MATH 546: MANIFOLDS HOMEWORK DUE FRIDAY WEEK 7

Problems taken from *Introduction to Smooth Manifolds* are marked ISM x–y. Please review the syllabus for expectations and policies regarding homework.

Problem 1 (14–4). Let *V* be a finite-dimensional vector space.

- (a) Show that an ordered *k*-tuple (v_1, \ldots, v_k) of elements of *V* is linearly dependent if and only if $v_1 \wedge \cdots v_k = 0$.
- (b) Show that two linearly independent ordered *k*-tuples (v_1, \ldots, v_k) and (w_1, \ldots, w_k) of elements of *V* have the same span if and only if

$$v_1 \wedge \cdots \wedge v_k = cw_1 \wedge \cdots \wedge w_k$$

for some nonzero scalar *c*.

Problem 2 (14–5, CARTAN'S LEMMA). Let M be a smooth n-manifold with or without boundary, and let $(\omega^1, \ldots, \omega^k)$ be an ordered k-tuple of smooth 1-forms on an open subset $U \subseteq M$ such that $(\omega^1|_p, \ldots, \omega^k|_p)$ is linearly independent for each $p \in U$. Given smooth 1-forms $\alpha^1, \ldots, \alpha^k$ on U such that

$$\sum_{i=1}^{k} \alpha^{i} \wedge \omega^{i} = 0$$

show that each α^i can be written as a linear combination of $\omega^1, \ldots, \omega^k$ with smooth coefficients.

Problem 3 (ISM 15–1). Suppose M is a smooth manifold that is the union of two orientable open submanifolds with connected intersection. Show that M is orientable. Use this to give another proof that S^n is orientable.

Problem 4 (ISM 16–3(a)). Suppose *E* and *M* are oriented smooth *n*-manifolds with or without boundary, and $\pi: E \to M$ is a smooth orientation-preserving *k*-sheeted covering map or generalized covering map. Show that

$$\int_E \pi^* \omega = k \int_M \omega$$

for any compactly supported *n*-form ω on *M*.

Problem 5. Let *M* be an oriented smooth *n* manifold, $f \in C^{\infty}(M)$, and $\omega \in \Omega_c^{n-1}(M)$. Use Stokes' theorem to prove the following generalization of integration by parts:

$$\int_M f \, \mathrm{d}\omega = \int_{\partial M} f \omega - \int_M \mathrm{d}f \wedge \omega.$$