Sard's Theorem
$f: M \longrightarrow N$ smooth then $\mu(\underbrace{(\operatorname{crit}(f)}_{\text {measure }}))=0$. critical pts of f,

$$
\text { i., } p \in M \text { sot. }
$$

$$
d f_{p}: T_{p} M \rightarrow T_{p} N
$$

Arthur Sard not surjuctive 1909-1980
$A \subseteq \mathbb{R}^{n}$ has measure 0 whin $\forall \delta>0 \quad \exists$ countable collection of rectangles $R_{i} \subseteq \mathbb{R}^{n}$ covering $A \&$ with $\sum_{i} \underbrace{v_{0} l\left(R_{i}\right)}<\delta$

$$
\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]
$$

$$
\prod_{k}\left(b_{k}-a_{k}\right)
$$

(presently!)
We wont develop a general notion of measure for $A \subseteq M$ smooth $m f(d$ but we will define measure O for $A \subseteq M$ and write $\mu(A)=0$.

Prop Suppose $A \subseteq \mathbb{R}^{n}$ hes $\mu(A)=0$ and $F: A \rightarrow \mathbb{R}^{n}$ is smooth. Than $\mu(F(A))=0$

If Choose a cover of A by countably many precompact open $u \subseteq \mathbb{R}^{n}$? Then which $F(A)$ is a union of countably wang sets of the form $F(A \cap \bar{U})$ and it suffices to show each of these has $\mu=0$,
Since \bar{u} compact, $\exists c \in \mathbb{R}$ sit, $\left|F x-F_{x^{\prime}}\right| \leq c\left|x-x^{\prime}\right| \forall x, x^{\prime} \in U$:

Given $\delta>0$, choose countable cover $\{B j\}$ of $A \cap \bar{u}$ with $\sum \operatorname{vol}\left(B_{j}\right)<\delta: B_{y} \in F\left(\bar{u} \cap B_{j}\right) \leq \tilde{B}_{j}$.
ball of radius $\leq C$ radius $\left(D_{j}\right)$
Thus $F(A \cap \bar{U}) \subseteq U_{\tilde{B}_{j}}$ and sum of volumes of RHS is $\leq C^{n} \delta$. Given $\delta^{\prime}>0$, take $\delta=\frac{\delta^{\prime}}{2 C^{n}}$ to bound vol of cover by δ.
Justifies defining $A \subseteq M$ has measure \underline{O} when for every smooth chart (u, φ) on $M, \varphi(A \cap u) \subseteq \mathbb{R}^{n}$ has measure 0 .
Equivalently (p.128) 3 collection of smash charts $\left\{\left(u_{\alpha}, y_{\alpha}\right)\right\}$ covering A with $\mu\left(\varphi\left(A \cap U_{\alpha}\right)\right)=0 \quad \forall \alpha$.

Facts: $A \subseteq M$ measure $O \Rightarrow M \cdot A \subseteq M$ dense
$\therefore F i M \rightarrow N$ smooth, $A \subseteq M$ masisurs $O \Rightarrow F(A) \subseteq N$ measure O

Sard's Thu $F: M \rightarrow N$ smooth, thin $\mu(F($ crit $F))=0$ $\operatorname{dim} m n$

Pf by induction on m.
Base case $m=0$
Now suppose $m \geqslant 1$ and sard's the holds for all domains of smaller dime. By covering M, N with countably many smooth charts may assume $F: U \rightarrow \mathbb{R}^{n}$ smooth
lit $c=\operatorname{arit}(F) \leq U$. Filter $c \geq C_{1} \supseteq C_{2} \geq \cdots$ with
$C_{h}=\{x \in C \mid$ isth order partial derives of F vanish at $x\}$ for $1 \leq i \leq k$
By contimity, all C_{k} ain closed in U WIS $\mu(F(C))=0$ Do so in 3 steps:
Step 1: $\mu(F(C, C))=$,
(don't handle the case of x at
Stop 2: $\left.\mu\left(F\left(C_{k}, C_{k+1}\right)\right)=0 \quad \forall k\right\}$ which all partial darius vanish
Step 3 : For $k>\frac{m}{n}-1, \mu\left(F\left(C_{k}\right)\right)=0,2$ finishes the proof
Step $1: \mu\left(F\left(C \backslash C_{1}\right)\right)=0: \quad c_{1}$ closed so may g replace U with $U \backslash C_{\text {, }}$ and assume $C_{1}=\varnothing$. For a $C C$, reorder cords so that $\frac{\partial F^{\prime}}{\partial x^{\prime}}(a) \neq 0$

