Homology of CW complexes
Let's attach an n-cell, $n \geqslant 2$, to a space X :

Let $q: X \Perp D \rightarrow y$ be the quotient map gluing D to x
set $U=q\left(D^{\circ}\right), V=q(X \Perp D>0), \quad u \cap v \wedge D^{\circ}>0$

$$
\simeq D^{0} \quad \simeq X
$$

$$
\simeq \partial D
$$

$M-V$ for $Y=u \cup V$ the looks like

$$
\begin{aligned}
& H_{p}(u \cap v) \rightarrow \underset{\|_{2}}{\left.H_{p}(u) \oplus H_{p}(v) \rightarrow H_{p}(u) \rightarrow H_{p-1}(u \cap v) \rightarrow H_{p}, 1(U) \oplus H_{p-1}(v)\right)}
\end{aligned}
$$

For $p \geqslant 2, p \neq n-1, n$, get

$$
0 \longrightarrow H_{p}(x) \stackrel{\cong}{\cong} H_{p}(y) \rightarrow 0 \text { exsect }
$$

For $p=n-1 \geqslant 2$, get

$$
\begin{aligned}
H_{n-1}(\partial D) & \xrightarrow{\varphi_{*}} H_{\lambda-1}(X) \xrightarrow{\rightarrow} H_{n-1}(y) \longrightarrow 0 \text { akait } \\
{ }_{>{ }_{\lambda}\left(\varphi_{*}\right)} & \text { short exact }
\end{aligned}
$$

For $p=n$ get

If $p=l$,

If $p=0, H_{0} X \cong H_{0}(4)$ (gluing dossnt change path components)

Summarizing:
Proposition 13.33 (Homology Effect of Attaching a Cell). Let X be any topological space, and let Y be obtained from X by attaching a closed cell D of dimension $n \geq 2$ along the attaching map $\varphi: \partial D \rightarrow X$. Let K and L denote the kernel and image, respectively, of $\varphi_{*}: H_{n-1}(\partial D) \rightarrow H_{n-1}(X)$. Then the homology homomorphism $H_{p}(X) \rightarrow H_{p}(Y)$ induced by inclusion is characterized as follows.
(a) If $p<n-1$ or $p>n$, it is an isomorphism.
(b) If $p=n-1$, it is a surjection whose kernel is L, so there is a short exact sequence

$$
0 \rightarrow L \hookrightarrow H_{n-1}(X) \rightarrow H_{n-1}(Y) \rightarrow 0 .
$$

(c) If $p=n$, it is an injection, and there is a short exact sequence

$$
0 \rightarrow H_{n}(X) \rightarrow H_{n}(Y) \rightarrow K \rightarrow 0 .
$$

Thin X a finite n-dim CW complex.
(a) $X_{k} \hookrightarrow X$ indexes $H_{p} X_{k} \cong M_{p} X$ for $p \leqslant k-l$.
(b) $H_{p} X=O$ for $p>n$.
(c) For $0 \leq p \leq n, H_{p}(x)$ is a finitely generated group of rank $\leq \#_{p}$-cells in χ
(d) If X hes no calls of dime p^{-1} or p^{+1}, then $H_{p}(X)$ is free Abelian of rank $=p$-calls in X.
(e) Suppose X has exactly one cell in dime n w/ attaching

A Abelian go map $\varphi: \partial D \rightarrow X_{n-1}$.. Then

$$
\begin{aligned}
& \text { A Abelian gi } \\
& \operatorname{rank}=\text { free rank } \\
& \text { of } A=\operatorname{dim}_{2}(A \otimes Q) \quad H_{n} X \cong\left\{\begin{array}{ll}
\mathbb{Z} & \text { if } 0=\varphi_{k}: H_{n-1}, \partial D \longrightarrow H_{n-1} X_{n-1} \\
0 & \text { if } \varphi_{*} \neq 0
\end{array} . \quad \begin{array}{l}
\text { retorsion }
\end{array}\right.
\end{aligned}
$$

