Evenly conversed notes (TEP) W/ Check that for e E E, U = component of φ`u It is evenly concred by 22 V containing °°°° U . · · □ · · · · · Z , J Thm e, E, ----> Ez 20, \mathcal{U}_{λ} 9, J / 9, L'might have to take conn'd component of U, nUz containing x $\exists covering hom \ \varphi: e_1 \mapsto e_1 \\ iff \quad q_1 \star \pi_1(E_1, e_1) \leq q_2 \star \pi_1(E_1, e_2)$ PF Lifting criterion 🗆

 E_q $S' \xrightarrow{P_m/n} S' \iff n/m$ "cychotomic" pm y fr 5' necessarily unique! Thm (Covering Iso Criterion) (a) In the previous setting, an 'so $\varphi:e, \mapsto e_1$ exists iff $\varphi_{1*}\pi_1(E_{1,e_1}) = \varphi_{2*}\pi_1(E_{2,e_2})$. (b) q=q2 iff for some (all) x EX, the conjugacy classes of subgps of $\pi_i(X, x)$ induced by q_i, q_r are the same. (Recall Conj classes given by varying eeqilxs, applying qir) Pf (a) is formal given pruvious theorem. (b) follows from isotropy analysis. see p. 297

Universal Covering Space Prop (Universality of simply cound coverings) E======= any two simply connid are isomorphic ply 2 (q' (uniquely so up to choice of basepoints) simply 2 (q' connid X q' Call a simply cound covering space of X a universal cover X of X. N.B. X unique up to iso. E.g. $\varepsilon_n: \mathbb{R}^n \longrightarrow \mathbb{T}^n$ uchibit $\mathbb{R}^n = \widetilde{\mathbb{T}}^n$ The Cayby complex XG is a universal cover of the presentation complex XG.

Call X locally simply conrid simply conn'd open sets. when it admits a basis of The Every conn'd locally simply conn'd space has a universal covering space. path space of X (based path space of X (based at x.) $Pf \quad Fix \quad x_0 \in X \quad and \quad define \quad PX := \left\{ \left[f: I \longrightarrow X \right] \middle| f(o) = x_0 \right\}$ and $q: PX \longrightarrow X$ [f] $\longrightarrow f(1)$ Point in PX Give PX the following topology: for [f] E RX to Iq •f(1) X $U \in X$ open simply cound containing f(1),

Considur X = 5', Does PX recover R? 24 K = S Ìf.u] ≥U 28/31

define $[f \cdot U] = PX$ by $(f \cdot U) := \{[f \cdot a] \mid a \text{ is a path in Ustarting } \}$ $T = \{F \cdot U\} = \{F \cdot U\}$ is a basis (p-299) at f(i)Then $B = \{ (f \cdot U) \}$ is a basis (p-299) $\frac{\mathcal{U}}{\mathcal{L}} = \frac{\mathcal{U}}{\mathcal{L}} = \frac{\mathcal{U}}{\mathcal{U}} = \frac{\mathcal{U}}{\mathcal{U}$ · PX is path conrid: Given [f] e PX, define x. [f.U] $\vec{f} : I \longrightarrow PX$ $t \longmapsto [f_t] uhre <math>f_t : I \longrightarrow X$ $s \longmapsto f(ts)$ Then $\tilde{f}(0) = [c_{X_0}]$ and $\tilde{f}(1) = [f]$. Check \tilde{f} is also etc. q is a covaring map: For $U \in X$ open simply conn'd, $q^{-1}U = \int [f] \in PX | f(I) \in U \int = \prod [f \cdot U]$ $[f] \longrightarrow fix x, \in U.$ Varies our distinct

Check q ets, homeo [fu] -> U on each component · PX is simply conn'd: Suppose FII -> PX based at (cx) $F : = c \text{ lift of } f := qF. \quad If \quad \widetilde{f} : I \longrightarrow PX \quad \text{then } q\widetilde{f}(t) := q(f_{t})$ = $f_{t}(1) = f(t)$ so \tilde{f} lifts f stating at $[e_{x_{o}}]$. By unique lifting, F=f. Since F is a loop, $[c_{x_0}] = F(1) = \tilde{f}(1) = [f_1] = [f]$ so f is nullhomotopic By monodromy, F is as well. f = PX $\downarrow I = X$