} \quad$ for some smosth local cords $\left(x^{i}\right)$ for M. Thin

$$
\begin{aligned}
{[x, y] } & =\sum_{i, j}\left(x^{i} \frac{\partial y^{j}}{\partial x^{i}}-y^{i} \frac{\partial x^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}} \\
& =\sum_{j}\left(x y^{i}-y x^{i}\right) \frac{\partial}{\partial x^{i}}
\end{aligned}
$$

If $\frac{\partial^{2}}{\partial x^{i} \partial x^{i}}=\frac{\partial^{2}}{\partial x^{i} \partial x^{i}}$ on smooth fins.
Erg. $\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{i}}\right]=0 \quad \forall i, j$

$$
\therefore x=x \frac{\partial}{\partial x}+\frac{\partial}{\partial y}+x(y+1) \frac{\partial}{\partial z}, y=\frac{\partial}{\partial x}+y \frac{\partial}{\partial z} \in \notin\left(\mathbb{R}^{3}\right)
$$

Than $\left.[x, y]=\left(x_{1}-y_{x}\right) \frac{\partial}{\partial x}+\left(x_{0}-y_{1}\right) \frac{\partial}{\partial y}+\left(x_{y}-y_{[x}\left(y_{y}+1\right)\right]\right) \frac{\partial}{\partial z}$

$$
\begin{aligned}
& =(0-1) \frac{\partial}{\partial x}+\partial \frac{\partial}{\partial y}+(1-(y+1)) \frac{\partial}{\partial z} \\
& =-\frac{\partial}{\partial x}-y \frac{\partial}{\partial z}
\end{aligned}
$$

Prop Lie brackets ard

- bilinear

$$
\begin{aligned}
& {[a x+y, z]=a[x, z]+[y, z]} \\
& {[x, a y+z]=a[x, y]+[x, z] \quad \forall a \in R, x, y, z \in x(M)}
\end{aligned}
$$

- antisymmetric $[x, y]=-[y, x] \quad \forall x, y \in x(M)$.

They also satisfy the

- Jacobi identity $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0 \quad \forall x, y, z$ and for $f, g \in C^{\infty}(M)$,

$$
[f x, g y]=f g[x, y]+\left(f x_{g}\right) y-(g y f) x
$$

The proof consists of comp'ns following from def ns,
A Lie a lgeisra is an \mathbb{R}-vector space of together with a bilinear transformation $[]:, o J \times O \rightarrow O]$ which is antisymmetric and satisficy the Jacobi identity
This $X(M)$ is a Lie algebra!
The Lie algeria of a Lie group
G a lie group. $X \in X(G)$ is left invariant whin $\left(L_{g}\right)_{x} X=X \quad \forall g \in G$. Write Lie $(G)=0 \subseteq \notin(G)$ for th Revector senspaee of left invariant vector fields on G.
Prop If $x, y \in o$, thun $[x, y] \in o f$ so of is a Lin algebra

Pf $\left(L_{g}\right)_{*}[x, y]_{\uparrow}=\left[\left(l_{g}\right)_{*} x,\left(L_{g}\right)_{k} y\right]=[x, y]$
Naturality of $[$,$] : If F: M \rightarrow N$ smosth, $X_{1}, X_{2} \in X(M)$, $Y_{1}, y_{2} \in x(N)$ st. x_{i} is F-related to $y_{i}, i=1,2$,
thin $\left[x_{1}, x_{2}\right]$ is F-relatel to $\left[Y_{1}, y_{2}\right]$. (Apply to $\left.F=L_{g}.\right)$
if $X_{1} X_{2}(f \cdot F): X_{1}\left(\left(y_{2} f\right) \cdot F\right)=\left(y_{1} y_{2} f\right) \cdot F$

$$
\begin{aligned}
x_{2} x_{1}(f \circ F) & =x_{2}\left(\left(y_{1} f\right) \circ F\right)=\left(y_{2} y_{1} f\right) \cdot F \\
\Rightarrow\left[x_{1}, x_{2}\right](f \circ F) & =x_{1} x_{2}(f \circ F)-x_{2} x_{1}(f \cdot F) \\
& =\left(y_{1} y_{2} f\right) \circ F-\left(y_{2} y_{1} f\right) \cdot F \\
& =\left(\left[y_{1}, y_{2}\right] f\right) \circ F
\end{aligned}
$$