(a), (b) : fairly dirut from previous the
(c) : Immediate if yin know that singular and cellular homology agree. O/L
$H_{p} X \cong H_{p}\left(X_{p+1}\right) \ll H_{p}\left(X_{p}\right)$ by (b) of previous theorem. Thus it suffices to prove rank $M_{p} X_{p}$ \# p-celts: Now use (c) if provions the w/ the fact $K \leq H_{p-1} S^{p-1} \cong \mathbb{Z}+$ rand-nuclity
$(d): H_{\text {ere }} H_{p} X \cong H_{p}\left(X_{p+1}\right)=H_{p}\left(X_{p}\right)$ bee $X_{p}=X_{p+2}$ Proceed by induction on $m=$ to cells. If $m=0$, thin $H_{p}\left(x_{p}\right)=0$ by $\left.c_{1}\right)$. Senppase $H_{p}\left(x_{p}\right) \cong \mathbb{Z}^{m}$ for all $X w / m$ p-cells. Given $X w / m+1$ p-cells, let $z=X$ e for a some p-cell and let
$\varphi: \partial D \longrightarrow X_{p-1}=z_{p-1}$ th the attaching map for e. By ind'n hypothes!?, $H_{l}(Z) \cong Z^{m}$. Dy pravious prop, have SES

$$
\begin{aligned}
& 0 \rightarrow H_{p} Z \rightarrow H_{p} X \rightarrow \underbrace{\operatorname{kur}\left(\varphi_{*}\right.}_{\mathbb{Z}}: H_{p-1} \partial D \rightarrow \underbrace{H_{p}}_{p} x)
\end{aligned} \rightarrow 0
$$

Cannot heve firsion in niddle of SES $w /$ nontorsion on ends. V ker $\left(\varphi_{n}: H_{n-1} \cdot \partial 0 \rightarrow H_{n-1} X\right)$

Eg: - $\mathbb{R} \mathbb{P}^{n}$ has exactly 1 cell in dimes $0,1, \ldots, n$ ane no higher $\operatorname{dim} C$ cells. $A_{n}^{\prime}\left(\mathbb{R} p^{n}\right) \cong \begin{cases}\mathbb{Z} & n \text { odd by }(e) \text {. } \\ 0 & n \text { ween }\end{cases}$

$$
\text { - } H_{p}\left(\mathbb{C} p^{n}\right) \cong \begin{cases}7 & 0 \leqslant p \leqslant 2 n \text { even by }(d) \\ 0 & 0 / w\end{cases}
$$

single call in dimes $0,2,4, \ldots, 2 n$, no others
TPS Compute $H_{p}(K)$ via: $C W$ structure
Klein bottle.

$$
H_{p} K \cong \begin{cases}\mathbb{Z} & p=0 \\ \mathbb{z} \otimes \psi / 2 \mathbb{Z} & p=1 \\ 0 & p=2\end{cases}
$$

Euler characteristic
Euler char of finitr CW epx X w/ n_{p} cells in dimn p :

$$
x(X)=\sum_{p \geqslant 0}(-1)^{p} n_{p}
$$

Thm If X is a finite CW cpx, then

$$
X(X)=\sum_{p \geqslant 0}(-1)^{p} \operatorname{rank} H_{p}(X)
$$

Cor x is a htpys invarient of firite OW epxs.
陆 of Thm Assume X connd. Procerd by induction on $N=F_{\text {cells }}$ of $\operatorname{dim} n \geqslant 2$.

$$
\text { WLoc b/e } H_{P} y \approx \bigoplus_{\alpha \in \pi_{0} x}^{\oplus} H_{p} y_{2}
$$

$N=0: \pi_{1} X$ is free on $1-x(X)$ generators

$$
\Longrightarrow H_{1} X \cong \mathbb{Z}^{1-x(x)}
$$

Further, $H_{0} X \cong \mathbb{Z}, H_{1} X=0$ for $p>1$, so

$$
\begin{aligned}
& \text { rank } H_{0}(x)-\operatorname{rank} H_{1}(x) \\
&=1-(1-x(x))=x(x)
\end{aligned}
$$

