Classification Theorem X a space with a universal covering space (arg, conn'd floc simply conn'd), $x_{0} \in X$ any base point. Thine is a bijection $\{q, E \rightarrow x \mid q$ covering $\} /$ covering $\cong \operatorname{Sub}\left(\pi_{1}\left(x, x_{0}\right)\right) /$ conjugacy

Herr Sub $(G)=\{H(H \leq G\}$ is the subgroup lattice of G

Note. For a version without conjugacy classes, up track of based consing spaces $q:(E, e) \xrightarrow{\rightarrow}\left(X_{,} x_{0}\right)$ and covering ios preserving basupoints.
Galois? L / k finite Gabis ext of fields then

$$
\{E\{k \subseteq E \subseteq L\} \cong \operatorname{Sub}(\operatorname{Gal}(L / k))
$$

(similar, logically
independent)

If Fix a universal cover $q: E \rightarrow X$ and $e_{0} \in E$ with $q\left(e_{0}\right)=x_{0}$.
Then $\pi_{1}\left(X, x_{0}\right) \triangleq \operatorname{Aut}_{q}(E)$ Given $H \leq \pi_{1}\left(X, x_{0}\right)$ lat
$[\gamma] \longmapsto \underbrace{\varphi_{\gamma}: e_{0} \longmapsto e_{0} \cdot \gamma}$

$$
\hat{H} \leq \operatorname{Aut}_{q}(E)
$$

unique covering auto dante the (isomorphic) satisfying $\varphi_{\gamma}(a)=,e \cdot \gamma$ image of H in Ant $_{q}(\Sigma)$.

Hie $E Q \hat{E}:=E / \hat{H}$

$q \mid x$
UTS \hat{q} is a covering map.
$X \sin ^{2} \hat{q} \sim$ wests, cts by ana property

$$
\begin{aligned}
& \hat{q}(e \cdot \hat{t})=q^{(e)} \\
& q(e \gamma)^{\prime}
\end{aligned}
$$

For $U \subseteq X$ open evenly covered, let \hat{U}_{0} be a component of $\hat{q}^{-1} U$.

Suffices to show $\hat{q} \mid \hat{u}_{0}$ homo Have $Q^{-1} \hat{u}_{0}$ up -n 4 closed in $q^{-1} U \Rightarrow Q^{-1} \hat{u}_{0}$ is a union of components in $q^{-1} U$

so Q infective on U_{0}
$Q \circ P=Q$ for $\varphi \in \hat{H} \Rightarrow Q\left(\varphi u_{0}\right)=Q u_{0}$ for $\varphi \in \hat{H}$.
Since Q is surf and $Q^{\prime \prime} \hat{U}_{0}=\bigcup_{\varphi \in \hat{H}} \varphi U_{0}$, hern that $\left.Q\right|_{U_{0}}$ is surg.
Thus $\left.Q\right|_{u_{0}}$ is an open born $\left.\Rightarrow Q\right|_{u_{0}}: u_{0} \cong \hat{U}_{0}$
Hence $\hat{q} \mid \hat{u}_{0}=\left(\left.Q\right|_{u_{0}}\right) \cdot\left(q^{-1} \mid u\right)$ is a hames os well.

Now chuck $\hat{q}_{*} \pi_{1}\left(\hat{E}, \hat{e}_{0}\right)=H$ for some $\hat{e}_{0} \in \hat{E}$ rit. $\hat{q}\left(\hat{e}_{0}\right)=x_{0}$ Take $\hat{a}_{0}=Q\left(e_{0}\right)$. Then $\hat{q}+\pi_{1}\left(\hat{E}, \hat{i}_{0}\right)=$ isotropy of \hat{i}_{0} under $\hat{E} S \pi_{1}\left(X, x_{0}\right)$. For $[Y] \in \pi_{1}\left(X, x_{0}\right)$

$$
\begin{aligned}
& \hat{u}_{0} \cdot[\gamma]=Q\left(e_{0}\right) \cdot[\gamma]=Q\left(e_{0} \cdot(\gamma]\right)=Q\left(\varphi_{\nu}\left(u_{0}\right)\right) . \\
& Q\left(e_{0}^{\prime \prime}\right) \cdot[\gamma] \quad Q: q^{-1} x_{0} \rightarrow \hat{q}^{-1} x_{0} \\
& \pi_{1}\left(X_{0}, x_{0}\right) \text {-equivariant }
\end{aligned}
$$

Thus $[\gamma]$ is strong if $Q\left(\varphi_{\gamma}(L),\right)=Q\left(e_{0}\right)$

$$
\begin{array}{ll}
G \subset A \leq G \\
Q & A / H
\end{array} \quad \begin{aligned}
& \text { if } \varphi_{\gamma} \in \hat{H}
\end{aligned} \quad \begin{aligned}
& \text { if } \gamma \in H
\end{aligned} \quad \hat{H}=\left\{\varphi_{\gamma} \mid \gamma \in H\right\}
$$

