Classification Theorem X a space with a universal covering space (ag, conn'd loc simply conn'd), xoe X any base point. There is a bijaction $f_{q}: E \rightarrow X | q covering f / covering \cong Sub(\pi, (X, x_0)) conjugacy$ $q \longrightarrow conj class of$ $E_{\mu} \longrightarrow E_{\mu} \tau_i (E, e) for q(e) = x_i$ Hurn Sub (G) = { H (H ≤ G } is the subgroup lattice of G HEKEG Note For a varsion without conjugacy classer, keep track of based covaring spaces $q: (E, e) \rightarrow (X, x_o)$ and covaring isos preserving basepoints. Galois? L/k finite Galois extr of fields then (similar, logically {E[LEEL} = Sub[Gal(b/k]] indupendent)

Pf Fix a universal cover q: E X and eo E with qleo) = xo Then $\pi_{i}(X,x_{o}) \stackrel{c}{=} Aut_{1}(E)$ $[\chi] \stackrel{c}{\longmapsto} \varphi_{\chi} : e_{o} \stackrel{c}{\mapsto} e_{o} \overset{c}{\chi}$ Given $H \leq \pi_1(X, x_0)$ but $\hat{H} \leq Aut_{\chi}(E)$ unique covering auto dente the (is-morphie) satisfying $P_{\chi}(e_{\chi}) = e_{\chi} \cdot \chi$ image of χ image of H in Auty (E) Have E Q $2 \int \hat{E} = E/\hat{H}$ $X = \hat{Q}$ $x = \hat{Q}$ $\hat{Q} =$ WTS q is a covering map. $\hat{q}(e,\hat{H}) = q(e)$ 2 (e Y) / e H For U EX open, evenly covered, let Uo be a component of 2'U

Suffices to show $\hat{g}|\hat{u}_{o}$ homeo Have $Q^{\hat{u}}\hat{u}_{o}$ open 4 closed in $q'' U \Rightarrow Q'' u$, is a union of components in q'' U. For Us a component of Q¹ \hat{U}_{o} , here $\begin{array}{c} U_{o} \stackrel{\sim}{\searrow} \\ Q \stackrel{\downarrow}{\downarrow} \\ Q \stackrel{\downarrow}{\downarrow} \\ Q \stackrel{\downarrow}{\downarrow} \\ \end{array}$ so Q injective on Us $Q \circ \varphi \circ Q$ for $\varphi \circ \hat{H} \implies Q(\Psi u_b) = Q u_b$ for $\varphi \circ \hat{H}$. Since Q is surj and Q'Uo = Uquo, harn that Qlu, is surj. Thus $Q|_{U_0}$ is an open big'n $\Rightarrow Q|_{U_0}: U_0 \cong \hat{U}_0$. Hence $\hat{q} \mid \hat{u}_{o} = (Q \mid u_{o}) \circ (\hat{q} \mid u)$ is a homeo as well.

Nou chude \hat{q}_{*} $\pi_{i}(\hat{E}, \hat{e}_{o}) = H$ for some $\hat{e}_{o} \in \hat{E}$ $r, f, \hat{q}(\hat{e}_{o}) = x_{o}$.
Take $\hat{e}_{o} = Q(e_{o})$. Then $\hat{f}_{+}\pi_{i}(\hat{E},\hat{e}_{o}) = isotropy of \hat{e}_{o}$
under $\not\in \mathfrak{I}_{\pi_1}(X, x_{\mathfrak{d}})$. For $[Y] \in \pi_1(X, x_{\mathfrak{d}})$
$\hat{\mathbf{x}}_{\mathbf{v}}[\mathbf{x}] = Q(\mathbf{x}_{\mathbf{v}}) [\mathbf{x}] = Q(\mathbf{x}_{\mathbf{v}} \cdot [\mathbf{x}]) = Q(\mathbf{y}_{\mathbf{v}}(\mathbf{x}_{\mathbf{v}}))$
$(\mathcal{A}) = (\mathcal{A}) = ($
$\pi_1(X, x_n)$ -equivariant
Thus [Y] is isotropy iff Q(Pyle, 1) = Q(e.)
$H \in G$ $A \longrightarrow A / I \qquad iff \varphi_{g} \in \hat{H} Q \in \longrightarrow E/\hat{H}$
$Q(ga) = Q(a) \iff geH$ iff $Y \in H$ $\hat{H} = \{\varphi_y \mid y \in H\}$

This shows flowers } - I conj classes { is surjective. By Counting Isomorphism Criterion (11.40) injuctive as well. For easy access to Sub(G)/G up to conjugacy suc the Group Namer database

different conj classes of = subgps

etc.

