· · · · · · · · · · · · · · · · · · ·	30. I. 23
Smooth manifolds	
Recall that a topological manifold M of dimn n is Hansdorff,	
· second countable,	
· locally Enclideran of dimn n p spice. In particular, topEM J y: U => Û	
open M R ⁿ	h
Call (ll, q) a coordinate chart on M.	L.
$(x',,x') (x \varphi(m) = (x'm), x^2m),, x^n(m))$	e Û Ç R ⁿ

Q Can we do calculus on topological manifolds? A No! Might like to say f is differentiable when all maps $\hat{\mathcal{U}} \xrightarrow{\varphi^{-1}} \mathcal{U} \in \mathcal{M} \longrightarrow \mathcal{I} \mathbb{P}$ r û arn differentiable. Issue Can compose I W/ Solution homeomorphisms that distroy this property ! () Make charts part of the structure (2) Demand smooth compatibility of charts.

 \sim M U Chasts (U, Y) (V, Y) are smoothly compatible when the transition map $\psi, \varphi^{-1}: \varphi(unv) \longrightarrow \gamma(unv)$ is a diffeomorphism. 1-2-2 smooth bijection with Νο φ-1 smooth inverse. each component function has cts partial durivatives is smooth with nonsingular Jacobian at each point. of all orders

An atlas for M is a collection of charts whose domains cover M. An atlas it is a smooth atlas if any two charts in it are smoothly compatible. Note Suffices to check that Y.Y': smooth V(U, Y), (V, Y) E UA A smooth atlas if on M is maximal when $A \leq A'$ for some other smooth atlas if on $M \implies A = A'$. Defn A smooth structure on a topological manifold M is a maximal smooth atlas. A smooth manifold is a pair (M, A) with M a top'l mfld and vA a smooth structure on M.

 Some top'l mflds have >1 smooth structure
 Some top'l mflds have no smooth structures, Prop let M be a top'l mfld. (a) Every smooth atlas 14 for M is contained in a unique maximal smooth atlas — the smooth structure determined by A. Exc (b) Two smooth atlages for M determine the same smooth structure iff their union is a smooth atlag. If of (a) let A = I charts smoothly compatible w/every chart in US WTS \overline{A} is a smooth atlas. This suffices as $\underline{A} \in \underline{B} = a \max'$ smooth atlas $\implies \underline{B} \subseteq \overline{A} \implies \underline{B} = \underline{4}$

For (u, φ) , $(v, \psi) \in \mathcal{A}$, must prove $\psi \cdot \varphi' \cdot \varphi(u \cap v) \longrightarrow \psi(u \cap v)$ isgnooth. Take x= P(p) & P(Unv) arbitrary. Since it is an atlas, J(W, O) & A s.t. peW. By defn of Ut, 0 ° q' and N. O' are smooth. Θ.ψ-1 N . Q-1

Since pEUNVNW, NY"= (NO") (OY") is smooth on a nord of x. Thus No p'is smooth on a nobid of each point of P(UNV) \Rightarrow A is a smooth atlas. E.g. (0) The smooth structure determined by the atlas I (Rⁿ, id_pn) for Rⁿ is the standard smooth structure on Rⁿ. K id (1) $f:\mathbb{R} \longrightarrow \mathbb{R}$ defines a smooth structure on \mathbb{R} $\times \longmapsto \times^{3}$ y (10) distinct from the standard smooth structure y (10) id o N⁻¹: y - y''''s not smooth at 0 No (f) y smooth

(2) Reall max matrices $\mathbb{R}^{m \times n}$ have a smooth structure determined by $\begin{pmatrix} x^{n} & x^{2n} \\ x^{2n} & x^{2n} \end{pmatrix} \longrightarrow (x^{n}, x^{m}) \in \mathbb{R}^{mn}$ $\left(\begin{array}{c} m \\ m \\ \chi \end{array}\right) = \left(\begin{array}{c} m \\ \end{array}\right) = \left(\begin{array}{c} m \\ \chi \end{array}\right) = \left(\begin{array}{c} m \\ \end{array}\right) = \left($ Similarly get a smooth structure on $\mathbb{C}^{m \times n} \cong (\mathbb{R}^2)^{m \times n}$. (3) For USM open, may rustrict charts on M to get a smooth structure on U. (4) The general linear group GLn(R) = det (R'O) $\subseteq \mathbb{R}^{n \times n}$ is open (b/c det : $\mathbb{R}^{n \times n} \longrightarrow \mathbb{R}$ is cts) so has an induced smooth structure.

