Note True for pEDM too. pp 57-58 8. 工?3 Prop V, W findlin R-vs, L: V $\rightarrow W$ lineer then $\forall a \in V$ $\vee \longrightarrow D \lor a : f \longrightarrow \frac{d}{dt} \Big|_{t=0} f(a + tv)$ $\vee \longrightarrow T_a \vee$ Note V = TaV is canonical L dLa W = TLaW Natural transformation $id_{Vact} \Rightarrow T_{i1}()$ w ----> Divilia Thus for M = V open submitted of an R-vs, identify $T_{\mathcal{A}}M, T_{\mathcal{P}}V, \mathcal{F}V$. E.g. $T_{\mathcal{A}}GL_{n}(\mathbb{R}) \cong \mathbb{R}^{n \times n}$ b/c $GL_{n}(\mathbb{R}) \subseteq \mathbb{R}^{n \times n}$ is an open submitted.

Computations in coordinates For (U, 4) a smooth chart on M3p have $d \mathcal{P}_{p} : \mathcal{T}_{p} \mathcal{M} \xrightarrow{=} \mathcal{T}_{\mathcal{P}(p)} \mathcal{R}^{n}_{\mathcal{H}'}, \dots, \mathcal{R}^{n}_{\mathcal{P}'}$ $\frac{\partial}{\partial x^{i}}\Big|_{\varphi(q)} = D_{e^{i}}\Big|_{\varphi(q)}$ basis of 1940 may of 1940 Defin $\frac{2}{2\chi'}\Big|_{p} := d\varphi_{p}^{-1}(\frac{2}{2\chi'}\Big|_{\varphi(q)}) \longrightarrow coordinate vectors at p$ (form a basis of $T_{p}M$) Thun for $f \in C^{\Delta}(M), \frac{2}{2\chi'}\Big|_{p} f = \frac{2}{2\chi'}\Big|_{\varphi(p)} (f \circ \varphi^{-1}) = \frac{2f}{2\chi'}(\hat{p})$ Every ve T, M has a unique expression as

 $V = V' \frac{2}{3x} |_{p}$ (Einstein summation) and (v',..., v") are the components of v wit the coordinate basis. Us have $v(x^{j}) = (v^{j} \frac{\partial}{\partial x^{j}} |)(x^{j}) = v^{j} \frac{\partial x^{j}}{\partial x^{j}}(p) = v^{j}$ *j*-th component of p dF_{p} in coordinates pp. 61-63 $F_{r} = F : (1 - v), \quad dF_{p} \left(\frac{\partial}{\partial x^{i}} \right|_{p} \right) = \frac{\partial F^{v}}{\partial x^{i}} \left(p \right) \frac{\partial}{\partial y^{j}} \left|_{F_{i}p} \right)$ $\mathbb{R}^{n} = \mathbb{R}^{m}$ x',..., x". . . y', ..., ym so in the coord bases, dF_{p} has metrix $\begin{pmatrix} \partial F' \\ \partial \kappa' \\ \end{pmatrix} = \begin{pmatrix} \partial F' \\ \partial \kappa' \\ \end{pmatrix} = \begin{pmatrix} \partial F' \\ \partial \kappa' \\ \end{pmatrix} = \begin{pmatrix} \partial F' \\ \partial \kappa' \\ \end{pmatrix} = \begin{pmatrix} \partial F' \\ \partial \kappa' \\ \end{pmatrix}$ the Jacobrian!

