Tangent Vectors

How car we define the tangent space to a point $p \in M$ a smooth manifold?

Desiderata

- Since M has a smooth chart $\varphi: U \rightarrow \mathbb{R}^{n}$ in a nbhd of p, $T_{p} M$ should have the same structure as tangents to $a=\varphi(p) \in \mathbb{R}^{n}$ Geometrically, these ard $\left\{(a, v) \mid v \in \mathbb{R}^{n}\right\} \approx \mathbb{R}^{n}$.
- What can tangent vactors do?

Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ smooth

(i.e. $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$) and $v l_{a}:=(a, v) \in\{a\} \times \mathbb{R}^{n}$
we have a directional derivative

$$
D_{\left.v\right|_{a}} f=\left(D_{v} f\right)(a)=\left.\frac{d}{d t}\right|_{t=0} f(a+t v)
$$

measuring rate of change of f in v direction.

- The function $D_{v \mid a}: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ is \mathbb{R}-linear and satisfies the Leibniz/product rule

$$
D_{v \mid a}(f g)=f(a) D_{v / a}(j)+D_{v \mid a}(f) g(a)
$$

- So T PM should"
(a) be an n-diml real vector space, and
(b) each $w \in T_{p} M$ should induces a derivation $C^{\infty}(M) \longrightarrow \mathbb{R}$ that we can think of as the directional derivative in the w direction.
\mathbb{R}-linear map satisfying Leibniz rule: $w(f g)=f(a) w(g)+w(f) g(a)$ Deft. The tangent space to M at $p \in M$ is $T_{p} M$, the set of derivations $C^{\infty}(M) \rightarrow \mathbb{R}$.

Reality chuck. For this t make sense, need
$\{a\} \times \mathbb{R}^{n} \stackrel{n}{\Longrightarrow} T_{a} \mathbb{R}^{n}$.ie. all derivations at a on \mathbb{R}^{n}
VIa $\longleftrightarrow D_{\text {via }}$ should be given by directional darivectivas along geometric. tangent vectors.
Lemma Suppose $a \in \mathbb{R}^{n}, w \in T_{a} \mathbb{R}^{n}, f, y \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
(a). $w($ cons $)=0$
(b) If $f(a)=g(a)=0$, then $w\left(f_{g}\right)=0$.
if $(a) w(\underbrace{c_{1}})=w\left(c_{1} c_{1}\right)=c_{1}(a) w\left(c_{1}\right)+w\left(c_{1}\right) c_{1}(a)$
constant at 1 $=2 W\left(c_{1}\right) \Rightarrow W\left(c_{1}\right)=0$.
For $c \in \mathbb{R}$, const $=c c$, so $w\left(\right.$ cost $\left._{c}\right)=c w(c)=0$.
(b) $w(f g)=f(k)^{0} w(g)+w(f) g(a)^{0}=0$

Pop For $a \in \mathbb{R}^{n}$, the map v/a $\longmapsto D_{\text {la }}$ is an is $J_{a}\left(\times \mathbb{R}^{n} \cong T_{a} \mathbb{R}^{n}\right.$.
Pf Liner
Infective : Suppose $D_{v / a}=0$. Write $v \mid a=\underbrace{v^{i} e_{i} \mid a}$.
Take $f=x^{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ th $j^{-t h}$ coord f_{n}. Then

Einstein summation!

$$
0=D_{v \mid a}\left(x^{j}\right)=\left.v^{i} \frac{\partial}{\partial x^{i}}\left(x^{j}\right)\right|_{x=a}=v j
$$

$$
v^{i} e_{i} l_{a}=\sum_{i=1}^{n} v^{\prime} e_{i} l_{a}
$$

True $\forall j$, so $\left.v\right|_{a}=(a, 0)$, the O vector in $\{a\} \times \mathbb{R}^{n}$

Surjective Take $w \in T_{a} R^{n}$ arbitrary. Lut $v^{i}=w\left(x^{i}\right)$. WTS that $w=D_{v l_{c} \ldots \text {. For }} f \in C^{\infty}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{aligned}
f(x)=f(a)+ & \sum_{i=1}^{n} \frac{\partial f}{\partial x^{\prime}}(a)\left(x^{i}-a^{i}\right)+\sum_{i, j=1}^{n}\left(x^{i}-a^{i}\right)\left(x^{i}-a^{j}\right) \cdot \int_{0}^{1}(1-t) \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(a+t(x-a)) d t \\
& \text { by Taylors Thm. }
\end{aligned}
$$ at $a!\Rightarrow w(\sim \sim)=0$.

Thus $w(f)=w(f(a))+\sum_{i=1}^{n} w\left(\frac{a^{+} a!\Rightarrow w(\sim \sim)}{\partial x^{i}}(a)\left(x^{i}-a^{i}\right)\right)+0 \%$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(a)\left(w\left(x^{i}\right)-w\left(a^{i}\right)\right) \\
& =\sum \frac{\partial f}{\partial x^{i}}(a) v^{i}=D_{v / a} f
\end{aligned}
$$

$$
w: C^{\mathbb{A}}\left(\mathbb{R}^{n}\right) \longrightarrow \mathbb{R}
$$

So va $\mapsto \omega=D_{v l a}$, proving surjuctivity.
Cor The derivations $\left.\frac{\partial}{\partial x^{i}}\right|_{a}: f \mapsto \frac{\partial f}{\partial x^{i}}(a), i=1, \ldots, n$

$$
\text { form a basis for } T_{a} \mathbb{R}^{n} \quad \square \quad T_{p} M=\left\{w: C^{\infty}(M) \rightarrow \mathbb{R} \mid\right.
$$

w lin, wsatiffies

We should now fail emboldened to define $T_{p} M$ as the wuiporir atty) space of derivations (at, p) of smooth functions $M \longrightarrow \mathbb{R}, \ddot{u}$ Note $p \in M, v \in T_{p} M, f_{y j}+C^{\infty}(M)$ thin $T P S$ what is $V\left(f^{2}\right)$

$$
\begin{array}{ll}
v(\text { cons })=0 & =v(f f f) ? \\
v\left(f^{2}\right)=f(p) v(f) \\
& +v(f) f(p) \\
& =2 f(p) v(f)
\end{array}
$$

