Group actions \&n equivariant maps
Call a left (rasp. right) action of a Lieu group G on a smooth infld M a Lie group action when the action map $G \times M \xrightarrow{\theta} \quad($ rasp. $M \times G \longrightarrow M)$ $(g, x) \longmapsto g^{\prime} x$ $(x, g) \longmapsto x \cdot g)$ is smooth
Prep $\theta_{g}=g: M \underset{x}{M} M_{g \times x}$ is a differs $\forall g \in G$
Pf Smooth inverse $g^{-1}: M \rightarrow M$
May identify lin action with hom $g \longmapsto \theta_{g} \longmapsto(M)$ diffuses. $M \rightarrow M$ under:

Notation $G \cdot x=\{g \cdot x \mid g \in G\} \subseteq M$ orbit of x

- $G_{x}=\{g \in G \mid g x=x\}$ th stripy op/ stabilizer of x
- GOM or MSG . $\theta_{g}=g: M \rightarrow M$

Egg. . GCG by left translation; also by conjugation

- trivial action $g \cdot x=x \quad \forall g \in G, x \in M$ $g^{* h}:=$ ghq ${ }^{-1}$
- $G L_{n} \mathbb{R} \odot \mathbb{R}^{n}$ by matrix multan

TPS What are the orbits of $G L_{n} \mathbb{Q} \in \mathbb{R}^{n}$?

$$
\begin{aligned}
& \text { of } S \operatorname{Li}_{n} \mathbb{R} \subset \mathbb{R}^{n} ? \therefore \because\left\{\begin{array}{l}
A \times x=y \\
\text { for } A \in
\end{array}\right. \\
& \text { Here } S O(n)=\left\{A \in S \operatorname{lin}_{n} \mathbb{R} \mid A A^{\top}=I_{n}\right\}
\end{aligned}
$$

- $G l_{n} \mathbb{R}: \mathbb{R}^{n} \backslash 0,\{0\}$
$S L, \mathbb{R}=\{1\}$: singletions in \mathbb{R}
$S L_{2} \mathbb{R}: \quad A\binom{1}{0}=\binom{x}{y}$
take $A=\left(\begin{array}{ll}x & b \\ y & d\end{array}\right)$ s.t. $x d-b y=1$
- $S l_{n} \mathbb{R}: \mathbb{R}^{n}, 0,\{0\}$
- $S O(n): \lambda s^{n-1}$ for $\lambda \geqslant 0$

Suppose $G \subset M, N$ smoothly. Call $F: M \rightarrow N$ G-equivariant when $F(g x)=g \cdot F(x) \quad \forall g \in G, x \in M$, ie.

E.g. $\mathbb{R}_{x}^{n} \xrightarrow{\lambda} \mathbb{R}^{n}$ is $G l_{n} \mathbb{R}$-aquivariant

Equivariant rank the $G \subset M, N$ smoothly, $F: M \rightarrow N$ smooth x equivariant. If GCM transitive, then F has constant rank.
Pf Same as "Lie ge homs have constant rank" bet with

\Rightarrow rank F is constant on or bits If GOM transitive, thin orbit ir M.

Application $x \in M$. Define $\theta^{(x)}: G \longrightarrow M$, the orbit map.
Note $\theta^{(x)}(G)=G \cdot x, \quad\left(\theta^{(x)}\right)^{-1}\{x\}=\{g G G \mid g \cdot x=x\}=G_{x}$
Prop $\Theta^{(x)}$ is smooth of constant rank. This G_{x} is a properly embedded Lie subgp. If $G_{x}=e$, then $\theta^{(x)}$ is an infective smooth immersion, so $G \cdot x$ is an immersed submfld of M (Ch.21: $G: x \subseteq M$ immersed always.)

$$
g x=h x \Rightarrow g^{-1} h x=x
$$

Pf Since $G \cong G \times\{x\} \hookrightarrow G \times M$ commutes, $\theta^{(x)}$ is smooth.

Further, $\theta^{(x)}$ is aquivariant (writ lift trans'x on G, θ on M):

$$
\theta^{(x)}\left(g^{\prime} g\right)=\left(g^{\prime} g\right) \cdot x=g^{\prime} \cdot(g \cdot x)=g^{\prime} \cdot \theta^{(x)}(g) .
$$

Since GOG transitively, $\theta^{(x)}$ has constant rank.
Th or thogonal group $O(n]$

$$
O(n):=\left\{A \in \mathbb{R}^{n \times n} \mid A^{\top} A=I_{n}\right\}
$$

- Let's show $O(n)$ is a Lin gp

Define $\Phi: G L_{n} R \longrightarrow \mathbb{R}^{n \times n}$ so that $O(n)=\Phi^{-1}\left\{I_{n}\right\}$

$$
A \longmapsto A^{\top} A
$$

Let $G L_{n} \mathbb{R} S G L_{\text {multan }} \mathbb{R}, \mathbb{R}^{n \times n} S G L_{n} R$ by $M \cdot B=B^{\top} M B$
These are surooth actions writ which Φ is equivariant:

$$
\Phi(A B)=(A B)^{\top}(A B)=B^{\top} A^{\top} A B=B^{\top} \Phi(A) B=\Phi(A) \cdot B
$$

Thus Φ has constant rank, so ∂x_{n}) is a properly embedded Lie surge of $G L_{n} R$.

