3. 瓜. 23

· Whitney approx gave S-close smooth cts F: M -> Rk	- approx'n to any
• For F: M - N cts, use Whitney inside R ^k .	embedding to view N
· But now the smooth approx'n will	miss NERK by a bit
· Thus we need Tubular neighborhoods	
For $M \in \mathbb{R}^n$ smoothy embedded define $N_x M \in T_x \mathbb{R}^n$ to be	YEAH. HA-HATOTALLY TUBULAR, DUDE.
$(T_{\mathbf{x}}\mathbf{M})^{\perp} = f(\mathbf{x},\mathbf{v}) \in T_{\mathbf{x}}\mathbf{R}^{-} \mathbf{v} \cdot \mathbf{u} = \mathbf{O} \forall (\mathbf{x},\mathbf{u})$	$ET_{\mathbf{X}}\mathbf{M}_{\mathbf{Y}}^{\mathbf{Y}}$ is a second s

(Have using the canonical id's TR" = R" ~ R") The normal bundle NM = } (x, v) & TRn | x & M, v & N_x M } TINM NM MSR² M The If MER" is an emb modim I smooth mfld, then NM is an embedded n-dim (screenfld of TR"

Pf xoeM, (U, P) slice chart for M in Rn centered at xo $M \qquad \mathcal{U} \xrightarrow{\varphi} \hat{\mathcal{U}} \in \mathbb{R}^{n}$ $M \cap U = \{ u^{m+1} = \dots = u^n = 0 \}$ For $x \in U$, $E_{j}|_{x} = (dY_{x})^{-1} (\frac{2}{3}uv|_{Y(c)})$ form a basis for $T_{x}\mathbb{R}^{n}$ Write $E_j|_x = \sum_i E_j^i(x) \frac{\partial}{\partial x_i}|_x$ for $E_j^i(x)$ smooth in x. Define $\overline{\Phi}: U \times \mathbb{R}^n \longrightarrow \widehat{U} \times \mathbb{R}^n$ ($u'(x), \dots, u^*(x), \dots \in \mathbb{R}^n$) ($u'(x), \dots, u^*(x), \dots \in \mathbb{R}^n$) Thin $J\overline{\Psi}_{(x,v)} = \begin{pmatrix} \frac{\partial u}{\partial x_{j}}(x) & 0 \\ \frac{\partial u}{\partial x_{j}}(x) & 0 \\ \frac{\partial u}{\partial x_{j}}(x) & 0 \end{pmatrix}$ which is invertible, so $\overline{\Psi}_{i,x}$ is a local diffuo.

IF $\overline{\mathcal{I}}(x,v) = \overline{\mathcal{I}}(x',v')$, then x=x' b/c \mathcal{I} inj, and v Eilx = v Eilx Vi => v-v' I spansEilx, ..., Enlx $a = a \Rightarrow v - v' = 0,$ Thus I is injective affines smooth coord chart on UKR". Have $(x,v) \in NM$ iff $\overline{\mathcal{I}}(x,v) \in \{(y,z) \in \mathbb{R}^n \times \mathbb{R}^n \mid y^{m+1} = -y^n = 0\}$ $\cap U \times \mathbb{R}^n$ $z' = \cdots = z^m = 0$ $\Rightarrow \overline{\Phi}$ is a slice chart for NM in TRⁿ. Define $E: NM \longrightarrow R^n$ so that $E(f_{K} \times N_{K}) = affine space three x,$ $(x, v) \longmapsto x + v \qquad L T_{K}M$

		Ą	tr	bul	ar	nei	ghbo	rho	od	of	M⊆	Rn	 11 .		nbh	d	 U .	of	M	in	R	r
		5,{	· ·	U =	= E	{ (x	e (مر	NM		155	(~)}	for	Som	. a _	ch	S]:	M -	→k) ->c	, . ?),		
		Ē	с	. di	ffee	> V																
									Ň		4/		I CR ²									
					\searrow					$\langle \rangle$	X	\sum		• • •								
						4		\mathbb{A}	$\langle \rangle$						NP	١.						
								\frown			· · · ·	· · ·										
											· · ·											

The Every MER embedded submit (d has a tubular neighborhood.
$\underline{\mathcal{T}}$ $_{\mathrm{PP}}$, $\underline{\mathcal{B}}$ $-\underline{\mathcal{H}}$
Recall that a retraction of a space X onto a subspace $M \in X$ is $r: X \rightarrow M$ ets r.t. $r _{M} = id_{M}$.
Prop $M \in \mathbb{R}^n$ emb submitted, \mathcal{U} a tubular normal of M . Thun \mathcal{F} a smooth map $r: \mathcal{U} \longrightarrow \mathcal{M}$ that is a retraction \mathcal{L} a smooth submersion.
Pf Define $M_o \in NM \in TR^n$ by $M_o = \{(x, o) \mid x \in M\}$.

Have Mo EVENM with EV -> U diffeo.
Define $r: \mathcal{U} \longrightarrow \mathcal{M}$ Then r is smooth by comp'n.
E^{-1} π V π V
For $x \in M$, $r(x) = \pi E'(x) = \pi (x, 0) = \kappa$, so r is a retraction.
π smooth submersion + E^{-i} diffeo \Longrightarrow r smooth submersion.
The (Whitney Approximation) N a smooth mfld w/ or w/o 2,
M a smooth mfld (no), and $F: N \rightarrow M$ cts. Then F
is homotopic to a smeath map. If F is already, smooth
on A EN closed, then the htpy can be taken rol A.

PF By Whitney embedding, may assume MER" properly embedded. Take U a ferbular noted of M in R", and let r: U -> M be the smooth retraction of the prop'n. For $x \in M$, let $S(x) = \sup \{ \epsilon \leq 1 \mid B_{\epsilon}(x) \in U \}$. S is ctr (Δ -iniq....) as a fin $M \longrightarrow \mathbb{R}_{\geq 0}$. Let $\tilde{S} = S \circ F : N \longrightarrow \mathbb{R}_{>0}$. Know \exists smooth $\tilde{F} : N \longrightarrow \mathbb{R}^n$ that is S-close to F & equal to F on A. Let $H: N \times I \longrightarrow M$ $(p,t) \longmapsto r((1-t)F(p) + t\tilde{F}(p))$ straight line htpy FLP) ~> F(p)

For $p \in N$, $|\tilde{F}(p) - F(p)| < \tilde{S}(p) = S(F(p)) \implies \tilde{F}(p) \in \mathcal{B}(F(p))$ ⊆U ⇒ whole line segment F(p) ~ F(p) ⊆U. Thus His well-defind htpy F >> roF smooth by comp'n For $p \in A$, H(p,t) = F(p) since $\widetilde{F}|_{A} = F$. See pp. 142 - 143 for how to use these ideas to convert htpins blu smooth maps into smooth htpins.

MEN emb submit (d 5 $M \cap U = \{u^{m+1} = \dots = u^n = 0\}$ ~ N (K) MCSN 1)1 $\mathcal{O}($ Mnu 11 S 0 0 ÛER MNU - ÚER u', ..., un $(u', \dots, u^m) \mapsto (u', \dots, u^m, 0, \dots, D)$

Fig 8 immersion which is not an embedding $\beta:(-\pi,\pi)\longrightarrow \mathbb{R}^2$ $t \longrightarrow (sin(2t)), sin t$ Im(p) = In subspace topology, In(p) ER2 is not loc Euclidean so not a mfld.

smooth F: M - N ູ່ປາ immursed submit l ->5 ir Smooth c 15 not wisabspace G:R -> R2 G:R - Imp topology A B no longer ets !! (- ল, ন)