MATH 545: MANIFOLDS HOMEWORK DUE FRIDAY WEEK 7

Problems taken from Introduction to Smooth Manifolds are marked ISM $x-y$. Please review the syllabus for expectations and policies regarding homework.
Problem 1 (ISM 2-14). Suppose A and B are disjoint closed subsets of a smooth manifold M. Show that there exists $f \in C^{\infty}(M)$ such that $0 \leq f(x) \leq 1$ for all $x \in M, f^{-1}\{0\}=A$, and $f^{-1}\{1\}=B$.
Problem 2 (ISM 3-2). Prove Proposition 3.14: Let M_{1}, \ldots, M_{k} be smooth manifolds, and for each j, let $\pi_{j}: M_{1} \times \cdots \times M_{k} \rightarrow M_{j}$ be the projection onto the M_{j} factor. For any point $p=\left(p_{1}, \ldots, p_{k}\right) \in$ $M_{1} \times \cdots \times M_{k}$, the map

$$
\begin{aligned}
\alpha: T_{p}\left(M_{1} \times \cdots \times M_{k}\right) & \longrightarrow T_{p_{1}} M_{1} \oplus \cdots \oplus T_{p_{k}} M_{k} \\
v & \longmapsto\left(d\left(\pi_{1}\right)_{p}(v), \ldots, d\left(\pi_{k}\right)_{p}(v)\right)
\end{aligned}
$$

is a linear isomorphism. (The same is true if one of the spaces M_{i} is a smooth manifold with boundary, but you are not asked to prove that case.)
Problem 3 (ISM 3-4). Show that $T S^{1}$ is diffeomorphic to $S^{1} \times \mathbb{R}$.
Problem 4 (ISM 3-5). Let $S^{1} \subseteq \mathbb{R}^{2}$ be the unit circle, and let $K \subseteq \mathbb{R}^{2}$ be the boundary of the square of side length 2 centered at the origin. Show that there is a homeomorphism $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $F\left(S^{1}\right)=K$, but there is no diffeomorphism with the same property. [Hint: Let γ be a smooth curve whose image lies in S^{1}, and consider the action of $d F\left(\gamma^{\prime}(t)\right)$ on the coordinate functions x and y.] Why does this prove that the Cartesian product of manifolds with boundary is not necessarily a manifold with boundary?
Problem 5 (ISM 4-2). Suppose M is a smooth manifold (without boundary), N is a smooth manifold with boundary, and $F: M \rightarrow N$ is smooth. Show that if $p \in M$ is a point such that $d F_{p}$ is nonsingular, then $F(p) \in N^{\circ}$.

