Note True for $p \in \partial M$ too pp $57-58$
8.III.23

Prop V, W fin dim $\mathbb{R}-v s, L: V \rightarrow W$ lines then $\forall a \in V$

$$
\begin{aligned}
& v \longrightarrow D_{v / a}:\left.f \longmapsto \frac{d}{d t}\right|_{t=0} f(a+t v) \\
& v \longrightarrow T_{a} v
\end{aligned}
$$

$$
w \longmapsto D w / L_{a}
$$

Note. $V \cong T_{a} V$ is "canonical"
Natural transformation ${\text { id } \text { Vest }_{*}}^{\Rightarrow} T_{11}()$

Thus for $M \subseteq V$ open submfld of an \mathbb{R}-vs, identify

$$
T_{p} M, T_{p} V, \& V
$$

Egg. $T_{A} G L_{n}(\mathbb{R}) \cong \mathbb{R}^{n \times n}$ b/c $G L_{n}(\mathbb{R}) \subseteq \mathbb{R}^{n \times n}$ is an open submfld.

Computations in coordinates
For (u, φ) a smooth chart on $M>p$ have

$$
d \varphi_{p}: T_{p} M \stackrel{\cong}{\Longrightarrow} \underbrace{}_{\varphi(p)} \mathbb{R}_{x^{\prime}}^{n}, \ldots, \left.\left.x^{n} \quad \frac{\partial}{\partial x^{i}}\right|_{\varphi(p)}=D_{e^{i}} \right\rvert\, P(\varphi)
$$

basis $\left.\frac{\partial}{\partial x^{\prime}}\right|_{\left.\varphi \varphi_{p}\right)}, \cdots,\left.\frac{\partial}{\partial x^{n}}\right|_{\left.\varphi \psi_{p}\right)}$
Define $\left.\frac{\partial}{\partial x^{i}}\right|_{p}=d \varphi_{p}^{-1}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{\varphi \varphi)}\right) \quad-\quad$ coordinate actors at p
Thin for $f \in C^{\Delta}(M),\left.\frac{\partial}{\partial x^{i}}\right|_{p} f=\left.\frac{\partial}{\partial x^{i}}\right|_{\varphi(p)}\left(f \circ \varphi^{-1}\right)=\frac{\partial \hat{f}}{\partial x^{i}}(\hat{p})$
Every $v \in T_{P} M$ has a unique expression as
$v=\left.v^{i} \frac{\partial}{\partial x^{i}}\right|_{p}$ (Einstein Summation)
and $\left(v, \ldots, v^{n}\right)$ are the components of v wry the coordinate basis.
Wa have $v\left(x^{j}\right)=\left(\left.v^{i} \frac{\partial}{\partial x^{i}}\right|_{p}\right)\left(x^{j}\right)=v^{i} \frac{\partial x^{j}}{\partial x^{i}}(p)=v^{j}$.
$($ jth component of φ
$d F_{p}$ in coordinates pp.61-63

$$
\begin{aligned}
& \text { For } F: \underset{\substack{n \\
\mathbb{R}^{n}}}{u \rightarrow v} \underset{\substack{n ı \\
\mathbb{R}^{m}}}{v} ; d F_{p}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p}\right)=\left.\frac{\partial F^{j}}{\partial x^{i}}(p) \frac{\partial}{\partial y^{j}}\right|_{F(p)} \\
& x^{\prime}, \ldots, x^{n} . \quad y^{\prime}, \ldots, y^{m}
\end{aligned}
$$

So in the cord bases, dE has matrix $\left(\begin{array}{ccc}\frac{\partial F^{\prime}}{\partial x^{\prime}}(p) & \cdots & \frac{\partial F^{\prime}}{\partial x^{n}}(p) \\ \vdots & \ddots F^{m} \\ \text { th Jacobian! } & \cdots & \frac{\partial F^{n}}{\partial x^{n}}(p)\end{array}\right)$.

For $F: M \longrightarrow N$, $d F_{p}$ is still reprusentue by the Jacobian (urL coordinate bases for charts at $p, \varphi(p)$ on M, N)!

