Covering maps Goal Emulate properties of E: R -> 5' in order to compute more fundamental groups. Recall f, g based loops in 5' are path homotopic iff they have the same winding number $\tilde{f}(1) - \tilde{f}(0) = \tilde{g}(1) - \tilde{g}(0)$ for \tilde{f}, \tilde{g} lifts of f, galong ε : ξ f $I \xrightarrow{f} S^{1}$ Unsque lifting, htpy lifting, path lifting, ...

Defn For E, X spaces, $q: E \rightarrow X$ ets, an open $U \subseteq X$ is evenly covered by q. when q"U is a disjoint union of conn'd open sets, each mapped homeomorphically onto U by q. A covaring map is a cts surj map $q: E \rightarrow X$ with E conn'd, locally path conn'd, and every pt of X has an evenly covered night. (//)Eq. $\varepsilon:\mathbb{R}\longrightarrow 5'$ $t\longmapsto \exp(2\pi i t)$ () u JE.

E.g. $p_n: S' \rightarrow S'$ $z \mapsto z^n$ 1 P2 Non- e.g. El (0,2) no evenly overed what $\overline{}$ $E_q = \varepsilon_n : \mathbb{R}^n \longrightarrow \mathbb{T}^n$ $(t_1, \dots, t_n) \longmapsto (\varepsilon(t_1), \dots, \varepsilon(t_n))$ ିତ

 $E_{g} \qquad S^{n} \longrightarrow \mathbb{R}\mathbb{P}^{n}$ $\times \longrightarrow \text{line spanned by } x \subseteq \mathbb{R}^{n+1}$ 2-shuted cover Lifting Properties A lift of $\varphi: Y \longrightarrow X$ along $\varphi \in \varphi: Y \longrightarrow E$ s.t. $\varphi = \varphi$ i.r. φ E $\chi \to \chi \to \chi \to \chi$ Thum (Unique lifting) Let q: 5 -> X be a covering map Suppose Y is conn'd, $\varphi: Y \longrightarrow X$ etr, $\tilde{\varphi}_1, \tilde{\varphi}_2: Y \longrightarrow E$ are lifter of φ that agree at some point of Y. Then $\tilde{\varphi}_1: \tilde{\varphi}_2$. PF Same as for E 🗆

(Homotopy lifting) Then Let q:E - X be a covering map, Y locally cound. Suppose Po, P. Y -> X cts, H: Y × I -> X a htpy from Po + P., q̃: Y→ E any lift of q. Then J! lift of H to H with H(-, 0) = 40. If H is stationary on some A = 4 thin so is H $\tilde{H} = \tilde{\varphi} \simeq \tilde{H}(-,1)$ Y×O - E $\mathbf{H}_{\mathbf{y}} = \mathbf{H}_{\mathbf{y}} + \mathbf{H}_{\mathbf{y}} +$ $Y \times I \xrightarrow{H} X$ φ_{i} Yx1 · · · · · · · · · · · · PF Same as for E.

Cor (Path lifting) $q: E \to X$ covering, $f: I \to X$ a path, $e \in q^{-1}f(o) \subseteq E$. Then $\exists !$ lift $\tilde{f}: I \to E$ of f with $\tilde{f}(o) \coloneqq e$. PF Ditto 🗆 L'Notation & F Winding number? Then (Monodromy) q: E - X covering map, f.g: I - X paths from p to q, fe, qe lifts with same initial point e. (a) $f_e \sim \tilde{g}_e$ iff $f \sim g_n$ (b) If f_{n_q} , then $\tilde{f}(1) = \tilde{g}(1)$ converse holds for a bla IR is simply conn'd.

Pf (a) If $f_e \sim \tilde{g}_e$, then composing w(q) witnesses $f \sim q$ For the converse, suppose H: frg, By htpy lifting, get H: fe ~ some lift of g starting af e. By unique lifting, this is just g. (b) $f_{e} \Rightarrow \tilde{f}_{e} \approx \tilde{f}_{e} \Rightarrow \tilde{f}_{e}(1) = \tilde{g}_{e}(1)$. \Box Upshot $\pi_i(X,x) \subset q^2 \{x\}$ "monodromy action" P2 $f[f]:e = f_e(1) + \dots$ Thu (Injectivity) $q: E \to X$ covering $\forall e \in E$, $q : \pi, (E, e) \to \pi, (X, q(e))$; injective. [f] $\longrightarrow [qef]$

Pf Suppose [f] $\in ker(q_*)$ so $q_*(f) = (c_{q(*)})$. Then $qf \sim c_{q(*)}$ in X. By the monodromy theorem, any lifts of qf, $c_{q(*)}$ starting at the same point are path htpiz in \overline{E} , \overline{E} so $f = qf_e$ and c_e lifts $c_{q(e)}$. $I \xrightarrow{qf} X$ Thise both start at e, so free, i.e. (f) is trivial. assigns subgroups of π , to coverings

On top, we will solve the lifting problem The E covering, I cound loe path cound, 4: Y - X etr. Given $y \in Y$, $e_0 \in E$ with $q(e_0) = \Psi(y_0)$, Ψ has a lift $\tilde{\Psi}: Y \rightarrow E$ s.b. $\tilde{\Psi}(y_0) = e_0$ iff $\Psi_* \pi_1(Y, y_0) = q_* \pi_1(E, e_0)$. Pf of ⇒ $\pi,(\Upsilon,\gamma,) \xrightarrow{\varphi} \pi,(\chi,\varphi_{\gamma},1)$

$ \begin{array}{c} $														exists iff									200 200 200 200												
				์ ัๅ	ວ	(• • •				• 	. q	j»)) • E	9	(Q.	, , , ,) .														ups	tai	is is
																							(1 (57	a	۱í	S	<i></i>			E	•			
																														9					
																															V				
																															Х		<		
																																	don stai	wn: WN	• .