MATH 546: MANIFOLDS HOMEWORK DUE FRIDAY WEEK 2

Problems taken from Introduction to Smooth Manifolds are marked ISM $x-y$. Please review the syllabus for expectations and policies regarding homework.
Problem 1 (ISM 7-11). Considering $S^{2 n+1}$ as the unit sphere in \mathbb{C}^{n+1}, define an action of S^{1} on $S^{2 n+1}$, called the Hopf action, by

$$
z \cdot\left(w^{1}, \ldots, w^{n+1}\right)=\left(z w^{1}, \ldots, z w^{n+1}\right) .
$$

Show that this action is smooth and its orbits are disjoint unit circles in \mathbb{C}^{n+1} whose union is $S^{2 n+1}$.
Problem 2 (ISM 7-22). Let $\mathbb{H}=\mathbb{C} \times \mathbb{C}$ and consider it as a real vector space. Define a bilinear product

$$
\begin{aligned}
\mathbb{H} \times \mathbb{H} & \longrightarrow \mathbb{H} \\
((a, b),(c, d)) & \longmapsto(a c-d \bar{b}, \bar{a} d+c b)
\end{aligned}
$$

for $a, b, c, d \in \mathbb{C}$. This makes \mathbb{H} a 4 -dimensional \mathbb{R}-algebra called the quaternions. For each $p=$ $(a, b) \in \mathbb{H}$, define $p^{*}=(\bar{a},-b)$. It is useful to work with the basis $(1, i, j, k)=((1,0),(i, 0),(0,1),(0,-i))$ for \mathbb{H}. One may verify that this basis satisfies

$$
\begin{aligned}
& i^{2}=j^{2}=k^{2}=-1, \quad 1 q=q 1=q \text { for all } q \in \mathbb{H}, \\
& i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j, \\
& 1^{*}=1, \quad i^{*}=-i, \quad j^{*}=-j, \quad k^{*}=-k .
\end{aligned}
$$

A quaternion p is said to be real when $p^{*}=p$, and imaginary when $p^{*}=-p$. Real quaternions can be identified with real numbers via the correspondence $\lambda \leftrightarrow x 1$.
(a) Show that quaternionic multiplication is associative but not commutative.
(b) Show that $(p q)^{*}=q^{*} p^{*}$ for all $p, q \in \mathbb{H}$.
(c) Show that $\langle p, q\rangle=\frac{1}{2}\left(p^{*} q+q^{*} p\right)$ is an inner product on \mathbb{H} with associated norm satisfying $|p q|=|p||q|$.
(d) Show that every nonzero quaternion has a two-sided multiplicative inverse given by $p^{-1}=$ $|p|^{-2} p^{*}$.
(e) Show that the set \mathbb{H}^{\times}of nonzero quaternions is a Lie group under quaternionic multiplication.

Problem 3 (ISM 7-23). Let \mathbb{H}^{\times}be the Lie group of nonzero quaternions, and let $S^{3} \subseteq \mathbb{H}^{\times}$be the set of norm 1 quaternions. Show that S^{3} is a properly embedded Lie subgroup of \mathbb{H}^{\times}, isomorphic to $\mathrm{SU}(2)$.

Problem 4 (ISM 8-4). Let M be a smooth manifold with boundary. Show that there exists a global smooth vector field on M whose restriction to ∂M is everywhere inward-pointing, and one whose restriction to ∂M is everywhere outward-pointing.

