Singular Homology

$$
\pi_{1}=\operatorname{losps} / \text { loops bonding }
$$

$H_{1}=$ "loops/loops bounding
mora general surfaces

$\underbrace{}_{n}(X), n \in \mathbb{N}$, is a sequence of Abelicen groups that is n-th (singular) homology of X

- factorial
- homotopy invariant
- computable
- useful.

For $p \in \mathbb{N}, \quad \Delta_{p}=\left\{\left(t_{1}, \ldots, t_{p}\right) \in \mathbb{R}^{p} \left\lvert\, \begin{array}{l}0 \leq t_{i} t_{i} \\ \sum t_{i} \leq 1\end{array}\right.\right\} \in \mathbb{R}^{p}$ is this standard p simplex:

$$
\Delta_{0}{ }^{\tau}+
$$

Note

$$
\left.\left.\Delta_{p}=\left\{\begin{array}{l|l}
\sum_{i=0}^{p} t_{i} e_{i} & \begin{array}{c}
0 \leq t_{i} \forall i \\
t_{i}=1
\end{array}
\end{array}\right\} \text { for } a_{0}=0 \quad t_{0}=1-\left(t_{1}+\cdots+t_{p}\right)\right) \quad \text { (s olid, }\right)
$$

A singular p-simplex in a space X is a cts mp

$$
\sigma: \Delta_{p} \rightarrow X
$$

The singular chain group a dimension of is

$$
\mathbb{Z} \cdot\left\{\sigma \mid \sigma: \Delta_{p} \rightarrow X \operatorname{cts}\right\}=C_{p}(X)
$$

ines. the free Abelian group on singular p-simpliess not be an entueling of X A generic elf looks like $\sum_{i \in I} n_{i} \sigma_{i}, I f_{n i t e}, n_{1} \in \mathbb{Z}_{0}$

Goal Isol ate p-chains that "close up on thinsalves modulo closed chains that are "boundaries of chains one dimension higher.

Define int face may in dimension ip.

$$
\begin{array}{ll}
F_{i, p} \Delta_{p-1} & \longrightarrow \Delta_{p} \\
\sum_{0 \leq j \leq p-1} t_{j} e_{j} \longmapsto \sum_{0 \leq j \leq i-1} t_{j} e_{j} & \text { for } 0 \leq i \leq p \\
& F_{1,2} \Delta_{1} \mid \Delta_{\Delta} F_{0,2} \Delta_{1} \\
F_{2,2} \Delta_{1}
\end{array}
$$

TPS Describe $F_{i, 3} \Delta_{2}, i+1 \leq j \leq p$,

$$
\begin{aligned}
& { }^{e} F_{1,3} \Delta_{2 \leq i \leq 3} t_{0} e_{0}+t_{1} e_{1} \stackrel{F_{0,2}}{ } t_{0} e_{1}+t_{1} e_{2} \\
& F_{3,3} \Delta_{2} \quad t_{0} e_{0}+t_{1} e_{1}+t_{2} e_{2} \longmapsto t_{0} e_{0}+t_{1} e_{2}+t_{2} e_{3}
\end{aligned}
$$

For a singular p-simplex $\sigma: \Delta_{p} \rightarrow x$, define $\partial \sigma \in C_{p-1}(x)$, the boundary of σ, by

$$
\text { E.g: } \quad \sigma: \Delta_{2} \hookrightarrow \mathbb{R}^{2}
$$

$$
\partial^{2}=0
$$

$$
\partial \sigma:=\sum_{i=0}^{p} \underbrace{(-1)^{i} \underbrace{\sigma \cdot F_{i, p}}_{\begin{array}{c}
i-\text { oh face } \\
\text { of } \Delta
\end{array}}}_{\begin{array}{c}
\text { orients th } \\
\text { boundary }
\end{array}}
$$

