Smooth manifolds
Recall that a topological manifold M of dime n is a

- Hausdorff,
- second countable,
- locally r Enclidian of dian n
span. In particular, $\forall_{p} \in M \quad \exists \quad \varphi: \hat{U} \cong \hat{U}$ $\begin{array}{ll}\text { open } & 1 \\ M & \mathbb{R}^{n}\end{array}$
Call (U, φ) a coordinate chart on M.
The map φ is a local coordinate map with component functions $\left.\left(x^{\prime}, \ldots, x^{n}\right), i, \varphi(m)=\left(x^{\prime} / m\right), x^{2}(m), \ldots, x^{n}(m)\right) \in \hat{U} \subseteq \mathbb{R}^{n}$.

Q Can we do calculus on topological manifolds?
A. No!

Might like to say f is differentiable whin all maps $\hat{u} \underset{\varphi^{-1}}{\longrightarrow} U \subseteq M \rightarrow \mathbb{R}$ arr differentiable.
Issue Can compose φ w/ homeomorphisms that destroys this property!
(2) Demand smooth compatibility of charts.

Charts $(u, \varphi),(v, \psi)$ are smoothly compatible r when the transition map $\psi \cdot \varphi^{-1}: \varphi(u \cap v) \rightarrow \psi(u \cap v)$

each component function has cts partial derivatives -f all orders
is a diffeomorphism:
smooth bijaction with smooth inverse.
equivalently, $\psi_{0} \varphi^{-1}$
is smooth with nonsingular
Jacobian at each point.

An atlas for M is a collection of charts whose domains cover M. An atlas A is a smooth atlas if any two charts in iA are smoothly compatible.
Not Suffices to check that $\psi \cdot \varphi^{-1}$:s smooth $\forall(U, \varphi),(v, \psi) \in \mathcal{A}$.
A smooth atlas \mathcal{A} on M is maximal whin $A \subseteq A^{\prime}$ for some other smooth at las A^{\prime} on $M \Rightarrow M=\mathcal{A}^{\prime}$.

Defoe. A smooth structure on a topological manifold M is a maximal smooth atlas. A smooth manifold is a pair (M, A) with M a topi mild and A a smooth structure on M.
(2) Soma top'l melds have >1 smooth structure

- Some top'l molds have no smooth structures.

Prop Lit M be a top' (mild.
(a) Every smooth atlas UA for M is contained in a unique maximal smooth atlas - the smooth structurn determined by \mathbb{A}.
Exc $\sim(b)$ Two smooth at lases for M determine the same smooth structure iff their union is a smooth atlas.
If of (a) Let $\bar{A}=\{$ charts smoothly compatible w/evary chart in ct \} WTS \bar{A} is a smooth at las. This suffices as $\angle A \subseteq B=a$ max' l smooth atlas $\Rightarrow B \subseteq \bar{A} \Rightarrow B=\bar{L}$.

For $(u, \varphi),(v, \psi) \in \bar{A}$, must prove $\psi \cdot \varphi^{-1}: \varphi(u \cap v) \rightarrow \psi(u \cap v)$ is smooth. Take $x=\varphi(p) \in \varphi(u n v)$ arbitrary. Since \mathcal{A} is an at las, $\exists(\omega, \theta) \in A$ s.t. $p \in W$. By def in of \bar{A}; $\theta \cdot \varphi^{-1}$ and $\psi \cdot \theta^{-1}$ are smooth.

Since $p \in U \cap V \cap W, \psi \varphi^{-1}=\left(\psi \theta^{-1}\right)\left(\theta \varphi^{-1}\right)$ is smooth on a nohd of x.
Thus $\psi \cdot \varphi^{-1}$ is smooth on a noble of each point of $\varphi\left(U_{n} V\right)$ $\Rightarrow \bar{A}$ is a smooth atlas.

