Recall the lifting criterion:

Idea Define $\tilde{\varphi}(y): \widetilde{(\varphi \cdot f})_{e}$.
suppose $\tilde{\varphi}$ waists, $y \in y$, $f: I \longrightarrow Y$ w/f(0) $=y_{0}, f(1)=y$ Then $\tilde{\varphi}$ of lifts φ of and starts at e_{0}. Thus $\tilde{\varphi}(y)$ $=\left(\widetilde{\varphi}_{\circ}\right)_{e_{0}}(1)$

$\int_{\frac{y_{0} f}{7}}^{4}$
y

To prove \Leftarrow in lifting criterion, must show
(a) \tilde{y} is well-difind
(b) $\tilde{\varphi}$ is cts sad pp. 285-286
(a) Suppor f^{\prime} is another path y_{0} to y. Thin $f^{\prime} \cdot \bar{f}$ is a loop based at y_{0}, so $\varphi_{*}\left[f^{\prime} \cdot \bar{f}\right] \in \varphi_{*} \pi_{i}\left(y, y_{0}\right) \leqslant q_{*} \pi_{1}\left(E, e_{0}\right)$. Thus $\left[\varphi_{0}\left(f^{\prime} \cdot \bar{f}\right)\right]=[q \cdot g)$ for some $\operatorname{loop} g$ in E based at e_{0} Hence $q \cdot g \sim \varphi \cdot\left(f^{\prime} \cdot \bar{f}\right) \sim\left(\varphi \circ f^{\prime}\right) \cdot(\bar{\varphi} \cdot f)$

$$
\Rightarrow(q \circ g) \cdot(\varphi \cdot f) \sim \varphi \cdot f^{\prime}
$$

By monodromy, the lifts of this have the same endpoint.

Since g lifts $q \cdot g$, and g ir a loop at a_{0},

$$
\begin{equation*}
\left(\widetilde{\varphi_{0} f^{\prime}}\right)_{e_{0}}(1)=\left[g \cdot\left(\widetilde{\varphi_{0} \cdot f}\right)_{e_{0}}\right](1)=(\widetilde{\varphi \cdot f})_{u_{0}} \tag{1}
\end{equation*}
$$

so the defer does not depend on the choice of f.
Cor (lifting from simply conn'd spaces) $q: E \rightarrow \chi$ coring, Y simply conn'd locally path conn'd, then every cts $\varphi: Y \rightarrow X$ has a lift to E. Give $y_{0} \in Y$, the lift can be chosen to take $y_{0} t$ any $p t$ in $q^{-1}\left\{\varphi\left(y_{0}\right)\right\}$.
of $\varphi_{*} \pi_{1}\left(y, y_{0}\right)=\{e\} \leqslant q_{*} \pi_{1}\left(E, e_{0}\right)$.

Cor (lifting maps to simply conn'd spaces) $q: E \rightarrow X$ covering, E simply conn'd. For any conn'd, lo path conn'd spew Y, $\operatorname{ctg} \varphi: Y \rightarrow X$ lifts to E iff φ_{*} is the trivial ham for some $y_{0} \in Y$. If this is the case, then the lift can be chosen to take y_{0} to any alt of $q^{-1}\left\{\varphi\left(y_{0}\right)\right\}$.
Q. When can we solve the lifting protplem

Monodromy action
Thu (monodiromy action) $q: E \rightarrow X$ covering, $x \in X$. There is a transitive right action $q^{-1}\{x\} \equiv \pi_{1}(X, x)$ given by e.[f] $=\tilde{f}_{2}(1)$.
If Read p. 287 for well-definition.

$$
(e \cdot[f] j ;[g]=
$$

Transitivity: since E is path conn'd any two pts e, $e^{\prime} \varepsilon^{-1}\{x\}$ are joined by a path h in E. Sit $f=q \cdot h$ to see that h is a lift of f starting at e, whence $e \cdot[f]=e^{\prime}$.

Algebraic interlude on C-sits
S a right G-sat
For se, the isotropy (aka stabilizer) group of s is

$$
G_{s}:=\{g \in G \mid s g=s\}
$$

Moral exc Check that $G_{5} \leq G$.
Thu (orbit-stabilizer) For $s \in S,{ }_{5} G \cong{ }_{G_{s}} G$
G-orbit of right costs $\left\{G_{5} g \mid g \in G\right\}$

$$
\mathrm{s} \cdot \mathrm{~g} \longmapsto G_{s} g
$$

Get : right Gisets

$$
G \text { Set }(S, T)=\{f: S \rightarrow T \mid \underbrace{f(5 \cdot g)=f(s) g}_{\text {equivarlanee }} V_{g} \in G\}
$$

Every G-set is a dispint union of orbits $\cong \Perp H_{i}{ }^{G}$
Prop $G_{s \cdot g}=g^{-1} G_{s} g$ so the set of isotropy groups for a transitive Gout; transitive G-sets $5, T$ are isomorphic iff G_{5} conjugate to G_{t} for some (Call) $s \in S$, $t \in T$.

$$
\begin{aligned}
& h \in G_{s} \Rightarrow(s \cdot g)\left(g^{-1} h g\right) \\
& =s \cdot\left(g g^{-} h g\right)=(s \cdot h) \cdot g \\
& =s \cdot g
\end{aligned}
$$

The Way group of $H \leq G$ is $W_{G}(H):=H \underbrace{N_{G}(H)}$

Them For S a transitive
Giset, so some ult of 5 ,

$$
\begin{gathered}
\operatorname{Aut}_{G}(S) \cong W_{G}\left(G_{s_{0}}\right) \\
\varphi_{\gamma} \leftarrow G_{s_{0}} \gamma
\end{gathered}
$$

$\bigcup_{\text {unique }} G$-equircriant map $S \rightarrow S_{S_{0} \mapsto S_{0}} \gamma$
Q Why does φ_{y} exist and is welluchfind?