TBS $\partial(\partial \sigma)$ in this case?
Extend ∂ linearly to get $\partial: C_{p}(x) \rightarrow C_{p-1}(x)$ II

$$
=\partial p \quad \sum n_{k} \sigma_{k} \mapsto \sum n_{k} \partial \sigma_{k}
$$

Set $\partial_{0}=0$ and $C_{i}(x)=0$.
$\left.\begin{array}{l}\text { Cycles } Z_{p}(x):=\operatorname{ker}\left(\partial_{p}\right) \\ \text { Boundaries } B_{p}(x):=\operatorname{im}\left(\partial_{p+1}\right)\end{array}\right\}$ both subgroup r of $C_{p}(x)$.

Lemma For all $c \in C_{p}(x), \partial^{2} c=\partial(\partial c)=0$.

$$
\text { In. } \quad B_{p}(x) \leq Z_{p}(X) \text {. }
$$

If Intensive bookkuping, first observing $F_{i, p} \cdot F_{j, p-1}=F_{j, p} \cdot F_{i-1, p-1}$ for $i>j$: "i-th face of the j th face $=j$ th fees of the $(i \cdot l)$-th face"

$$
F_{1,2} \circ F_{0,1}=F_{0,2} \cdot F_{0,1}
$$ dec.

$$
\partial\left(\partial\left(\sigma: \Delta_{2} \hookrightarrow \mathbb{R}^{2}\right)\right)^{\Delta_{2}}\left(\begin{array}{l}
\neq+ \\
\\
\not+/
\end{array}\right)=0 \quad p 342
$$

The p th singular homology group of x is defined to be

$$
\begin{aligned}
H_{p} X & :=Z_{p}(x) / B_{1}(x) \\
& =\frac{\operatorname{ker}\left(\partial_{p}: c_{p}(x) \rightarrow C_{p-1}(x)\right)}{\operatorname{im}\left(\partial_{p-1} c_{p+1}(x) \rightarrow c_{p}(x)\right)}
\end{aligned}
$$

Topological invariance follows from functoriality

$$
f x \rightarrow y \text { ct } m f_{t}: c_{p}(x) \rightarrow c_{p}(y)
$$

$\sigma \longmapsto f \cdot \sigma$ upended linearly
Have $f_{\#}(\partial \sigma)=f_{\#}\left(\sum_{i=0}^{i}(-1)^{i} \sigma \cdot F_{i, p}\right)=\sum_{i=0}^{p}(-1)^{i} f \cdot \sigma \cdot F_{i, p}: \partial\left(f_{\#} \sigma\right)^{i}$ so $\quad f_{\#} \cdot \partial=\partial \circ f_{\#}$

Sine language $\quad \cdots \rightarrow C_{p+1}(x) \xrightarrow{\partial} C_{p}(X) \xrightarrow{\partial} C_{p-1}(x) \rightarrow \cdots$ is a chain complex. $\left(\partial^{2}=0\right)$ and $f_{\#}$ is a chain homomorphism (squares commute]

TPS It follows that $f_{H} z_{p}(x) \leq z_{p}(y)$

$$
\text { ane } f_{\#} B_{p}(x) \leq B_{p}(y)
$$

$$
z_{p}(x) \xrightarrow{f_{\#}} z_{p}(y)
$$

so $f_{\#}$ passes to quotients inducing

$$
H_{p}(x) \cdots H_{p}(y)
$$

$f_{*}: H_{p}(x) \rightarrow H_{p}(y)$, the homomorphism induced by f.