A Lie a Gebora homimorphism is a linear map A : of $\rightarrow k$ rot.

$$
A[x, y]=[A x, A y] \quad \forall x, y \in \sigma \text {. }
$$

Eng: $\because l_{n} \mathbb{R}:=\mathbb{R}^{n \times n}$ with $[A, B]:=A B-B A$

$$
\Rightarrow g l_{n} \mathbb{C}:=\mathbb{C}^{n \times n} \text { as } 2 n^{2}-\operatorname{dim}-1 R-\text { vs with }[A, B]=A B-B A
$$

(Later wail see these are $\cong \operatorname{Lie}\left(G L_{n} F\right)$ for $F=\mathbb{R}, \mathbb{C}$ rasp.)
The Let a be a Lie group. The valuation map

$$
\begin{aligned}
\varepsilon: \operatorname{Li2}(G) & \longrightarrow T_{e} G \\
X & X_{e}
\end{aligned}
$$

is a vector space isomorphision. Thus $\operatorname{dim} \operatorname{lin}_{\mathbb{R}}(6)=\operatorname{dim} G$.

If ε is linear and if $\varepsilon(X)=X_{2}=0$ then $X=0 \mathrm{~b} / \mathrm{c}$ (by (eft-inrariona) $X_{g}=f\left(L_{g}\right)_{e}\left(X_{e}\right)=0 \quad \forall g$.
For surjuctivity, let $v \in T_{2} G$ be arbitrary and define

$$
\left.v^{L}\right|_{g}:=d\left(l_{g}\right)_{g}(v)
$$

v^{L} is smooth: Suffices to show $v^{L} f$
 smooth $\forall f \in C^{\infty}(G)$. Take $\gamma:(-\delta, \delta) \rightarrow G$ smosth with $\gamma(0)=\varepsilon, r^{\prime}(0)=v$. Thin for $g \in G$,

$$
\begin{aligned}
\left(v^{\prime} f\right)(g) & =v^{l_{g}} f=d\left(l_{g}\right)(v) f=v\left(f \cdot l_{g}\right) \\
& =\gamma^{\prime}(0)\left(f \circ l_{g}\right)=\left.\frac{d}{d t}\right|_{t=0}\left(f \cdot l_{g} \cdot \gamma\right)(t)
\end{aligned}
$$

Define $\varphi:(-\delta ; \delta) \times G \longrightarrow \mathbb{R}$

$$
(t, g) \longmapsto f \cdot l_{g} \cdot \gamma(t)=f(g \gamma(t))
$$

Than $\left(v^{L} f\right)(g)=\frac{\partial \varphi}{\partial t}(0, g)$. Since φ is smorth, $v^{L} f$ is smooth. v^{L} is left-invariant: WTS $d\left(L_{h}\right)_{g}\left(\left.v^{l}\right|_{g}\right)=\left.v^{L}\right|_{h g} \quad \forall g, h \in G$.
By difn, $d\left(L_{h}\right)_{g}\left(v^{L} l_{g}\right)=d\left(L_{h}\right)_{g}\left(d\left(l_{g}\right)_{c} v\right)$

$$
\begin{aligned}
& =d\left(L_{h} \cdot L_{g}\right)_{e} v \\
& =d\left(L_{h g}\right)_{e} v \\
& =\left.v^{L}\right|_{h g}
\end{aligned}
$$

Finally, $\varepsilon\left(v^{2}\right)=\left.v^{2}\right|_{i}=v$ so ε is surjective.

