MATH 545: MANIFOLDS HOMEWORK DUE FRIDAY WEEK 4

Problems taken from *Introduction to Topological Manifolds* are marked ITM x–y. Please review the syllabus for expectations and policies regarding homework.

Problem 1 (12–4). Let $\mathscr{E} \cong S^1 \vee S^1$ be the figure-eight space consisting of unit circles centered at $\pm i$ in \mathbb{C} , and let X be the union of the real axis of \mathbb{C} with infinitely many unit circles centered at $2\pi k + i$, $k \in \mathbb{Z}$. Let $q: X \to \mathscr{E}$ be the map sending each circle in X onto the upper circle in \mathscr{E} by translation by a real number, and sending the real axis onto the lower circle by $x \mapsto ie^{ix} - i$. You may assume that q is a covering map.

- (a) Identify the subgroup $q_*\pi_1(X,0)$ of $\pi_1(\mathscr{E},0)$ in terms of the generators of $\pi_1(\mathscr{E},0)$.
- (b) Determine the automorphism group $Aut_q(X)$.

(c) Determine whether q is a normal covering.

Problem 2 (12–6). Let

$$E = \{ (x, y) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid x \neq y \}$$

considered as a subspace of $\mathbb{R}^3 \times \mathbb{R}^3 = \mathbb{R}^6$. Define an equivalence relation \sim on E by $(x, y) \sim (y, x)$ for all $(x, y) \in E$. Compute the fundamental group of E/\sim . (*Note*: The space E/\sim is the *unordered configuration space of two points in* \mathbb{R}^3 .)

Problem 3 (12–9). Find a covering space action of a group Γ on the plane such that \mathbb{R}^2/Γ is homeomorphic to the Klein bottle.

Problem 4. Let *X* be a finite connected simple graph, *i.e.*, a connected 1-dimensional CW complex with *p* 0-cells and *q* 1-cells with "no loops" and "no parallel edges". Compute $H_1(X)$ in terms of *p* and *q*. (You may use the fact that such a graph has a *spanning tree*: a subgraph which is a tree containing all the vertices of the original graph.)

Problem 5 (13–3, INVARIANCE OF DIMENSION). Prove that if $m \neq n$, then a nonempty topological space cannot be both an *m*-manifold and an *n*-manifold. (You may use Corollary 13.24 identifying the homology of $\mathbb{R}^n \setminus \{0\}$; you may want to utilize [but still need to prove] the results from Problem 13–2.)