1. I-23 Manifolds W/ Boundary For $U \in H^* = \{(x', ..., x^n) \in \mathbb{R}^n \mid x^n \ge 0\}$, $F : U \to \mathbb{R}^k$ is smooth if txell 3 ü = 12" open containing x and smooth $\tilde{F}: \tilde{\mathcal{U}} \longrightarrow \mathbb{R}^{k}$ s.t. $\tilde{F}|_{\mathcal{U}} \tilde{\mathcal{U}} = F|_{\mathcal{U}} \tilde{\mathcal{U}}$ F Rk M (k) For M a top'l mfld with boundary, a smooth structure for M is a maximal smooth atlas for M (w/above notion of smoothness on OM).

This (Smooth Invariance of the Boundary) Suppose M is a smooth mfld w/ boundary and pEM. If there is a smooth chart (U, φ) for $M \leq j$. $\varphi(u) \in H^{n}$ and $\varphi(\varphi) \in \partial H^{n}$, then the same is true for every smooth chart whose domain contains p pf Suppose for contradiction Take W a noted of Take W a nord of yo and smooth y: W → R° agreeing with $T := \gamma_0 \gamma_0^{-1}$ t on WN MUNV)

Take B open ball in $\mathcal{Y}(\mathcal{U}\cap\mathcal{V})$ containing x_0 . Then τ is smooth on B in the usual sense $WOG, B \in \tau' \mathcal{W}$.	
Then $\gamma \circ \tau _{\mathcal{B}} = \tau' \circ \tau _{\mathcal{B}} = id_{\mathcal{B}}$ so by chain rule,	
$\mathcal{D}_{\gamma}(\tau(x)) \circ \mathcal{D}_{\tau}(x) = Id_{\mathcal{D}_{n}} \forall x \in B$	
$\Rightarrow D_{\tau}(x)$ nonsingular $\Rightarrow \tau$ is open	
$\implies z(B)$ open in \mathbb{R}^n contains yo	
and is contained 4V	
This contradicts $\Psi \in H^n$, $\Psi(p) \in \partial H^n$?	

Smooth Functions and Smooth Maps M smooth mfld, f: M -> Rt is smooth if the M I smooth chart (U,P) s.t. fog' is smooth on U $(\cdot) \qquad f \qquad \mathbb{R}^{k}$ $f \circ \mathcal{Y}' = f$ ^ U (Write C^{oo}(M) for the set of smooth finetions M -> R It's an IR-algebra under pointwise add'n, mult'n.

Prop If $f: M \longrightarrow \mathbb{R}^k$ is smooth, than $f \cdot \varphi''$ is smooth the smooth the chart (U, φ) . \Box A function F: M --- N between smooth mflds is smooth if tpEM Jsmooth charts (U, Y) on M, (V, Y) on N s.b. A.F. f. is smooth on û ·Fr 40F0p1 ũ 1

Prop Every smooth map is ets homeo If $F[u = (\psi) \cdot (\psi \cdot F \cdot \varphi^{-1}) \cdot \varphi)$ is smooth (in the Euclidean sense) hence cts. Thus F is cts at a night of each pt of M hence cts. Facts F: M - N is smooth iff • tyEM Ismooth cherts (U, 4), (V,4) s.J. UNF'VEM is open and N.F.P" is smooth quarty) -> 4(v) iff · F is cts and Ismooth atlases $J(U_{\alpha}, P_{\alpha}) \{ J(V_{\beta}, P_{\beta}) \}$ for M, N s. l. for each a, B, $P_{\beta} \circ F \circ P_{\alpha}^{-1}$ is smooth.

iff · KpEM Indhe U of p s.b. Flu is smooth Clipshot smooth maps on an open cover that agree on overlaps can be "glued" to give a unique smooth map restricting to the original maps. Fact If F.M -> N is smooth, then every coordinate ruprosentation F= NoF . 4" is smooth Prop M, N, P smooth mflds W/ or W/o 2 (a) Every constant map c: M - N is smooth. (b) idm: M - M is smooth. (c) UEM an open submitted w/or w/o 2, then U and is smooth,