Moreover, Top $\xrightarrow{H_{p}} A b$ is a functor:

$$
\begin{aligned}
& x \longmapsto H_{p}(x) \quad\left(\text { id }_{x}\right)_{y}=i d_{H_{p}(x)} \\
& \begin{array}{ll}
x & H_{p}(x) \\
y \downarrow & (g \circ f)_{*}=g_{*} \circ f_{*} \\
y & H_{p}(y)
\end{array} \quad \begin{array}{ll}
f_{p}(f) & \text { for } x \rightarrow y \xrightarrow{f}+z \text { iss, }
\end{array}
\end{aligned}
$$

comparable.
Thus - Hp taker homeomorphisms to isomorphisms, and

- retracts $A \subseteq X$ to injections:

$$
\left(\begin{array}{c}
r \\
r \\
r b=1
\end{array}\right)
$$

Computations (easy mode)
Prop X a space w(path components $\left\{X_{\alpha} \mid \alpha \in \pi_{0} X\right\}$, and let $i_{\alpha}: x_{\alpha} \hookrightarrow X$. Then $\underset{\alpha \in \pi_{0} x}{\oplus\left(\alpha_{\alpha}\right)_{*}} \bigoplus_{\alpha \in \pi_{1}, X} c_{p}\left(x_{\alpha}\right) \rightarrow c_{p}(x)$ and $\oplus\left(i_{\alpha}\right)_{*}: \oplus H_{p}\left(x_{\alpha}\right) \longrightarrow H_{p}(x)$ ara isomorphisms.
Pf $\quad \Delta_{P} \xrightarrow[X_{\alpha}]{\lambda_{v_{\alpha}}}$ for sima α
Prop For any space $x, H_{0}(x) \cong \mathbb{Z}^{\pi_{0} x}$
If By previous prop, suffices to show $H_{0}(x) \cong \mathbb{Z}$ for
\times path com'd.

$$
C_{0}(X)=\left\{\sum_{n_{i} x_{i}}^{\text {find t }_{i}}\left(n_{i} \in \mathbb{Z}, x_{i} \in X\right\} \stackrel{\partial}{\longrightarrow} 0\right.
$$

so $Z_{D}(x)=C_{0}(x)$. Now for x path conn'd denim
$\varepsilon: C_{0}(X) \longrightarrow \mathbb{Z}$ surf home, WIS kor $\varepsilon=B_{0}(x)$ $\sum_{n_{i},} \mapsto \sum_{n_{i}}$
whine $H_{0}(x) \cong \mathbb{Z}$ by
first iso the.
formal
For $\sigma \in C_{1}(x), \quad \partial \sigma=\sigma(1)-\sigma(0) \stackrel{\Sigma}{\stackrel{ }{\longmapsto}} 1-1=0$.
Thus $B_{0}(x) \subseteq$ her s.
Now take $c=\sum_{n ; x} \in C_{0}(X)$ by $f_{x i n g} x_{0} \in X$ and choosing path $\alpha(x): x_{0} m x$ for each x, get

$$
\partial\left(\sum_{i}^{0} n_{i \alpha}\left(x_{i}\right)\right)=\sum n_{i} k_{i}-\sum n_{i} x_{0}=c-\varepsilon(c) x_{0} .
$$

If $\varepsilon(c)=0$, then $c=\partial\left(I_{n ; \alpha}\left(x_{i}\right)\right) \in B_{0}(x)$ so her $\varepsilon \leqslant B_{0}(X)$. This finishes the prof.
Finally, let's compute the homslogep of a point *
Have $c_{p}(*)=\mathbb{Z}\left\{\sigma_{p}: \Lambda_{p} \rightarrow *\right\} \cong \mathbb{Z} \quad \forall p$, and

$$
\partial \sigma_{p}=\sum_{i=0}^{p}(-1)^{i} \sigma_{p} \circ F_{i, p}=\sum_{i=0}^{p}(-1)^{i} \sigma_{p-1}= \begin{cases}0 & p \text { old or } 0 \\ \sigma_{p-1} & p>0 \text { even }\end{cases}
$$

The singular chain complex is this

$$
\begin{aligned}
& \Rightarrow H_{p}(*) \cong\left\{\begin{array}{ll}
\mathbb{Z} & \text { if } p=0 \\
0 & \text { if } p>0
\end{array} \quad \text { ToPS } H_{p}(\text { diseretu spec }) ?\right.
\end{aligned}
$$

