Math $545:$
Geometry \& Topology of Manifolds

Presentation complex
Group

$$
\begin{aligned}
G & =\left\langle x_{1}, x_{n}, x_{m} \mid r_{1}, \ldots, r_{n}\right\rangle \\
& =\langle S \mid R\rangle \quad G=\mathbb{Z} \times \mathbb{Z} \cong\left\langle x, y \mid x y x^{-1} y^{-i}\right\rangle
\end{aligned}
$$

2-dim call ape X_{G} :

$$
\left(X_{G}\right)_{0}=*
$$

$\left(X_{G}\right)_{1}=V_{S} \quad$ (loops hasid at * indexed by S)
$\left(X_{G}\right)_{2}=$ one $\left.2-c=l\right)$ for each el of R, ∂D^{2} glued according to rel'n word

Caylay graph (connect-the-dots, grad school varsion) $G=\langle S \mid R\rangle$
$\Gamma_{G}=\Gamma_{G, 5}:=$ directed graph ${ }_{x} /$ vertices G, edges $g \xrightarrow{x} g x$ for $x \in S$

Eeg. $G=\left\langle x, y \mid x y x^{-1} y^{-1}\right\rangle \approx \mathbb{Z}^{2}$

Q Given $g \in G$, $r=x y z \cdots \in R$, what happens if you follow the path from $g^{\text {using, }}$? as instructions?

P1 Draw cayluy graphs for

$$
\begin{aligned}
& c_{2}=\left\langle x \mid x^{2}\right\rangle \\
& c_{3}=\left\langle y \mid y^{3}\right\rangle \\
& c_{\infty}=\langle z\rangle \equiv \mathbb{Z} \\
& c_{2} * c_{2}=\left\langle a, b \mid a^{2}, b^{2}\right\rangle
\end{aligned}
$$

P2 Corresponding graphs?

Cayley Complex

$$
\left(\tilde{x}_{G}\right)_{1}=\Gamma_{G}
$$

$\left(\tilde{X}_{Q}\right)_{2}:$ For each $g \in G, \quad r \in R$, attach a 2 -call to Γ_{G} via the loop r starting at g
 $G \subset \tilde{X}_{G}$ simply transiting (Equiv, free and transitive.)

Action $G \ominus \tilde{X}_{G}$
Given $h \in G$, define action cull-wise (and check compatibility)
O-cells: $h \cdot g=h_{g}$

$$
\text { 1-colls: } h \cdot(g \xrightarrow{x} g x)=h_{g} \xrightarrow{x} h_{g} x
$$

2-cells: Take 2-cills to 2-cells homeomorphically w/ ∂ transformed as for 1 -cells:

Chick that this is a cts siniphy transitive action. transitive on O-cells

Quotient
C lain $\tilde{X}_{G} / G \cong X_{G}$

- Nice properties of $\tilde{X}_{G} \rightarrow X_{G}$?
- Comparison with $\mathbb{R} \longrightarrow 5^{\prime}$ $t \mapsto \exp (2 \pi i t)$? $G=C_{2}$

\downarrow
$\mathbb{R} P^{2} \quad X_{C_{2}}$
on $y^{\text {p }}$

Goal 1 "Galois theory" of covering maps and π_{1}

$$
\left.\left\{\text { sulgrsups of } \pi_{1} X\right\} \Longleftrightarrow \text { covers of } X\right\}
$$

Note. \tilde{X}_{G} is a "universal cover" of X_{G}, corresponding to $e \leq \pi_{1} X_{G} \cong G$

- cover for $H \leq G$ arises as $\tilde{X}_{G} / H \longrightarrow X_{G}$

