MATH 545: MANIFOLDS HOMEWORK DUE FRIDAY WEEK 5

Problems taken from *Introduction to Topological Manifolds* are marked ITM x-y; problems taken from *Introduction to Smooth Manifolds* are marked ISM x-y. Please review the syllabus for expectations and policies regarding homework.

Problem 1 (ITM 13–7, BROUWER FIXED POINT THEOREM). For each integer $n \ge 0$, prove that every continuous map $f: \overline{\mathbb{B}}^n \to \overline{\mathbb{B}}^n$ has a fixed point. (Use homology to emulate the fundamental group-based proof for n = 2.)

Problem 2 (ITM 13–8). Show that if *n* is even, then $C_2 = \{\pm 1\}$ is the only nontrivial group that can act freely and continuously on S^n . (*Hint*: Show that if *G* acts continuously on S^n , then degree induces a homomorphism $G \to C_2$. *Bonus*: What happens when *n* is odd?)

Problem 3 (ITM 13–9). Use the cell structure of \mathbb{RP}^3 to compute its homology. (*Bonus*: Compute the homology of \mathbb{RP}^n for all n.)

Problem 4 (ISM 1–8). An angle function on a subset $U \subseteq S^1 \subseteq \mathbb{C}$ is a continuous function $\theta \colon U \to \mathbb{R}$ such that $\exp(i\theta(z)) = z$ for all $z \in U$. Show that there exists an angle function θ on an open subset $U \subseteq S^1$ if and only if $U \neq S^1$. For any such angle function, show that (U, θ) is a smooth coordinate chart for S^1 with a standard smooth structure.

Problem 5 (ISM 1–9). For $n \ge 0$, *complex projective space*, \mathbb{CP}^n , is the set of all 1-dimensional \mathbb{C} -linear subspaces of \mathbb{C}^{n+1} with the quotient topology induced by the natural projection $\pi : \mathbb{C}^{n+1} \setminus \{0\} \rightarrow \mathbb{CP}^n$. Show that \mathbb{CP}^n is a compact 2n-dimensional topological manifold, and show how to give it a smooth structure analogous to the smooth structure on \mathbb{RP}^n .