(5) U = the open, f: U ---- Rth smooth than T(f) = {(u,f(u)) | ueuf = U * Rk is a top 'l mfld and smooth structure is induced by projection. $\Gamma(f) \subseteq U \times \mathbb{R}^{k}(u, x)$ φ (6) S" ETR"+1 has a smooth atlas given by hemispheres and projection i $\int d^{+} \varphi^{-1} \left(\times, \sqrt{1-x^{2}} \right)$ $\left(\frac{\partial}{\partial x}(x^2+y^2)=2x, 2y\right)$ VI-X2 smooth on (0,1) V

(7) (level sets) U CR open, J: U - R smooth, For any cER, I'le is a lund set of I. Fix cER, set $M := \overline{P}^{*} \left\{ e \right\}$ and suppose $D \overline{P}(a) = \left(\frac{\partial \overline{P}}{\partial x}(a), \dots, \frac{\partial \overline{P}}{\partial x^{*}}(a) \right) \neq 0$ for each a EM. Thus Firl 20 (a) +0 for each a, so by the implicit function theorem I open U. = U containing a s.t. MAU, is the graph of an egn of the form $\mathbf{x}^{i} = f(\mathbf{x}^{i}, \dots, \mathbf{x}^{i}, \dots, \mathbf{x}^{n})$ Use the MAU, sets $W(proj'n onto \hat{U}_{o} \in \mathbb{R}^{n}$ to give M a smooth structure. (Just like 5?)

(8) (RPn) The standard charts for RPn are $(U_i = \left\{ \begin{bmatrix} x^0, \dots, x^n \end{bmatrix} \mid x^i \neq 0 \right\}, \quad \begin{array}{c} \psi_i : U_i \longrightarrow \mathbb{R}^n \\ [x] \longmapsto \frac{1}{x^i} (x^i, \dots, x^i, \dots, x^n) \end{array} \right).$ On U: nU; we have $\Psi_{j} \circ \Psi_{i}^{-1}(x', ..., x^{n}) = \frac{1}{x^{j}}(x', ..., x^{j-1}, x^{j+1}, ..., x^{i-1}, 1, x^{i}, ..., x^{n})$ which is a differ $\varphi(u_i \cap u_j) \longrightarrow \varphi(u_i \cap u_j)$. $\mathbb{R}^{n} \setminus \{x\} = 0\}$ $\mathbb{R}^{n} \setminus \{x\} = 0\}$ (9) Products of smooth milds have smooth structures induced by products of charts.

(10) (brassmannians) 10 Lemma (Smooth mfld chart lemma) Maset, 1 Uala subsets of M with Pa: Ua -> R" st. (i) ta, la is a bij ~ onto la (U2) ETR" spen $(\ddot{a}) = \forall \alpha, \beta = \langle a (U_2 \cap U_{\beta}) \rangle \langle b (U_2 \cap U_{\beta}) \rangle = ara$ Grassmann open in Rn (1809-1877) (iii) If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\psi_{\beta} \circ \psi_{\alpha} : \psi_{\alpha} (U_{\alpha} \cap U_{\beta}) \longrightarrow \psi_{\beta} (U_{\alpha} \cap U_{\beta})$ is smooth (iv) Countably many of the Ua cover M (v) For $p \neq q \in M$, either $\exists U_a \exists p, q$ or $\exists U_a, U_p$ disjoint with $p \in U_a$, $q \in U_p$. Then M is a smooth $p_f = p \cdot 22$

Let V be an n-dim) real vector space. For
$$0 \le k \le n$$
, let
 $G_k(V) := \{P \le V \mid P \ k \cdot dim \ l \ linear subspace of V \}$.
Note $G_{k,n} := G_k(\mathbb{R}^n)$, $G_{1,n+1} = \mathbb{R}\mathbb{R}^n$.
Claim We can give $G_k(V)$ the structure of a $k(n \cdot k) \cdot dim l$
smooth mfld.
For $Q \le V$ of dimn n-k, define $U_Q := \{P \in G_k(V) \mid P \cap Q = 0\}$
These will form our coordinate noblds.
If $V = P \oplus Q$, the graph of any linear map $X: P \longrightarrow Q$
dim k n-k
can be identified with $\Gamma(X) = \{v + Xv \mid v \in P\} \in G_k(V)$
and us have $\Gamma(X) \cap Q = 0$.

Conversely, if SEGK(V) has SAQ=0, then
$\pi_{p _{S}}: S \xrightarrow{\cong} P \implies X = (\pi_{Q} _{S}) \circ (\pi_{p} _{S})^{-}: P \longrightarrow Q \text{ linear}$
with $\Gamma(X) = S$
Write Z(P,Q) for the vactor space of linear maps P->Q.
Now have $\Gamma: Z(P,Q) \longrightarrow U_Q$ which is bijactive.
Define $\varphi \in \Gamma': U_{\mathcal{Q}} \mathcal{L}(\mathcal{P}, \mathcal{Q}) \cong \mathbb{R}^{(n-k)\times k} \cong \mathbb{R}^{k(n-k)}$
varifying (i) of lemma.
More work for other properties — see pp. 23-24.