Egg. (0) The smooth structure determined by the atlas $\left\{\left(\mathbb{R}^{n}, i i_{\mathbb{R}^{n}}\right)\right\}$ on \mathbb{R}^{n} is the standard smooth structure on \mathbb{R}^{n}.
 $x \longmapsto x^{3}$
 distinct from the standard smooth structure: id o $\psi^{-1}: y \longmapsto y^{1 / 3}$ not smooth at 0

(2) Reall $m \times n$ matrices $\mathbb{R}^{m \times n}$ have a smooth structure determined by $\left(\begin{array}{ccccc}x^{n} & x^{12} & \cdots & x^{i n} \\ x^{21} & x^{22} & \cdots & x^{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ x^{m 1} & x^{m 2} & \cdots & x^{m n}\end{array}\right) \mapsto\left(x^{n}, \ldots, x^{n n}\right) \in \mathbb{R}^{m n}$ Similarly get a smisth structure on $\mathbb{C}^{m \times n} \cong\left(\mathbb{R}^{2}\right)^{m \times n}$.
(3) For $U \subseteq M$ open, may restrict charts on M to get a smooth structure on U.
(4) The general linear group $G L_{n}(\mathbb{R})=\operatorname{dut}^{-1}(\mathbb{R}<0)$ $\subseteq \mathbb{R}^{n \times n}$ is open (b/c dat: $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is cts) so has an induced smooth structure.
(5) $u \subseteq \mathbb{R}^{n}$ open, $f: u \longrightarrow \mathbb{R}^{k}$ smooth than

$$
T(f):=\{(u, f(u)) \mid u \in U\} \subseteq U \times \mathbb{R}^{k} \text { is a top } 1 . m f l d
$$

and smooth th structure is induced by projection.

$$
\begin{array}{r}
\Gamma(f) \\
\varphi u_{u} \times R^{k}(u, x) \\
u
\end{array}
$$

(a) $S^{n} \subseteq \mathbb{R}^{n+1}$ has a smooth atlas given by hemispheres and projection:

$$
\left(\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)=2 x, 2 y\right)
$$

(7) (level sets) $U \subseteq \mathbb{R}^{n}$ open, $\Phi: U \rightarrow \mathbb{R}$ smooth For any $c \in \mathbb{R}, \Phi^{-1}\{c\}$ is a lurelset of $\Phi . F i x c \in \mathbb{R}$, set $\left.\left.M=\Phi^{-1}\right\} c\right\}$ and suppose $D \Phi(a)=\left(\frac{\partial \Phi}{\partial x^{\prime}}(a), \cdots, \frac{\partial \Phi}{\partial x^{\prime \prime}}(a)\right) \neq 0$ for each $a \in M$. This $\exists i$ r. $\frac{\partial \Phi}{\partial x^{i}}(a) \neq 0$ for each a; so by the implicit function theorem \exists open $U_{0} \subseteq U$ containing a s.t. $M \cap U_{0}$ is the graph of an eqn of the form

$$
\begin{array}{r}
x^{i}=f\left(x^{1}, \ldots, \hat{x}^{i}, \ldots, x^{n}\right) \\
\text { Vomit } x^{i} \text { input }
\end{array}
$$

Use th $M \cap U_{0}$ sets w/ projn onto $\hat{u}_{0} \subseteq \mathbb{R}^{n-1}$ to give M a smooth structure. (Just like Sn?)
(8) $\left(\mathbb{R} \mathbb{P}^{n}\right)$ The standard charts for $\mathbb{R} \mathbb{P}^{n}$ are

$$
\left(u_{i}=\left\{\left[x^{0}, \ldots, x^{n}\right] \mid x^{i} \neq 0\right\}, \varphi_{i}: u_{i} \longrightarrow \mathbb{R}^{n},\right.
$$