(d) If F: M -> N & G: N -> P are smooth, then G.F: M - P is smooth. Pf of (d) N 6 (F (•P) $\boldsymbol{\boldsymbol{\diamond}}_{\boldsymbol{\boldsymbol{\cdot}}}$ Ś θFφΪ 460-1 $(460^{-1})(\Theta F \varphi^{-1})$ = ~ (G.F) (P')

smooth + smooth => smooth! Note This means we have a category Diff w/objects smooth mflds and Diff(M,N) = { $F: M \rightarrow N$ smooth }. Prop Products of smooth maps are smooth. $S^n \longrightarrow \mathbb{R}^{n+1} \setminus \{o\} \geq \bigvee_{i} (x^o, ..., x^n)$ E.g. $\mathbb{R}\mathbb{P}^n \supseteq U_i \xrightarrow{f} \mathbb{P}_i$ $\{x^{\circ}, \dots, x^{n}\} \longmapsto \frac{1}{x^{i}} (x^{\circ}, \dots, x^{i}, \dots, x^{n})$ => 5" - PP" smooth.

An isomorphism F: M-N in D: ff is called a diffeonorphism, it's a smooth map with smooth 2-sided inverse. If a diffeo $F: M \rightarrow N$ exist, call M, N diffeomorphic and write $M \approx N$, $\simeq \sim \approx$ \approx E.g. Considur R. with its standard smooth structure and TR = IR + smooth structure induced by $\int (\mathbb{R}, \Psi; \mathbb{R} \to \mathbb{R})$ Define $F: \mathbb{R} \to \mathbb{R}$. This has coordinate $x \mapsto x'^{l_3}$ representation $\hat{F} = 4 \cdot F \cdot id_{R}^{-1} = id_{R}$ which is smooth and F' x i x' has coord rup

F^{-T} = id p · F⁻¹ · A⁻¹ = id which is smith Thus R R R. In fact, every smooth structure on R is diffiomorphic to the standard one! (See Prob 15-13) . There are smooth structures $\mathbb{B}^n \approx \mathbb{R}^n$ on 124 not diffeomorphic to the standard smooth structure. $x \mapsto \frac{x}{\sqrt{1-|x|^2}}$ VI+1y12 y 57 carries exactly 15 diffeo classes of smooth structures. The (Diffeomorphism invariance of dimn & boundary). If F:M $\approx N$, then dim M = dim N and F($\Im M$) = $\Im N$, F|_{M°} M° $\approx N^{\circ}$.

Pf of dim invariance F M^m → Nⁿ V & F(p) peU 4, 4 smooth word charts **y** Û - Ŷ Then F is a (Euclideen) diffeo from an open subset of IRM to an open subset of Rⁿ. Prop C.4 Then man and tacil, DF(a) is invertible with $D\hat{F}(a)' = D(\hat{F}')(\hat{F}(a))$ Indeed, $\vec{F}' \circ \vec{F} = id_{\hat{\mathcal{U}}} \implies id_{\mathcal{R}} = D(\vec{F}')(\hat{F}(a)) \circ D\hat{F}(a)$ sule

Similarly, $d_{\mathbb{R}^n} = D\hat{F}(a) \cdot D(\hat{F}^{-1})(\hat{F}Ca)$ Thus DFG) is a linear iron orphism => m=n. Any time you can take advantage of linear algebra, de! h \rightarrow (r. $\cos \theta$, r. $\sin \theta$) (r,)) +----

					2	F	<u> </u>		3	2	2 .																		
				•	C																								
										1	1.		'n			1			5										
			(ريع	4	_)	F		3	$\langle \rangle$	د ۲۰	- 2	1			۷.	×c	1)										
					Q							Ű		1			0	7	1										
							- /																						
				\mathcal{T}	-	<u> </u>	/	2	\times			Zy		\															
			1	J		<u> </u>						0																	
								- 1),			- 7																	
									- 7	_ م		- 6	-/~																
											1.)	2).	۱.					0		[
			-	T	1.7) a	» \	. •	2	/	/ `					S	5.1	re	()/	l	5								
				ינ	ι,~	· ر ·	ັງ				~		2)	/ .			Ĩ	~/	v -		×.							
												,						Č.											