For F: M -> N, dFp is still represented by the Jacobian (urt coordinate bases for charts at p, P(p) on M, N)! π-'U Targent Bundle Targent Bundle M Smooth mfld w/ or v/co D · · · · · (p, v) · · · · · · and the second For (U, q) smooth chart on M, we want to word first () R") of 9 (1 x',-,x" define $\tilde{\varphi}: \pi^{-1}\mathcal{U} \longrightarrow \mathbb{R}^{2n}$

$(p, v^{i} \frac{\partial}{\partial x^{i}} _{p}) \rightarrow (x^{i}(p), \dots, x^{n}(p), v^{i}, \dots, v^{n})$	
in $\tilde{Y} = \tilde{U} \times \mathbb{R}^n \subseteq \mathbb{R}^{2n}$ open and \tilde{Y} is bijective onto its image as $(x',, x^n, v',, v^n) \longrightarrow (v' \frac{\partial}{\partial x}; _{Y'x})$ is an inverse.	
For smooth charts (4,4), (V,4) on M get transition maps	· ·
$\tilde{\mathcal{Y}} \circ \tilde{\mathcal{Y}}' : \mathcal{Y}(\mathcal{U} \cap \mathcal{V}) \times \mathbb{R}^n \longrightarrow \mathcal{Y}(\mathcal{U} \cap \mathcal{V}) \times \mathbb{R}^n$	Ń
$(x,v) = (x',, x^{n}, v',, v^{n}) \longmapsto (\tilde{x}'(x),, \tilde{x}''(x), \frac{\partial \tilde{x}'}{\partial x^{j}}(x) v^{j},, \frac{\partial \tilde{x}^{n}}{\partial x^{j}}(x)$ which is smooth. $\psi(\varphi^{-1}(x))$ If $SUif$ is a countable cover of M by smooth coord charts,	

than { Tr'U; { is a countable cover of TM by smooth coordinate charts satisfying the hypotheses of the smooth infld chart lemma, Prop This makes TM = 2n-dim l smooth mfld with $\pi: TM \longrightarrow M$ smooth PF Just need to check that π is smooth. For (U, P) smooth chart for M, the coord reprint of π on $(\pi^{-1}U, \tilde{\psi})$ is $(x, v) \mapsto x^{-1}$ which is smooth. Note For (U, Y) word chart for M, TU & UXIR" · call the tangent trivial when $TM \xrightarrow{\mathcal{F}} M \times \mathbb{R}^n$ $\pi M' \mathcal{P}$

· A section of $\pi: TM \longrightarrow M$ is $s: M \longrightarrow TM s.t.$ $\frac{1}{1\pi} \int 5 \int O_{M} dr = 1 \int S(p) = T_{p}M$ T'S = id M May also call s a vector field, · Always have the zero section Om: M - > TM p - > (p,0) A section is nonvanishing if $im(s) \land im O_{M} = \emptyset$, Trivial bundles have nonvanishing sections fix v ERMID,
 s: M - M X Rⁿ
 p - > (P> v)

TPS Why is TS ² nontrivial? des Hairy bull them i No nonvanishing vector field on 5 ²	
$\implies T5^{\circ} \notin S^{2} \times \mathbb{R}^{2}$	
For $F: M \longrightarrow N$ smooth, define its global differential $dF: TM \longrightarrow TN$ $(p, v) \longmapsto (F(p), dF_{p}(v))$	
Prop If $F: M \rightarrow N$ is smooth, then $dF: TM \rightarrow TN$ is smooth and $TM \xrightarrow{dF} TN$ commutes. TM $J \xrightarrow{TN} J_{TN}$ $M \xrightarrow{F} N$	

PF Coordinate rup'n of dF is			
dF(x,v) = (F(x), JF(x), v)			
$\frac{\partial F}{\partial x}(x) v'$			
Smooth b/c F is smooth. \Box			
Cor M => N G > P smooth			
(a) $d(G \circ F) = dG \circ dF$			
(b) $d(id_{M}) = id_{TM}$			
(e) Fa diffeo => dt a diffeo and (dF)' = d	(F*1), , ,	

Thus we have a functor category of vector bundles over Diff smooth mflds + bundle maps -> Bun - ser Ch. 10, -> TM - M MH F. J. I ----> dF. J. . . F. $N \longrightarrow T_N \longrightarrow N$