15. I. 23

Global Rank Thm F: M-N smooth of constant rank
(a) F surj => F smooth sub
(b) Fing ⇒ Fsnooth iron
(c) F bij => F diffeo
Pf (a) Prova the contrapositive by Baira category them!
(b) Assume rank $r < m = \dim M$. By rank them, have a local regin $(0, \varepsilon) \mapsto (0, 0)$ for all small $\varepsilon > 0$
so Frot inj.
(c) By a, b F is a local diffuo. Also bij to a diffuo 🗆

Smooth Embeddings F: M -> N smooth is a smooth embedding when it is a smooth immersion and topological embadding (homes onto its image) E.g. · R" C> R"+4 × + (x,) $\mathbb{P}^2 \longrightarrow \mathbb{P}^3$ ser)

Non-e.g. $\delta : \mathbb{R} \longrightarrow \mathbb{R}^2$ $t \longmapsto (t^3, 0)$ $t \mapsto (t^{2}, t^{3})$ top'l amb and smooth map, but not an immersion since Y'(0) = (0, 0). $\beta: \mathbb{R} \longrightarrow \mathbb{R}^{2}$ $t \longmapsto (\sin 2t, \sin t)$ smooth imm but not embedding Y: R -> T $t \mapsto (\exp(2\pi i t), \exp(2\pi i \alpha t))$ & irrational

Have Y smooth immersion and injective, but 8(Z) has 8(0) as a limit point while ZER has no timit points => Y not an embedding. * Consequence of Dirichlet's approximation theorem. Q When is an injective smooth immersion a smooth embedding? Prop M, N smooth mflds $W/or w/o \partial$, $F: M \rightarrow N$ in smooth imm. If any of the following holds, then F is a smooth embedding: (d) 7M=& and dim M=dim N (a) F open or closed (b) F proper (c) M compact

Pf (a) F open or closed ⇒ F top'l enb (b), (c) ⇒ F closed √ (d) dF_p nonsingular t_p , $F(M) \leq N^{\circ}$ $F: M \rightarrow N^{\circ}$ is a local diffes \Rightarrow open and M->N°C>N is open, to F top'lemb. Note 3 smooth embeddings which are neither open nor closed. $E.g. \quad (v_{j,1}) \longrightarrow \mathbb{R}^{2}$ $x \longmapsto (x_{j,0})$ has image neithir open nor closed.

Local embedding the M,N smooth mflds w/ or w/o 2, F:M->N smooth. Than F is a smooth immersion iff every pt in M has a nobid USM s.t. Flu: U -> N is a smooth embedding. PF = Embeddings have full rank >: F sm imm, pEM°. By rank the Inbhd U, of p on which $\widehat{F}(x',...,x^m) \mapsto (x',...,x^m,o,...,o)$. Thus F[u, inj,Take precompact noted U of , with U = U, Flu injects il compact domain, so closed map lemma ⇒ F | ū tog'l emb => F/4 top'l emb. pedMisport to produce Up a serie in a series

Defin A ets map $F: X \rightarrow Y$ is a topological immersion if it is locally an embedding. suction of T when TO - idy. Submersions M $\overline{\mathbf{r}}_{\mathbf{r}} = \left[\mathbf{r}_{\mathbf{r}} + \mathbf{r}_{\mathbf{r}} \right] = \left[\mathbf{r}_{\mathbf{r}} + \mathbf{r}$ A local section of T is acts may o: U -> M defined on some UEN open s.t. TOJ=idu. Local Section Thm T: M - Nomosth. Then T is a smooth submarsion if every pt of M is in the image of a local section of π .

Pf &: Suppose pEM and o: U -> M is a smooth local section with $\sigma(q) = \pi(\sigma(q)) = \pi(p) \in N$. Since $\pi \cdot \sigma = i du$, $d\pi_p \circ d\sigma_q : id_{T_qN} \Longrightarrow d\pi_p$ surjuctive. \Rightarrow : Rank that $+ (x', x'') \mapsto (x', x'')$ admits section $(x'_{j}, x') \mapsto (x'_{j}, ..., x', 0, ..., o)$ π∫ ∫σ

Dufn T: K -> Y cts map is a topological submersion if every point of X is in the image of a cts local section of T. Prop Smooth submersions are open, smooth surj submersions are quotient maps. Take U open nobal if q on which I local section Pf W ⊆ M → N e open 1 → 2 Sm sub $\sigma: \mathcal{A} \rightarrow \mathcal{M}$ sit. r(q) = p. P M P If $z \in \sigma^{-1} V$, then $y \in \pi(\sigma(y)) \in \pi W$. Thus $\sigma'W$ is a normal of g contained in πW $\Rightarrow \pi W$ open $\Rightarrow \pi$ open. Surj + open => quetient.

Surjective smooth submersions are a large and important class of quotients in Diff. 2 \exists quotients in Diff that are not surj sm subs. $E.g. \mathbb{R}^2 \longrightarrow \mathbb{R}$ $(x,y) \longmapsto xy$ Then T: M -> N surj son sub. Then Vsm mfld P w/or w/o d $F: N \longrightarrow P$ is smooth iff $F \circ \pi$ is smooth: M π N ---- , P

		T	~~	۲		π	: ľ	$\sqrt{\frac{1}{2}}$		->	N		.Sr	~~) J	Sw	۲. ۶	in	9.,	1	P	nf	la	L.	ا بیا	, [,]	r .h	s/2		ک ک						
			F	: 	Ň	—	ج-	P	•	5N	~ 0	rot	h		4	\mathcal{O}	on	sta	<i>ب</i> ې-	Ł	on	ſ	ib	2~	5 . (>f	π,	,	fh	en		[] ₂	sin	n	~p	
			~F	· :	N			P		; .}		ĨF		π	. 14 .	F	-	•		N			F												• ¥ •	
																			۲. ۲	₹ ∫																
																				к	J ² - 2	<u>ب</u> ر بر								ſ	<u>ا.</u>		. [/			
	. e																•		ر .		•	•										er				
			en	•		₩. K	/		``` ``	ج ح	^۲ کر			Τ	1 ر ا	۳ <u>٦</u>	۲	fur I	J.	8W	مر 2 ر	in	.ws		r n	er.	• •	J.	. C	21	۲ ³					
					Ν	U.	111	<u></u> <u>-</u>	~	- -)	N.	r				F	: [\	۱ ^۲ ۰	,	Ň)~	• •	5.t		F- 3	τ ,	۰ . (۱	772	· · ·							

RATIO FOR LATIO $F(\lambda_{x}) = \lambda^{d} F(x)$ Fsmooth π RPn Rph [x] (F(x)] smoth as long as Ratio - RPn s & Sm Surg Sub