Back to our favorite transitive G-set, the monodramy action

$$
q^{-1}\{x\} \subseteq \pi_{i}(X, x) .
$$

Thm (Isotropy groups for monodromy) $q: E \rightarrow X$ covering, $\left.\left.x \in X \quad \forall e \in q^{-1}\right\} x\right\}, \pi_{1}(X, x)_{e}=q_{*} \pi_{1}(E, e) \leqslant \pi_{1}(X, x)$
is ot ropy gi of $e:\left\{j_{i} \in \pi_{1}(X, x) \mid e g=e\right\}$
If Let $e^{\epsilon} q^{-1}\{x\}$ be arhitracyy and suppose $\left.[f\} \epsilon_{\pi_{1}}\left(X_{, ~}\right)\right)_{e}$.
The $\tilde{f}_{e}(1)=e \cdot[f] \cdot e, 5_{0}\left[\tilde{f}_{e}\right] e \pi_{1}(E, e)$. Whee have $q_{*}\left[\tilde{f}_{2}\right]=\left[q \cdot \tilde{f}_{e}\right]=[f)$, so $[f] \in q_{*} \pi_{1}(E, e)$. Thus $\pi_{1}(X, x)_{e} \subseteq q_{*} \pi_{1}(E, e)$.

For the opposite inclusion, if $[f] \in q_{\varepsilon} \pi,(E, e)$, then $\exists_{g}: I \rightarrow E$ based at e st. $q_{*}[g]=[f] \Rightarrow q^{\circ} g \sim f$.
Thin $g=(\widetilde{q} \circ g)_{e}$ by uniqueness of lifts, and

$$
e \cdot[f]=e \cdot[q ; q)=\widetilde{(q \circ g)_{e}}(1)=g(1)=e \text { so }[f] \in \pi,(X, x)_{e} .
$$

Cor $q: E \rightarrow X$ covering. The monodromy action is free on each fiber of q iff E s simply conn'd.
If The action is free on $q^{-1}\{x\}$ iff $q_{*} \pi_{1}(E, v)$ tiv for any (all) $e \in q^{-1}\{x\} \Leftrightarrow \pi_{i}\left(E, e^{\prime}\right)$ tiv since q_{*} inductive.

In this case, $q^{-1}\left\{x x \cong G\right.$ for $G=\pi_{1}(x, x)$ G-set

Cor Suppose $q: E \rightarrow X$ covering, E is simply conn'd Thin each fiber of q has cardinality $\left|\pi_{1}(x, x)\right|$.
If The monodromis action is free and $q^{-1}\{x\}$ is a free transitive $\pi_{1}\left(X_{j x}\right)$-ret.
E.g. $q: S^{n} \longrightarrow \mathbb{R} P^{n}$ covering w / S^{n} simply conn'd for $n \geq 2$

$$
\Rightarrow \pi_{1}\left(\mathbb{R} P^{n}\right) \cong \mathbb{Z} / 2 \mathbb{z} \quad \text { for } n \geq 2
$$

Real p. 293 on normal coverings $q_{*} \pi_{1}(E, e) \subseteq \pi_{1}\left(X_{j} x\right)$ for some /all e, x.

Can do same frith if $\left|q^{-1}(x)\right|=p$. Happens for lens spaces.

Covering homomorphisms
$q_{1}: E_{1} \longrightarrow X_{1} q_{2}: E_{2} \rightarrow X$ coverings
A covering homomorphism $\frac{\varphi}{\varphi}$ a cts $\operatorname{map} \varphi: E_{1} \rightarrow E_{2}$ sit. $q_{2} \varphi=q_{1}$

If φ is also a hames, call it a covering isomorphism.

Prop $q_{i}: E_{i} \rightarrow X$ convings, $i=1,2$,

(a) $\varphi=\psi$ iff $\exists e \in E$, s.t. $\varphi(e)=\psi(e)$
(b) $\forall x \in X,\left.\quad \varphi\right|_{q_{1}^{-1}\{x\}}: q_{1}^{-1}\{x\} \longrightarrow q_{2}^{-1}\{x\}$ is $\pi_{1}\left(X_{3} x\right)$-equivariant
(c) Evary covering ham is itself a covaring map.

Pf (a) follows from unique liffing:

$$
E_{1} \xrightarrow[q_{1}]{\varphi / \int_{1}} \downarrow_{q_{2}}^{E_{2}}
$$

(b) $\varphi(e \cdot[f])=\varphi\left(\tilde{f}_{2}(1)\right)=\left(\varphi \circ \tilde{f}_{2}\right)(1)=\varphi(e] \cdot[f]$
(c) Surjuctive: for $e \in E_{2}$, take

Q Justify this. $e_{0} \in q_{1}\left\{q_{2}(e)\right\} \neq \varnothing$. Then $\varphi\left(c_{0}\right)=0$.