This shows $\{$ covers\} \rightarrow \{o nj classes\} ~ i s ~ s u r j e c t i v e . ~ ky Cowing Is amorphism Criterion (11.40) infective as will.
conj action - so surges.
For easy access to $\operatorname{sub}(G) / G$ ap to conjugacy
sac the Group Namer databasio.
 etc. different conj classes of \cong subgps

$$
\begin{aligned}
& H \leq K \leq \pi_{1}\left(X, x_{0}\right) \\
& E \text { univ covar } \\
& \begin{array}{l}
E=E /\{1\} \\
\downarrow \\
E / \hat{H}
\end{array} \\
& \begin{array}{l}
c_{p}: \operatorname{Sub}\left(C_{p^{n}}\right) p p^{\text {rimat }} \\
\uparrow \prod_{i}\{0<1<\cdots<n\}
\end{array} \\
& \text { E/ } / \hat{k} \\
& \dot{x}=E / A u t_{\imath}(E)
\end{aligned}
$$

E.g.: Covirings of \mathbb{T}^{2}

$$
\text { For }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}(\mathbb{R}) \cap \mathbb{Z}^{2 \times 2} \text {, consider }
$$

If $\operatorname{ker}(q) \leq \pi^{2}$ is discrete, then q il a covering map.
 forsion sabge gen'd by 2 elts \Rightarrow ker q finite \Rightarrow her q discreta.

Prop Evary covar of T^{2} is isomarphic to prucisely one of the fllowing (a) univursal covaring $\varepsilon_{2}: \mathbb{R}^{2} \longrightarrow \pi^{2}$
(b) $q^{:} S^{1} \times \mathbb{R} \longrightarrow \pi^{2}$

$$
(z, y) \longmapsto\left(z^{a} \varepsilon(y)^{b}, z^{b} \varepsilon(y)^{-a}\right)
$$

for $(a, b) \in \mathbb{N} \times \mathbb{Z}$ with $b>0$ if $a=0$

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)
$$

(c) $q: \pi^{2} \rightarrow \pi^{2}$
with $a>b \geqslant 0, c>0$
integers.
Pf Fix $p=(1,1) \in \pi^{2}$ as basepsint. Hawe $\pi_{1}\left(\pi^{2}, \beta\right) \cong\left\langle\beta, \gamma \mid p \gamma=\gamma_{\beta}\right\rangle$ $\cong \mathbb{Z}^{2}$ 。

Fact subgps of \mathbb{Z}^{2} ara one of th following rank 0 - (i) trivial
$\operatorname{rank} 1$ - (ii) infinite cyclic quad by (a, b) with $a \geqslant 0$, and $b>0$ if $a=0$ $\operatorname{rank} 2-$ (iii) $\langle(a, 0),(b, c)\rangle$ with $a\rangle b \geqslant 0, c\rangle 0$.

We check that $H \leq \mathbb{2}^{2}$ free Abelian of rank 2 has type (iii) Have $H \cap(\mathbb{Z} \times\{0\}) \neq \varnothing b / c, j(m, n)-n(i, j)=\left(j m-n_{i}, 0\right) \in H n(Z \times 0)$ Tam $\{(a, 0)\rangle: H, w / a>0$
May "extend basis" to $(a, 0),(b, c)$ satisfying (iii) Given 2 such basis, $\exists M \in G L_{2} \mathbb{Z}$ st. $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) M=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ 0 & c^{\prime}\end{array}\right)$
so M upper Δ 'r with det 1. Nalgebre $M=i d$ so unizue rual basis!
Finally, chick that intricid subjps match. E.g. for (c) $\beta \mapsto \beta^{a}, \gamma \mapsto \beta^{b} \gamma^{c}$

$$
A=\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \Rightarrow A^{-1}=\left(\begin{array}{cc}
\frac{1}{a} & \frac{-b}{a c} \\
0 & \frac{1}{c}
\end{array}\right) \text { so } A^{-1} \mathbb{Z}^{2} \cap[0,1]^{2}
$$

$$
\begin{aligned}
& \text { looks like } \\
& A=\left(\begin{array}{ll}
4 & 3 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

$$
A^{-1}=\left(\begin{array}{cc}
\frac{1}{4} & -3 / 8 \\
0 & \frac{1}{2}
\end{array}\right)
$$

Egg: Lis spaces

$$
5^{3}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid z_{1} \bar{z}_{1}+z_{2} \bar{z}_{2}=1\right\}
$$

Fix $1 \leq m<n$ rel prime integers

$$
\mathbb{Z} / n \text { es } s^{3} \text { by }[k]\left(z_{1}, z_{2}\right)=\left(e^{2 \pi i k / n} z_{1}, e^{2 \pi i k m / n}\right)
$$

compact 3 -mid

$$
\begin{aligned}
& \pi_{1}(L(n, m)) \cong \mathbb{Z} / n \text { since } \pi_{1} s^{3}=1 \\
& \operatorname{Sub}(\mathbb{Z} / n)=\left\{r \mathbb{Z} / n \mathbb{z} \cong \mathbb{Z} /\left(\frac{n}{r}\right) \mathbb{Z}|r| n\right\}
\end{aligned}
$$

Abelian
So (\ln , m) has one iso class of cover for each divisor of n.
\Rightarrow Covers of $5^{\prime} \vee S^{\prime}$