- Note $O(n)$ is compact as it is closed + bounded in $\mathbb{R}^{n \times n}$
- $\operatorname{dim} O(n)=\frac{n(n-1)}{2}$: Compute rank of Φ at I_{n}.

For $B \in T_{I_{n}} G L_{n} \mathbb{R}=\mathbb{R}^{n \times n}$, difin $\gamma:(-\varepsilon, \varepsilon) \longrightarrow G L_{n} \mathbb{R}$

$$
t \longmapsto I_{n}+t B
$$

Then $d \Phi_{I_{n}}(B)=\left.\frac{d}{d t}\right|_{t=0} \Phi_{0} \gamma(t)=\left.\frac{d}{d t}\right|_{t=0}\left(I_{n}+t B\right)^{T}\left(I_{n}+t B\right)$

$$
=B^{\top}+B
$$

This is a symmetric matrix $\left(M^{\top}=M\right)$ and for any B sem, $d \Phi_{I_{n}}\left(\frac{1}{2} B\right)=B$, so in $d \Phi_{I_{n}}=$ symm matrices in $\mathbb{R}^{n \times n}$.

$$
\operatorname{dim} n+(n-1)+\cdots+1=\frac{n(n+1)}{2}
$$

Finally, $n^{2}-\frac{n(n+1)}{2}=\frac{n(n-1)}{2}$.
\therefore If $A^{\top} A=I_{n}$, thin $1=\operatorname{det}\left(A^{\top} A\right)^{2}=\operatorname{det}\left(A^{\top}\right) \operatorname{det} A=(\operatorname{det} A)^{2}$
so et $A= \pm 1 \quad \forall A \in O(n)$.

The special orthogonal group $50(n)$
$S O(n):=O(n) \cap S L_{n} \mathbb{R}$ is the open surg of $O(n)$ with $\operatorname{det} A=1$.

$$
\begin{aligned}
& S O(2) \approx S^{1}\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) \\
& S O(3) \approx R P^{3}
\end{aligned}
$$

The unitary group $U(n)$

$$
z \cdot w=\sum z_{i} \bar{w}_{i} \text { preserve t }
$$

$$
U(n)=\left\{A \in \mathbb{C}^{n \times n} \mid A^{*} A=I_{n}\right\} \text { is a properly emb }
$$

adjoint $A^{*}=\bar{A}^{\top}$ j satisfies $(A B)^{*}=B^{*} A^{*}$
subgp of $G L_{n} \mathbb{C}$ of $\operatorname{dim} n^{2} \quad u(1) \cong s^{1}$
The special unitary group $\delta U(n)$
$S U(n)=U(n) \cap S L_{n} \mathbb{C}$ property mb $\left(n^{2}-1\right) \operatorname{dim} l$ subgi of $U(n)$

$$
s u(2) \approx s^{3}
$$

$$
H=\mathbb{R} \oplus \mathbb{R} i \oplus \mathbb{R} j \oplus \mathbb{R} k
$$

$$
i^{2}=j^{2}=k^{2}=-1
$$

$$
H^{x}=H^{\prime} 0 \geq 5^{3}
$$

The Euclidean group $E(n)$ $112 \sim$ iso as Lie su(z) groups $O(n) \subset \mathbb{R}^{n}$ so we may form $E(n)=\mathbb{R}^{n} \times O(n)$ with malt'n $(x, A)(y, B)=(x+A y, A B)$

This is the isometry group of \mathbb{R}^{n} distance preserving

$$
\rho: E(n) \longleftrightarrow G L_{n+1} \text { 仅 }
$$

$$
(x, A) \longmapsto\left(\begin{array}{l|l}
A & x \\
\hline 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \operatorname{Im}(H) \\
& :=R_{i} \oplus \mathbb{R}_{j} \oplus \mathbb{C O}_{2} \\
& p \in S^{3} \in \mathbb{H}^{x} \\
& S^{3} \partial \operatorname{In}(H) \\
& p q=p q p^{*} \\
& P: \operatorname{Im}(H-1) \rightarrow \operatorname{Im}_{m}(t) \\
& \in S O(\operatorname{Im}(H-1))
\end{aligned}
$$