In a nbhd V_{a} of a take coords $u=F^{\prime}, v^{2}=x^{2}, \ldots, v^{m}=x^{m}$. Shrink so \bar{V}_{a} compuct and coords exterse smoothly to \bar{V}_{a} In thise coords, F has repn $\left(u, F^{2}(u, v), \cdots\left[F^{n}(u, v)\right)\right.$ with

$$
J F(u, v)=\left(\begin{array}{l}
1 \frac{0}{\frac{\partial F^{i}}{\partial v^{i}}} \\
\uparrow
\end{array}\left(F^{\prime}, x^{2}, \ldots x^{\prime}\right) \| 5 \stackrel{F}{\square}\right)
$$

Thus $C n \bar{v}_{a}$ is the locus where \tilde{f} har rank $<n-1$. Usi
chain sule! LTS $F\left(C \cap \bar{V}_{a}\right)$ hes measuis. $O \cap \bar{V}_{a}$ is compeut, su may chich thet each slice $F\left(\subset \cap \bar{V}_{a}\right) \cap\left\{y^{\prime}=c\right\}$ has $(n, 1)$-dimi measert O (Fubini). Sut $F_{c}(v)=\left(F^{2}(c, v), \ldots, F^{n}(c, v)\right)$, By ind'n hyj thesis, crit valcues of F_{c} have measure O ane thise are exactly the crit pals of
F in $C \cap \bar{v}_{a}$ with $F^{\prime}=c$

Stap 2: $\mu\left(F\left(C_{k}, C_{k+1}\right)\right)=0 \quad \forall k$
Take $a \in C_{k}, C_{k+1}$ and hut y: $u \rightarrow \mathbb{R}$ be a kith orle partial deriv of F with a nonvanishing $\frac{\partial y}{\partial x^{i}}(a)$: Then a is a regular point of y so \exists abl V_{a} of rag pts of y set $y=\left\{_{x}|y(x)=0| \subseteq V_{a}\right.$; its a regular hypersurfaie. Have $C_{k} \cap v_{a} \subseteq 4$ by def n of C_{k}.
For $p \in C_{k} \wedge V_{a}, d F_{7}$ is not surf, so neither is $d\left(\left.F\right|_{y}\right)_{p}=\left.\left(d F_{p}\right)\right|_{T_{p} y}$ Thus $F\left(C_{k} \cap V_{a}\right) \subseteq F \underbrace{\left(\text { crit }\left(F I_{y}\right)\right)}$.
measure O by ind hypo thess
Now $C_{k} \backslash C_{k+1}$ is covered by countably many such V_{a}

Step 3: For $k>\frac{m}{n}-1, \mu\left(F\left(C_{k}\right)\right)=0$
U can be covered w (countably many closed cubes $E \subseteq G$ so suffices to show $\mu\left(F\left(C_{k} \cap E\right)\right)=0$ such E :
Take A bounding $1 l$ of $(k+1)$ st order ∂ derive of F in E let R be sids length of \bar{t} and $k \in \mathbb{Z}_{+}$chosin later. Subdivide E into K^{m} cubes of side length $R / k, E_{1}, \ldots, E_{k^{m}}$ For $a_{i} \in E_{i} \cap C_{k}, \exists A^{\prime}=A^{\prime}(A, k, m)$ sit.

$$
\left|F(x)-F\left(a_{i}\right)\right| \leq A^{\prime}\left|x-a_{i}\right|^{k+1} \quad \text { (Taylor) }
$$

So $F\left(E_{i}\right) \subseteq$ ball radius $A^{\prime}(R / k)^{k+1}$. Thus $F\left(C_{l} \cap E\right) \subseteq$ union of k^{m} balls, sum of $v_{o} l_{s} \leq$

$$
\begin{aligned}
& K^{m} A^{\prime n}(R / K)^{n(k+1)}=A^{\prime \prime} K^{m-n k-n} \\
& A^{\prime n} R^{n(k+1)}
\end{aligned}
$$

Since $k>m / n-1$, exponent of k is $<m-n\left(\frac{m}{n}-1\right)$-n

$$
\begin{aligned}
& =m-m+n-n \\
& =0 \quad \text { (or } n=0 \Rightarrow c=\phi)
\end{aligned}
$$

So taking $k \gg 0$ git vol arbitrarily small.
Cor $F: M \rightarrow N$ smooth, $\operatorname{dim} M<\operatorname{dim} N$ then $\mu(F(M))=0$.
Whitney embedding: $\operatorname{dim} M=n$ thin J em

$$
M \leftrightarrow \mathbb{R}^{2 n+1}
$$