$H \leq K \leq \pi, (X, x_{v})$ E univ cour	$\int S_n b(C_n)$ $\cong \int \mathcal{Q} \ge d n $
$E = E / \{i\}$	$C_{p}: Sub(C_{p}) \qquad p \qquad p inve$ $\int 0 < 1 < \cdots < n $
$ \begin{array}{c} \downarrow \\ E/\hat{k} \\ \downarrow \\ \chi = E/Aut_{2}(E) \end{array} $	· ·

E.g. Covurings of T? (b,d) For $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R}) \cap \mathbb{Z}^{2\times 2}$, consider $\mathbb{P}^{2} \xrightarrow{\mathcal{A}} \mathbb{P}^{2}$ $(\mathfrak{d}, \mathfrak{d}) \xrightarrow{(\mathfrak{d}, \mathfrak{d})} \xrightarrow{(\mathfrak{d}, \mathfrak{d})} \xrightarrow{(\mathfrak{d}, \mathfrak{d})} \xrightarrow{(\mathfrak{d}, \mathfrak{d})} \xrightarrow{(\mathfrak{d}, \mathfrak{d})} \xrightarrow{(\mathfrak{d}, \mathfrak{d})}$ $\mathbb{R}^2 \xrightarrow{A} \mathbb{R}^2$ (z, w) (z wb, z wd) If $ker(q) \in \Pi^2$ is discrete, then q is a covering map. $A^{-1}Z^2 \rightarrow A^{-1}\binom{m}{n} \longrightarrow (m,n) \in \mathbb{Z}^2$ so kev $q = \varepsilon_2 A^{-1}Z^2 \leq \overline{I}^2$ torsion sabage genid by 2 elts inite in har of discrete. $(2, \cup) \longrightarrow (1, 1)$

Prop tury cover of T^2 is isomorphic to precisely one of the following: (a) universal covering $\varepsilon_1: R^2 \longrightarrow T^2$ (b) $q: S^1 \times R \longrightarrow T^2$ $(z, y) \longmapsto (z^a \varepsilon(y)^b, z^b \varepsilon(y)^a)$ for (a, b) e N×Z with b>0 if a=0 $\begin{pmatrix} a & b \\ o & e \end{pmatrix} \quad \begin{pmatrix} c \end{pmatrix} = T^2 \longrightarrow T^2 \qquad \text{with } a > b > 0, c > 0 \\ (z, w) \longmapsto (z^a w^b, w^c) \qquad \text{integers.}$ PF Fix $p = (1,1) \in \mathbb{T}^2$ as basepoint. Have $\pi_1(\mathbb{T}^2, p) \stackrel{\sim}{=} \langle p, \gamma | p \gamma \stackrel{\sim}{=} \gamma \rangle$ £ 2[°]. (⊋, °

Fact subggs of Z' are one of the following rank D - (i) trivial rank 1 - (ii) infinite cyclic quick by (a, b) with $a \ge 0$, and $b \ge 0$ if a = 0rank $2 - (iii) \langle (a, 0), (b, c) \rangle$ with $a \ge b \ge 0$, $c \ge 0$. We check that $H \leq 2^{\circ}$ free Abelian of rank 2 has type (iii) Have $H \cap (\mathbb{Z} \times 50^{\circ}) \neq \emptyset$ b/c $j(m,n) - n(ij) = (jm - ni, 0) \in H \cap (\mathbb{Z} \times 0)$ H_{i} T = he ((a, 0)) = H, v/a>0May extend basis to (a, 0), (b, c) satisfying (iii). Given 2 such lases, $\exists M \in GL_2 \mathcal{I} \quad s.t \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} M = \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix}$

M= id algebra so M upper D'r with det 1. to unique ruch basis? Finally, check that induced subjes match. E.g. for (a) pmps, Ympsyc

(0 3 2 (3, 2) Ь 2 3 ٤, suparate picturus \sim

$A = \begin{pmatrix} a & b \\ o & c \end{pmatrix} \implies A^{-1} = \begin{pmatrix} \frac{i}{a} & -\frac{i}{ac} \\ 0 & \frac{i}{c} \end{pmatrix} \qquad \text{for } A^{-1} \mathbb{Z}^2 \cap [o_{jl}]^2$		
looks like The t		
$A^{\prime} = \begin{pmatrix} \frac{1}{4} & -\frac{3}{8} \\ \frac{1}{4} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & -\frac{3}{8} \\ \frac{1}{4} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & -\frac{3}{8} \\ \frac{1}{4} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac$		
E.g. Luns spaces		
$5^{3} = \{(z_1, z_2) \in \mathbb{C}^2 \mid z_1 \overline{z}_1 + \overline{z}_2 \overline{z}_2 = 1\}$ Fix $1 \le m \le n$ rel prime integers		

 $Z_{l_n} \in S^3$ by $[L](z_1, z_2) = (e^{2\pi i k/n} Z_{l_n} e^{2\pi i k m/n})$ Fact $S^3 \xrightarrow{\sim} S^3/(\mathbb{Z}/n) =: L(n, m)$ eyelic order n compact 3-mfld $\pi_{i}\left(L(n,m)\right) \cong \mathbb{Z}/n \quad \text{since} \quad \pi_{i}S^{3} = 1$ $S_{nb}(\mathcal{X}_{n}) = \begin{cases} r\mathcal{Y}_{n\mathcal{Z}} \cong \mathcal{X}_{n\mathcal{Z}} \\ r|n \end{cases}$ Abelian So L(n, m) has one iso class of concer for each divisor of n. so of 5'v 5'