Tangent Bundle
M. Smooth mild wot ito ∂

$$
\begin{aligned}
T M:=\frac{1}{i \in M} T_{p} M & \longrightarrow M \\
(p, v) & \longmapsto p
\end{aligned}
$$

For (u, φ) smooth chart on M_{j} define $\tilde{\varphi}: \pi^{-1} U \longrightarrow \mathbb{R}^{2 n}$

$$
\left(p,\left.v^{i} \frac{\partial}{\partial x^{i}}\right|_{p}\right) \longmapsto\left(x^{\prime}(p), \ldots, x^{n}(p), v^{\prime}, \ldots, v^{n}\right)
$$

in $\tilde{\varphi}=\hat{u} \times \mathbb{R}^{n} \subseteq \mathbb{R}^{2 n}$ open and $\tilde{\varphi}$ is bijective onto its image as $\left.\left(x^{\prime}, \ldots, x^{n}, v^{\prime}, \ldots, v^{n}\right) \longmapsto \underbrace{v^{i}}_{\varphi_{x}^{-1}} \frac{\partial}{\partial x^{i}}\right|_{y^{-1}})$ is an inverse.
For smooth charts $(\varphi, \varphi),(V, \psi)$ on M get transition maps

$$
\begin{aligned}
& \tilde{\psi} \circ \tilde{\varphi}^{-1}: \varphi(u \cap v) \times \mathbb{R}^{n} \longrightarrow \psi(\text { Inv }) \times \mathbb{R}^{n} \quad \tilde{x}^{\prime}, \ldots, \tilde{x}^{n} \text { coordr of } \psi \\
& (x, v)=\left(x^{\prime}, \ldots, x^{n}, v^{\prime}, \ldots, v^{n}\right) \longmapsto(\underbrace{\tilde{x}^{\prime}(x), \ldots, \tilde{x}^{n}(x)}_{\psi\left(\varphi^{-1}(x)\right)}, \frac{\partial \tilde{x}^{\prime}}{\partial x^{j}}(x) v^{\prime}, \ldots, \frac{\partial \tilde{x}^{n}}{\partial x^{j}}(x) v^{j})
\end{aligned}
$$

If $\left\{U_{i}\right\}$ is a countable cover of M by smooth coord charts,
thin $\left\{\pi^{-1} U_{i}\right\}$ is a countable covid of TM by smooth coordinate charts satisfying the hypotheses of the smooth infld chart lemma.
Prop This makes TM a $2 n$-dim 1 smooth mf ld with $\pi: T M \rightarrow M$ smooth
If Tort nerd to check that π is smooth. For (U, φ) smooth chart for M, the coord ripen of π on $\left(\pi^{-1} U, \tilde{\varphi}\right)$ is $(x, v) \mapsto_{x}$ which is smooth.

Note - For (U, φ) cord chart for $M_{1} \pi^{-1} U \approx U \times \mathbb{R}^{n}$

- Call the tangent trivial whin $T M \underset{\pi M^{\prime} p_{1}}{\overrightarrow{\exists \approx} M \times R^{n}}$
- A section of $\pi: T M \rightarrow M$ is $s: M \longrightarrow T M$ sit.

$$
\pi \cdot s=i d M
$$

$$
\text { ie. } s(p) \in T_{p} M
$$

May also call sa vector field.

- Always have the zur section $O_{M}: M \longrightarrow T M$
- A section is nonvanishing if $\operatorname{im}(s) n$ in $O_{M}=\varnothing$.
- Trivial bundles have nonvanishing sections: $f i x v \in \mathbb{R}^{n} 10$,

$$
s_{v}: M \not P \longmapsto M \times R^{n}
$$

TPS Why is $T S^{2}$ nontrivial? cts Hairy ball the: No nonvanishing victor field on 5^{2}

$$
\Longrightarrow T S^{2} \neq S^{2} \times \mathbb{R}^{2}
$$

For $F: M \rightarrow N$ smooth, define its global differential $d F: T M \rightarrow T N$

$$
(p, v) \mapsto\left(F(p), d F_{p}(v)\right)
$$

Prop If $F: M \rightarrow N$ is smooth, then $d F: T M \rightarrow T N$ is smooth and $\begin{array}{rl}T M & d F \\ \pi_{M} \downharpoonright & l_{N} \\ l_{N} & \text { commutes. }\end{array}$
of Coordinate rup' $f d F$ is

$$
d F(x, v)=(F(x), \underbrace{J F(x) \cdot v)}_{\frac{\partial F^{\prime}}{\partial x^{i}}(x) v^{i}, \ldots, \frac{\partial F^{n}}{\partial x^{i}}(x) v^{i}}
$$

Smooth b/c. F is smooth.

Cor $M \xrightarrow{F} N \xrightarrow{G} P$ smooth
(a) $d(G \cdot F)=d G \cdot d F$
(b) $d\left(i d_{M}\right)=i_{T_{M}}$
(c) F a differ $\Rightarrow d F$ a diffeo and $(d F)^{-1}=d\left(F^{* 1}\right)$.

This we have a functor