(2) \exists other (equivalent) definitions of $T_{p} M$:

- equiv classes of smooth curves through p
- I $:=\left\{f \in C^{\infty}(M) \mid f(p)=0\right\}, T_{p}^{*} M:=I / I^{2}$ is th cotangent space of M at p. Each $v \in T_{p} M$ satisfies $v\left(I^{2}\right)=0$ so induces $T_{p}{ }^{*} M \rightarrow \mathbb{R} \in\left(T_{p}^{*} M\right)^{*}$; this correspondence $T_{p} M \longrightarrow\left(T_{p}^{k} M\right)^{k}$ is an iso.

Differential of a smooth map
M, N smooth miles, $F: M \rightarrow N$ smooth induces

$$
\begin{aligned}
& T_{P} M \stackrel{d F_{p}}{\longrightarrow} T_{F(P)} N \nmid \longmapsto f \circ F \\
& C^{\infty}(M) \longmapsto C^{\infty}(N) \longrightarrow C^{\infty}(M) \\
& d F_{p}(v) \longrightarrow \mathbb{R}
\end{aligned}
$$

$$
\text { i, } \quad \begin{aligned}
d F_{p}: T_{p} M & \longrightarrow T_{\left.F l_{p}\right)}(N) \\
v & \longmapsto(f \longmapsto v(f \circ F))=: d F_{p}(v)
\end{aligned}
$$

This is the differential of F at p. $d F_{p}(v): C^{\infty}(N) \longrightarrow \mathbb{R}$ livarly
Derivation:

$$
\begin{aligned}
d F_{p}(v)(f g) & =v\left(\left(f_{g}\right) \cdot F\right)=v((f \cdot F)(g \cdot F)) \\
& =(f \cdot F)(p) \cdot v(g \circ F)+v(f \circ F) \cdot(g \circ F)(p) \\
& =f(F(p)) d F_{p}(v)(g)+d F_{p}(v)(f) g(F(p))
\end{aligned}
$$

Propertien of Differentials M, N, P smooth mflds w/or w/o ∂, $F: M \rightarrow N, G: N \rightarrow p$ smooth, $p \in M$:
(a) $d F_{p}: T_{p} M \rightarrow T_{F(p)} N$ is limear
(b) $d(G \circ F)_{p}=d G_{F(p)} \cdot d F_{p}$, i...,

(c) $d\left(I d_{M}\right)_{p}=I d_{T_{P} M}$
(d) If F is a diffeomorphism, thin $d F_{p}: T_{P} M \rightarrow T_{F, \lambda} N$ if an isomorphism and $\left(d F_{p}\right)^{-1}=d\left(F^{-1}\right)_{F(p)}$.
$D_{\text {diff }} \longrightarrow \operatorname{Vact}(M, p) \longmapsto T_{p} M$ is a functor
 and $v \in T_{p} M$, thin $v f=v g$.
If Let $h=f-g$ so that $h \in C^{a}(M)$ with $\left.h\right|_{u}=0$. Let $\psi \in C^{\prime}(M)$ be a smooth hump fr equal to 1 on supp h and supported on $M \cup\{p\}$

Then $\psi \cdot h=h$. Since $\psi(p)=h(p)=0$, jet $v h=v(g h)=0$. By linearity of v, $v f=v g$.

Prop $U \subseteq M$ open, $l: U \hookrightarrow M, \forall p \in U, d c_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism.
Pf Inejectivity: Suppose $v \in T_{p} U, d i_{p}(v)=0$. Take Ba noble of p with $\bar{B} \subseteq U$
For $f \in C^{\infty}(u) \quad \exists \tilde{f} \in C^{\infty}(M)$

$\in C^{\alpha}(u)$ agree on B, know of $=v(\tilde{f} \mid u)=v(\tilde{f} \circ l)=d l(v)_{p} \tilde{f}=0$. Since $f \in C^{\infty}(u)$ arbitrary, get $v=0 \Rightarrow d i_{p}$ injection.
Surjectivity Given $w \in T_{p} M$, define $v: C^{\infty}(u) \longrightarrow M$ $f \longmapsto w \tilde{f}$ any smooth

Check: v is a derivation ext to M agreeing with f on \bar{B}
For $g \in C^{\Delta}(M), d_{p}(v) g=v(g \circ u)=w\left(\widetilde{g^{\prime}}\right)=w g$
lemme
Prop. If M is an n-din 1 smooth $m f\left(d\right.$, then $\forall p \in M$, $\operatorname{dim} T_{p} M=n$.
If For $p \in M$, lat (u, φ) be a smooth cord chart containing p.

$$
\begin{array}{r}
\varphi: u \underset{\text { differomarphism }}{\rightarrow} \underset{u}{ } \subseteq \mathbb{R}^{n} \Rightarrow d \varphi_{p}: T_{p} u \cong T_{\varphi(p)} \hat{u} \\
T_{p} M
\end{array}
$$

$K_{n o w} T_{p} M \cong T_{\varphi(q)} \mathbb{R}^{n} \cong \mathbb{R}^{n}$ if $\operatorname{dimn} n$.