Suppose true for X w fewer then N cells for some fixed $N \geqslant 1$. Congidir some X with N cells. For e a cell with max'l dimin (call it n), suffices fo show for $z=x$ e that

$$
x(x)=x(z)+(-l)^{n}
$$

If $\varphi: \partial D \longrightarrow z$ attaches e, know

$$
H_{p}(x)=H_{p}(z) \text { for } p \neq n, n-1
$$

are we have exact sequences

$$
\begin{aligned}
& \left.\operatorname{im}\left(\varphi_{+}: H_{n-i} \partial D \rightarrow H_{n-i},\right)^{\prime}\right) \\
& \left.0 \longrightarrow L \longrightarrow H_{n-1}(z) \rightarrow H_{n-1} \mid X\right) \longrightarrow 0 \\
& 0 \longrightarrow H_{n}(z) \rightarrow H_{n} x \longrightarrow K \longrightarrow 0 \\
& \operatorname{ker}\left(\varphi_{\star} ; H_{n-1} \partial D \rightarrow H_{n-} ; z\right)
\end{aligned}
$$

This $\operatorname{rank} H_{p} X=\operatorname{rank} H_{p} Z$ fo $p \neq n, n-i$
rank $H_{n-1} X=\operatorname{rank} H_{n-1} Z-\operatorname{rank} l$
rank $H_{n} X=\operatorname{rank} H_{n} Z+\operatorname{rank} K$
By SES $O \rightarrow K \rightarrow H_{n, 2} 2 D \rightarrow L \rightarrow 0$ know rank $K+\operatorname{rank} L=1$

For X with bounded finite rank homology s, dim

$$
x(X):=\sum_{p \geqslant 0}(-1)^{p} \underbrace{r_{\text {sank }} H_{p}(x)}_{\beta_{p}(x)} \text { pith Betti it of } X
$$

Euler characteristic facts

$$
\therefore x\left(S^{2}\right)=-2, x\left(\left(\mathbb{I}^{2}\right)^{\# g}\right)=2-2 g, x\left(\left(\mathbb{R}^{2}\right)^{\# g}\right)=2-g
$$

$\therefore x\left(5^{n}\right)=1+(-1)^{n}= \begin{cases}0 & n \text { odd } \\ 2 & n \text { even }\end{cases}$

- Compact conn'd closed manifold M admits a nowhere vanishing vector field (ala hairy ball) iff $x(M)=0$
- Inclusion-exclusion: $x(U \cup V)=x(U)+x(v)-x(U \cap V)$

Thir is a shadow of Mayer-Viutoris!

$$
\begin{gathered}
x(\Theta)=x\left(\left(\frac{\square}{\square}\right)+x(\sqrt[2]{\square})-x\binom{\infty}{\infty}\right. \\
=1+1-2=0 \\
\left(b / c x\left(s^{\prime}\right)=1\right)
\end{gathered}
$$

$$
\begin{aligned}
& x(X \times y)=x(X) x(Y) \\
& x(0)=x(\square)-x(\cdot)-x(\cdot)=1-1-1=-1 \\
& x\left(\mathbb{R} P^{\infty}\right)=1-1+1-1+\cdots=\frac{1}{2}
\end{aligned}
$$

\leadsto "negative" x "fractioval" sets (Schannel,
Propp, ...)

- Gauss-Bonnet : M a compact 2-dim1 Riemannian imfld w/ Ganssian curvaturi K, then

$$
x(M)=\frac{1}{2 \pi} \int_{M} K d A
$$

$$
H^{*}(X ; \mathbb{Z})
$$

$C_{*}(x)$ decalized gives $C^{*}(x)$

$$
\begin{aligned}
0 \rightarrow C_{n} \rightarrow-C_{2} \rightarrow C_{1} & \rightarrow C_{0} \rightarrow 0 \\
& {\left[(-1)^{k} \operatorname{dim} C_{k}=\left[(-1)^{h} \operatorname{dim} H_{k}\left(C_{0}\right)\right.\right.}
\end{aligned}
$$

