Transversality

Defn. Smooth ufld M, emb submflds $5,5^{\prime} \leq M$ intursect traniversely when $\forall p \in S \cap S^{\prime}, T_{p} M=T_{p} S+T_{p} S^{\prime}$,

- $F: N \rightarrow M$ simooth emb submifld $S \subseteq M$ thin F is transverse to S whin $\forall x \in F^{-1} S, T_{F(x)} M=T_{F(x)} S+d F_{x} T_{x} N$.

Note : Submersions ara transverse to everything $S, S^{\prime} \subseteq M$ transeres iff is transverse to S^{\prime}.

- $F: N \rightarrow M$ transverge to $p \in M$ (vieusd as a submfld) whin $\frac{d F_{x} \text { surj } \forall x \in F^{-1}}{?}$

Thim N, M sm $m f l_{d}, s \leq M$ emb subinfld
(a) If $F: N \rightarrow M$ is smooth \& transvarse to S, thin $F^{-1} S \subseteq N$ is an emb subinfld with codim $N F^{-1} S=\operatorname{codim}_{M} S$
(b) If $S^{\prime} \subseteq M$ is an emb submfld intursacting S traniversaly then $5 \cap S^{\prime}$ is an emb subunfld of M of codim $=\operatorname{cosin} M_{M} S^{5}+\operatorname{cosemim}_{M} S^{\prime}$.

If $(a) \Rightarrow(b)$ by taking $F=l_{s}$.
(a) Let $m=\operatorname{dim}_{M} M, k=\operatorname{colim}_{\mu} S$. For $x \in F^{\prime \prime} S$, fain U nbhd of $F(x)$ and local defining $f_{n} \varphi: u \rightarrow \mathbb{R}^{k}$ for S with

$$
U \cap S=\varphi^{-1} 0
$$

UTS O is a regular value of $\varphi \cdot F$ (whence $F^{-1} S \cap F^{-1} U$ $=\left(\left.P \cdot F\right|_{F^{-1} u}\right)^{-1} 0$ and dom by reg lie set the).
For $z \in T_{0} \mathbb{R}^{k} \& \psi^{\in}(\varphi \cdot F)^{-1} 0, \varphi$ regular $\Rightarrow \exists y \in T_{F()} M$ s.t. $d \varphi_{F i_{p}}(y)=z$. Since F transverse to S, we can write $y=y_{0}+d F_{p}(v)$ for some $y_{0} \in T_{F(p)} S, v \in T_{p} N$.
$B / C \varphi$ const on $S \cap U, d\left(\|_{F(p)}, y\right)=0$. By chain rule

$$
\begin{aligned}
d(\varphi \cdot F)_{p}(v) & =d \varphi_{F(p)}\left(d F_{p}(v)\right) \\
& =d \varphi_{F(r)}\left(y_{0}+d F_{p}(v)\right) \\
& =d \varphi_{F(p)}(y) \\
& =z .
\end{aligned}
$$

E.g.

Q Can two curves in \mathbb{R}^{3} intersect transversely?
A smooth family of maps $F_{5}: N \rightarrow M$, s $\in S$ is a smooth map $F: N \times s \longrightarrow M$ with $F(-, s)=F_{s}$
Note If S is conned, then $F_{s} \simeq F_{t} \forall s, t \in S$. Indued. may restrict F to a path from to t to get a laity
Thu (Parametric Transversality) N, M smooth inflds, $X \subseteq M$ crab submfld, $\left\{F_{5}: N \rightarrow M \mid, \in S\right\}$ smooth family if maps.
If $F: N \times S \rightarrow M$ is transkurs to X, then almost evary F_{s} is transude
i X.

Pf. $W=F^{-1} X \subseteq N \times s$ camb subinfld. let $\pi=\pi_{2}: N \times S \rightarrow S$.
Claim $\{s \in S \mid s$ is a rigenear value of $\pi / W\}$

$$
\left.\subseteq\{s \in S] F_{s} \text { transverse to } X\right\}
$$

Thun CHS "full meagre" \Rightarrow RHS full measure.
complement
meagiuri 0 - true by Sard
Suppose $s \in S$ is a reg value of π / W. For $p \in F_{S}^{\prime} X$ arbitrary, set $q=F_{s}(p) \in X$. wis $T_{q} M=T_{q} X+d\left(F_{s}\right), T_{p} N$

- Know $T_{q} M=T_{q} X+d F_{(p, s)} T_{(p, s)}(N \times s) \quad W / c F$ trans corse to X
- Also $T_{5} S=d \pi_{(p, s)} T_{(p) s)}(N \times s)$ bes s rig value of π / W.

$$
\begin{aligned}
&-D_{y} H W(I S M ~ 6-10) T_{(p, 5)} W=d F_{(1,5)}^{-1} T_{q} X \\
& \Rightarrow d F_{(p, 5)} T_{(p, 5)} W=T_{q} X
\end{aligned}
$$

For we $T_{q} M$ arbititary, neid $v \in T_{q} X, y \in T_{p} N$ s.t.

$$
w=v+d\left(F_{s}\right)_{p}(y)
$$

By (1), $\exists v \in T_{q} X,\left(y, z z^{\prime}\right) \in T_{p} N \times T_{s} s \equiv T_{p, s)}(N \times s) x t$.

$$
w=v_{1}+d F_{(p, 5)}\left(y_{1}, z_{1}\right)
$$

choos (by (2) $\left.l_{j} y_{2}, z_{2}\right) \in T_{(p, s)}$ w with $\left.d \pi_{(p, 5)} l_{y_{2}, z_{2}}\right)=z_{1}$.

Hava $z_{2}=z_{1}$ sinea π is projn. By linearity,

$$
d F_{(p, s)}\left(y_{1}, z_{1}\right)=d F_{(p, s)}\left(y_{2}, z_{1}\right)+d F_{(p, s)}\left(y_{1}-y_{2}, z_{1}\right)
$$

Claim (7) satisfind $b r=v_{1}+d F_{(p, s)}\left(y_{2}, z_{1}\right)$

$$
y=y_{1}-y_{2}
$$

(chuck this!)
Thim (Transverse up to homotopy) $M, N \sin m f(d), X \subseteq M$ umb submfld: Every smooth map $f: N \rightarrow M$ is litpic to a smooth map $g: N \rightarrow M$ that is transvire to X.

If Suffices to construct $F: N \times B_{k} \rightarrow M$ transverse to with $F_{0}=f$ (Why?)

By Whitney embedding, $M \underset{\operatorname{ams}}{\hookrightarrow} \mathbb{R}^{h}$ for some k.
Let U be a tabular note of M in $\mathbb{R}^{h} ; r: U \rightarrow M$ smooth retraction + submersion. Take $\delta: M \rightarrow \mathbb{R}_{>0}$

$$
x \longmapsto \sup \left\{\varepsilon \leqslant 1 \mid B_{\varepsilon}(x) \subseteq u\right\}
$$

\exists smooth $e: N \rightarrow \mathbb{R}_{>0}$ with $0<e(p)<\delta(f(p)) \forall p \in N$
Define $F: N \times B_{2}^{\prime-\text { unit }} \xrightarrow{\text { al }} M$

$$
(p, s) \longmapsto r(f(p)+e(p) s)
$$

$$
\in U b / c|e(p) s|<e(p)<\delta(f(p))
$$

F is smooth and $F_{0}=f$ ble r is a ratraction
For $p \in N,\left.F\right|_{j_{p} \rho \times B_{k}}$ is th locall diffeo $\left.s \mapsto f(p)+e l_{p}\right) s$
fllowed by submersion r hence it is transverse to X.

