MATH 545: MANIFOLDS HOMEWORK DUE FRIDAY WEEK 5

Problems taken from Introduction to Topological Manifolds are marked ITM $x-y$; problems taken from Introduction to Smooth Manifolds are marked ISM $x-y$. Please review the syllabus for expectations and policies regarding homework.

Problem 1 (ITM 13-7, BROUWER FIXED POINT THEOREM). For each integer $n \geq 0$, prove that every continuous map $f: \overline{\mathbb{B}}^{n} \rightarrow \overline{\mathbb{B}}^{n}$ has a fixed point. (Use homology to emulate the fundamental groupbased proof for $n=2$.)
Problem 2 (ITM 13-8). Show that if n is even, then $C_{2}=\{ \pm 1\}$ is the only nontrivial group that can act freely and continuously on S^{n}. (Hint: Show that if G acts continuously on S^{n}, then degree induces a homomorphism $G \rightarrow C_{2}$. Bonus: What happens when n is odd?)
Problem 3 (ITM 13-9). Use the cell structure of $\mathbb{R P}^{3}$ to compute its homology. (Bonus: Compute the homology of $\mathbb{R P}^{n}$ for all n.)

Problem 4 (ISM 1-8). An angle function on a subset $U \subseteq S^{1} \subseteq \mathbb{C}$ is a continuous function $\theta: U \rightarrow \mathbb{R}$ such that $\exp (i \theta(z))=z$ for all $z \in U$. Show that there exists an angle function θ on an open subset $U \subseteq S^{1}$ if and only if $U \neq S^{1}$. For any such angle function, show that (U, θ) is a smooth coordinate chart for S^{1} with a standard smooth structure.

Problem 5 (ISM 1-9). For $n \geq 0$, complex projective space, $\mathbb{C P}^{n}$, is the set of all 1-dimensional \mathbb{C}-linear subspaces of \mathbb{C}^{n+1} with the quotient topology induced by the natural projection π : $\mathbb{C}^{n+1} \backslash\{0\} \rightarrow$ $\mathbb{C P}^{n}$. Show that $\mathbb{C P}^{n}$ is a compact $2 n$-dimensional topological manifold, and show how to give it a smooth structure analogous to the smooth structure on $\mathbb{R} \mathbb{P}^{n}$.

