MATH 546: MANIFOLDS HOMEWORK DUE FRIDAY WEEK 4

Problems taken from Introduction to Smooth Manifolds are marked ISM $x-y$. Please review the syllabus for expectations and policies regarding homework.
Problem 1 (ISM 9-12). Suppose M_{1} and M_{2} are connected smooth n-manifolds and $M_{1} \# M_{2}$ is their smooth connected sum (see Example 9.31). Show that the smooth structure on $M_{1} \# M_{2}$ can be chosen in such a way that there are open subsets $\tilde{M}_{1}, \tilde{M}_{2} \subseteq M_{1} \# M_{2}$ that are diffeomorphic to $M_{1} \backslash\left\{p_{1}\right\}$ and $M_{2} \backslash\left\{p_{2}\right\}$, respectively, such that $\tilde{M}_{1} \cup \tilde{M}_{2}=M_{1} \# M_{2}$ and $\tilde{M}_{1} \cap \tilde{M}_{2}$ is diffeomorphic to $(-1,1) \times S^{n-1}$.
Problem 2 (ISM 9-16). Give an example of smooth vector fields V, \tilde{V}, and W on \mathbb{R}^{2} such that $V=\tilde{V}=\partial / \partial x$ along the x-axis but $\mathscr{L}_{V} W \neq \mathscr{L}_{\tilde{V}} W$ at the origin.
Problem 3 (ISM 10-1). Let E be the total space of the Möbius bundle constructed in Example 10.3.
(a) Show that E has a unique smooth structure such that the quotient map $q: \mathbb{R}^{2} \rightarrow E$ is a smooth covering map.
(b) Show that $\pi: E \rightarrow S^{1}$ is a smooth rank-1 vector bundle.
(c) Show that it is not the trivial bundle.

Problem 4 (ISM 10-11). Prove Proposition 10.26: A bijective bundle homomorphism is a bundle isomorphism.
Problem 5 (ISM 10-18). Suppose S is a properly embedded codimension k submanifold of \mathbb{R}^{n}. Show that the following are equivalent:
(a) There exists a smooth defining function for S on some neighborhood U of S in \mathbb{R}^{n}; i.e., there is a smooth function $\Phi: U \rightarrow \mathbb{R}^{k}$ such that S is a regular level set of Φ.
(b) The normal bundle $N S$ is a trivial vector bundle.

