Smooth Covering Maps
$\pi: E \longrightarrow M$ is a smooth conering map when it is smooth, surjuctive, each pt of M has a nohd U rit components of $\pi^{-1} U$ are matped differmorphically on to U.
Prop (a) Smot th coverings are local diffeos, smooth seebmersions, open, \&e quotiunt mapps.
(b) Injective smooth coverings are differos
(c) Top'l conering is a smooth covering iff its a local diffeos
E.g. $\quad \varepsilon: \mathbb{R} \longrightarrow s^{\prime}, \quad \varepsilon^{n}: \mathbb{R}^{n} \longrightarrow \mathbb{T}^{n}, \quad q^{: s^{n} \longrightarrow \mathbb{R} \mathbb{P}^{n}}$

Note For $\pi: E \rightarrow M$ smooth covering, $U \subseteq M$ open a evenly covered, $q \in U, p \in \pi^{-1}\{q\}$ I! smooth local section $\sigma: U \rightarrow E$ $q \mapsto p$

Prop M conn'd smooth $w-m f$ ld,
$\pi: E \rightarrow M \operatorname{top}^{\prime}($ covering max.
Then E is a top $l n$-mild and has a unique smooth structure sot. π is a smooth covering map:
Pf Top infld p. 93 (locally Euclidean b/c π local homeomorphism).

For smooth structure, given $p \in E$ take $U \subseteq M$ evenly covered nth of $\pi(p)$ and domain of smooth cord map $\varphi: U \rightarrow \mathbb{R}^{n}$

$$
\begin{aligned}
& =\left(\left.\psi \circ \pi\right|_{\tilde{u} n \tilde{v}}\right) \cdot\left(\left.\varphi \cdot \pi\right|_{\tilde{u} n \tilde{v}}\right)^{-1} \\
& =\psi \circ\left(\left.\pi\right|_{\left.\left.\tilde{u} n \tilde{v}^{\circ} \pi\right|_{\tilde{u} n \tilde{v}}{ }^{-1}\right) \circ \varphi^{-1}} ^{=\psi \circ \varphi^{-1}-\sin o \Delta t h!}\right.
\end{aligned}
$$

Coordinate presentation of π / \tilde{u} in terms of $(\tilde{u}, \tilde{\varphi}),(u, \varphi)$ is the identity man; so smooth covering map.
Cor Conned smooth inflds admit (unique) universal smooth covers.
Fact Proper local differs ara smooth covering maps p. 95 $\pi: \bar{E} \rightarrow M, \pi^{-1} K$ compact $\forall K \subseteq M$ compact $E \cdot g$. E compact!

Revisiting rank them:
Rank. Thm $0^{\circ}\{$ constant rank \leadsto canonical form
M, N smooth $m f l d s$ of dimn m, n
$F: M \rightarrow N$ smooth of constant rank r
Then $\forall p \in M \quad \exists$ smooth charts (U, φ) for M centered at p
(V, ψ) for N centered at $F(p)$
s.t. $F U \subseteq V$ in which F has word rup'n

$$
\begin{aligned}
& \int_{\downarrow} \int_{0}^{F}{ }_{0}{ }_{0} \hat{F}\left(x^{1}, \ldots, x^{r}, x^{r+1}, \ldots, x^{m}\right)=\left(x^{1}, \ldots, x^{r}, 0,0, \ldots, 0\right)
\end{aligned}
$$

Discussion Proof must produce $(\varphi, \varphi),(v, \psi)$ so that $\psi F \varphi^{-1}$ has desired form

FLOG, U, V open in

$$
R^{m}, R^{n}, p=0, F(p)=0
$$

Further assume $J F(0)$ has upper loft $s \times r$ submatrix nonsingular.

$$
F=(Q, R) \text { for } Q: u \rightarrow \mathbb{R}^{r}, R: u \rightarrow \mathbb{R}^{n-r}
$$

Define $\&: u \longrightarrow \mathbb{R}^{m}$

$$
(x, y) \mapsto(Q(x, y), y)
$$

$$
\text { so that } J \varphi(0)=\left(\begin{array}{c|c}
\left.\frac{\partial Q^{i}}{\partial x^{i}}\right|_{0} & \left.\frac{\partial Q^{i}}{\partial y^{\prime}}\right|_{0} \\
\hline & I
\end{array}\right)
$$

By Inv Fr Thu, have $U_{0} \leqslant U$ open sit. $\left.\varphi\right|_{u_{0}} u_{0} \xrightarrow{\approx} \tilde{u}_{0}$. Shrink \tilde{u}_{0} to a cube

$$
\begin{aligned}
\varphi^{-1}(x, y) & =(A(x, y), B(x, y)) \\
& =(A(x, y), y)
\end{aligned}
$$

$$
F \cdot \varphi^{-1}(x, y)=(x, \underbrace{R(A(x, y), y)})
$$

For this,

$$
\begin{aligned}
& J\left(F \cdot Y^{-1}\right)=\left(\begin{array}{c|c}
I & 0 \\
\frac{\partial \underline{p}}{\partial x} & \frac{\partial \tilde{E}}{\partial y}
\end{array}\right) 0 \\
& \tilde{R}(x, y)=\tilde{R}(x, 0) \forall y . \\
& =: S(x)
\end{aligned}
$$

So $F \circ \varphi^{-1}(x, y)=(x, S(x))$

$$
\begin{aligned}
& \text { Defin } V_{0}=\left\{(v, w) \subset V \mid(v, 0) \in \tilde{U}_{0}\right\} \\
& \psi: V_{0} \longrightarrow \mathbb{R}^{n} \\
&(v, w) \longmapsto(v, w-s(v))
\end{aligned}
$$

Let's check this for rank $1 \operatorname{map} F: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$

$$
\begin{gathered}
(x, y) \longmapsto(\sin (x+y) ; \cos (x+y)-1) \\
(0,0) \longmapsto(0,0)
\end{gathered}
$$

$$
\begin{aligned}
& J F=\left(\begin{array}{cc}
\cos (x+y) & \cos (x i) \\
-\sin (x+y) & -\sin (x+1 \\
J F(0,0)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
\end{array} . .\right.
\end{aligned}
$$

as expected

$$
\varphi(x, y)=(\sin (x+y), y) \text { and } \varphi^{-1}(x, y)=(\arcsin (x)-y, y) \text { for } 1<x<1
$$

$$
\begin{aligned}
F 0 \varphi^{-1}(x, y) & =(x, \cos (\arcsin (x))-1) \\
& =(x, \underbrace{\sqrt{1-x^{2}}-1}_{S(x)})
\end{aligned}
$$

Then $\psi \cdot F \cdot \varphi^{-1}(x, y)=\psi\left(x, \sqrt{1-x^{2}}-1\right)=(x, 0)$