On $u_{i} \cap u_{j}$ we have

$$
\varphi_{j} \cdot \varphi_{i}^{-1}\left(x^{1}, \ldots, x^{n}\right)=\frac{1}{x^{j}}\left(x^{i}, \ldots, x^{j-1}, x^{j+1}, \ldots, x^{i-1}, 1, x^{i}, \ldots, x^{n}\right)
$$

which is a differs $\varphi_{i}\left(u_{i} \cap u_{j}\right) \rightarrow \varphi_{j}\left(u_{i} \cap u_{j}\right)$.

$$
\left.\mathbb{R}^{\prime \prime} \cup\left\{x^{j}=0\right\} \quad \mathbb{R}^{\prime \prime} \cup x^{i}=0\right\}
$$

(9) Products of smooth $m f(d s$ have smooth structures induced by products of charts.
(10) (Grassmaxnians)

Lemma (Smooth mf ld chart lemma) Ma set, $\left\{U_{\alpha}\right\}_{\alpha}$ subsets of M with $\varphi_{\alpha}: U_{\alpha} \longrightarrow \mathbb{R}^{n}$ st.
(i) $\forall \alpha, \varphi_{\alpha}$ is a $b_{i j} j^{\prime \prime}$ onto $\varphi_{\alpha}\left(U_{\alpha}\right) \subseteq \mathbb{R}^{n}$ open
(ii) $\forall \alpha, \beta, \varphi_{\alpha}\left(u_{2} \cap U_{\beta}\right), \varphi_{p}\left(U_{\alpha} \cap U_{\beta}\right)$ ard open in \mathbb{R}^{n}

Hermann Grassmann (1809-1877)
(ii) If $U_{\alpha} \cap U_{\beta} \not \ddagger \varnothing$, then $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$ is smooth
(iv) Countably many of the U_{α} cover M
(v) For $p \neq q \in M$, either $\exists U_{\alpha}{ }^{\partial} p, q$ or $\exists U_{\alpha}, U_{s}$ disjoint with $p \in U_{\alpha}, q \in U_{p}$. Then M is a scosith of unfed is of smarts φ_{α} 訨 p. 22

Let V be an n-dim) real vector space. For $0 \leq k \leqslant n$, let $G_{k}(V):=\{P \leq V \mid P k \operatorname{dim}($ linear subspace of $V\}$.
Note $G_{k, n}:=G_{h}\left(\mathbb{R}^{n}\right), G_{1, n+1}=\mathbb{R}^{\mathbb{P}^{n}}$.
Claim We can give $G_{k}(V)$ the structure of a $k(n-k)$-dial smooth mf ld.

For $Q \leq V$ of dian $n-k$, define $U_{Q}:=\left\{P \in G_{k}(V) \mid P \cap Q=0\right\}$. These will form our coordinate nbhds:
If $V=P \oplus Q$, the graph of any linear map $X: P \rightarrow Q$ $\operatorname{dim} k \quad n=k$ can be identified with $\Gamma(X)=\{v+X v \mid v \in P\} \in G_{k}(V)$ ane u h have $\Gamma(x) \cap Q=0$.

Conversely, if $S \in G_{k}(V)$ has $S \cap Q=0$, then $\left.\pi_{p}\right|_{S}: S \xrightarrow{\approx} p \Rightarrow X=\left(\pi_{Q} \mid s\right) \circ\left(\left.\pi_{p}\right|_{S}\right)^{-1}: P \rightarrow Q$ linear with $\Gamma(x)=S$
Write $\mathcal{L}(P, Q)$ for the vector space of linear maps $P \rightarrow Q$.
Now haw $\Gamma: \mathcal{L}(P, Q) \rightarrow U_{Q}$ which ubijective
Define $\varphi=\Gamma^{-1}: U_{Q} \overrightarrow{b_{i j}} \mathcal{L}(P, Q) \cong \mathbb{R}^{(n-k) \times k} \cong \mathbb{R}^{k(n-k)}$, verifying (i) of lemma.
More work for other properties - see pp.23-24:

