Evenly covarsd nbhds:

Check that for $e \in E_{2}$; $u$ is evenly covered by $\varphi^{-1} U$.

Thin

$\exists$ covering ham $\varphi: e_{1} \mapsto e_{2}$

$L_{\text {might }}$ have to take conn'd component of $U_{1} \cap U_{2}$ containing $x$ iff $q_{1} * \pi_{1}\left(E_{1}, e_{1}\right) \leq q_{2} * \pi_{1}\left(E_{2}, e_{2}\right)$. Pf Lifting criterion

The (covering Iso Criterion)
necessarily unique!
(a) In the previous setting, an iso $\varphi: e, \omega_{2}$ exists ff $q_{1}=\pi_{1}\left(E_{1}, c_{1}\right)=q_{2 *} \pi_{1}\left(E_{2}, e_{2}\right)$.
(b) $q_{1} \cong q_{2}$ ff for some (all) $x \in X$, the conjugacy classes of subges of $\pi_{1}(X, x)$ indued by $q_{1}, q_{2}$ are the same.
(Dual Conj classes given by varying e eq $q_{i}^{-1}\{x\}$, applying $q_{i} *$ ).
Pf (a) is formal given previous theorem.
(b) follows from isotropy analysis.

Universal Covering Space
Prop (Universality of simply cunn'd coverings)


Call a simply conned covering space of $x$ a universal cover $\tilde{x}$ of $x$ NB. $\tilde{x}$ unique up to iso.
Egg. $\varepsilon_{n}: \mathbb{R}^{n} \longrightarrow \mathbb{T}^{n}$ whibite $\mathbb{R}^{n}=\tilde{\mathbb{T}}^{n}$.
The cayluy complex $\tilde{X}_{G}$ is a universal cover of the presentation complex $X_{G}$.

Call $X$ locally simply conoid when it admits a basis of simply conned open sets.
The Every conn'd locally simply conn'd space has a universal covering space.
path space of $X$ (based at $x_{0}$ )
If Fix $x_{0} \in X$ and dustin $P X:=\left\{[f: I \rightarrow X] \mid f(0)=x_{0}\right\}$ and $\begin{aligned} q: P X & \longrightarrow X \\ {[f] } & \longmapsto f(1)\end{aligned}$

- Give PX the following topology: for $[f] \in \mathbb{R X}$ $u \subseteq x$ open $\operatorname{simply}$ conn $d$ containing $f(1)$,

Point in $P X$ :


TPS Considur $X=5^{\prime}$. Does $P X$ recovir $\mathbb{R}$ ?

$$
\begin{aligned}
& {[g \cdot u] \cong u} \\
& {[f \cdot u] \cong u}
\end{aligned}
$$

$$
p x=x<z
$$

$$
\mathbb{R}
$$


define $[f \cdot u] \subseteq P X$ by $[f \cdot u]:=\{[f \cdot a] \mid$ a is a path in Ustarting $\}$ Then $B=\{[f \cdot u]\}$ is a basis. $(p-299)$ at $f(1)$

- PX is path conned:

Given $[f] \in P X$, define
$\tilde{f}: I \longrightarrow P X$
$t \longmapsto\left[f_{t}\right]$ whir i $f_{t}: I \longrightarrow X$
Thin $\tilde{f}(0)=\left[c_{x_{0}}\right]$ and $\tilde{f}(1)=[f]$. chick $\tilde{f}$ is also cts.

- $q$ is a covering map : For $U \in X$ open simply conned,
$[f] \sim f_{i x} x_{1} \in U$. Varies over distinct

Check o cts, homer $[f U] \rightarrow U$ on each component
-PX is simply conn'd: Suppose $F: I \longrightarrow P X^{\text {loop }}$ based at $\left[c_{x_{0}}\right]$. $F$ is a lift of $f:=q F$. If $\tilde{f}: I \rightarrow P X \quad$ then $q \tilde{f}(t)=q\left(f_{t}\right)$ $=f_{f}(1)=f(t)$ so $\tilde{f}$ lifts $f$ stating at $\left[e_{x_{0}}\right]$. By unique lifting, $F=\tilde{f}$. Since $F$ is a loop,

$$
\left[c_{x_{0}}\right]=F(1)=\tilde{f}(1)=\left[f_{1}\right]=[f]
$$

so $\underset{\tilde{f}}{ }$ is nullhomotopic: By monodromy; $F$ is as well.


